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Then they put down the laptop 
and pick up a pillow." 

Figure 1: We explore how to reason jointly about first and third-person for understanding human actions. We collect paired

data of first and third-person actions sharing the same script. Our model learns a representation from the relationship between

these two modalities. We demonstrate multiple applications of this research direction, for example, transferring knowledge

from the observer’s to the actor’s perspective.

Abstract

Several theories in cognitive neuroscience suggest that

when people interact with the world, or simulate interac-

tions, they do so from a first-person egocentric perspective,

and seamlessly transfer knowledge between third-person

(observer) and first-person (actor). Despite this, learning

such models for human action recognition has not been

achievable due to the lack of data. This paper takes a step

in this direction, with the introduction of Charades-Ego, a

large-scale dataset of paired first-person and third-person

videos, involving 112 people, with 4000 paired videos. This

enables learning the link between the two, actor and ob-

server perspectives. Thereby, we address one of the biggest

bottlenecks facing egocentric vision research, providing a

link from first-person to the abundant third-person data on

the web. We use this data to learn a joint representation of

first and third-person videos, with only weak supervision,

and show its effectiveness for transferring knowledge from

the third-person to the first-person domain.

∗Work was done while Gunnar was at Inria.
†Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000

Grenoble, France.

1. Introduction

What is an action? How do we represent and recog-

nize actions? Most of the current research has focused

on a data-driven approach using abundantly available third-

person (observer’s perspective) videos. But can we re-

ally learn how to represent an action without understand-

ing goals and intentions? Can we learn goals and intentions

without simulating actions in our own mind? A popular

theory in cognitive psychology, the Theory of Mind [30],

suggests that humans have the ability to put themselves in

each others’ shoes, and this is a fundamental attribute of hu-

man intelligence. In cognitive neuroscience, the presence

of activations in mirror neurons and motor regions even for

passive observations suggests the same [33].

When people interact with the world (or simulate these

interactions), they do so from a first-person egocentric per-

spective [16]. Therefore, making strides towards human-

like activity understanding might require creating a link be-

tween the two worlds of data: first-person and third-person.

In recent years, the field of egocentric action understand-

ing [14, 20, 22, 27, 32, 34] has bloomed due to a variety

of practical applications, such as augmented/virtual reality.

While first-person and third-person data represent the two
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sides of the same coin, these two worlds are hardly con-

nected. Apart from philosophical reasons, there are practi-

cal reasons for establishing this connection. If we can create

a link, then we can use billions of easily available third-

person videos to improve egocentric video understanding.

Yet, there is no connection: why is that?

The reason for the lack of link is the lack of data! In or-

der to establish the link between the first and third-person

worlds, we need aligned first and third-person videos. In

addition to this, we need a rich and diverse set of actors and

actions in these aligned videos to generalize. As it turns out,

aligned data is much harder to get. In fact, in the egocen-

tric world, getting diverse actors and, thus, a diverse action

dataset is itself a challenge that has not yet been solved.

Most datasets are lab-collected and lack diversity as they

contain only a few subjects [8, 10, 27].

In this paper, we address one of the biggest bottle-

necks facing egocentric vision research. We introduce a

large-scale and diverse egocentric dataset, Charades-Ego,

collected using the Hollywood in Homes [37] methodol-

ogy. We demonstrate an overview of the data collection

and the learning process in Figure 1, and present examples

from the dataset in Figure 2. Our new dataset has 112 ac-

tors performing 157 different types of actions. More im-

portantly, we have the same actors perform the same se-

quence of actions from both first and third-person perspec-

tive. Thus, our dataset has semantically similar first and

third-person videos. These “aligned” videos allow us to

take the first steps in jointly modeling actions from first

and third-person’s perspective. Specifically, our model, Ac-

torObserverNet, aligns the two domains by learning a joint

embedding in a weakly-supervised setting. We show a prac-

tical application of joint modeling: transferring knowledge

from the third-person domain to the first-person domain for

the task of zero-shot egocentric action recognition.

1.1. Related work

Action recognition from third-person perspective has

been extensively studied in computer vision. The most com-

mon thread is to use hand-crafted features [17–19] or learn

features for recognition using large-scale datasets [4, 38].

We refer the reader to [29,43] for a detailed survey of these

approaches, and in the following we focus on the work most

relevant to our approach. Our work is inspired by methods

that attempt to go beyond modeling appearances [14, 42].

Our core hypothesis is that modeling goals and intentions

requires looking beyond the third-person perspective.

Egocentric understanding of activities. Given recent

availability of head-mounted cameras of various types,

there has been a significant amount of work in understand-

ing first-person egocentric data [9, 20, 22, 23, 27, 34]. This

unique insight into people’s behaviour gives rise to inter-

esting applications such as predicting where people will

look [22], and how they will interact with the environ-

ment [31]. Furthermore, it has recently been shown that

egocentric training data provides strong features for tasks

such as object detection [14].

Datasets for egocentric understanding. Egocentric video

understanding has unique challenges as datasets [8, 10, 20,

27] are smaller by an order of magnitude than their third-

person equivalents [7, 37]. This is due to numerous diffi-

culties in collecting such data, e.g., availability, complex-

ity, and privacy. Recent datasets have targeted this issue by

using micro-videos from the internet, which include both

third and first-person videos [25]. While they contain both

first and third-person videos, there are no paired videos that

can be used to learn the connection between these two do-

mains. In contrast, our dataset contains corresponding first

and third-person data, enabling a joint study.

Unsupervised and self-supervised representation learn-

ing. In this work, we use the multi-modal nature of the

data to learn a robust representation across those modali-

ties. It allows us to learn a representation from the data

alone, without any explicit supervision. This draws inspi-

ration from recent work on using other cues for representa-

tion learning, such as visual invariance for self-supervised

learning of features [1, 14, 21, 24, 26, 39, 41, 42]. For exam-

ple, this visual invariance can be obtained by tracking how

objects change in videos [42] or from consecutive video

frames [24]. Typically, this kind of invariance is harnessed

via deep metric learning with Siamese (triplet) architec-

tures [5, 11–13, 40, 45].

Data for joint modeling of first and third person. To

learn to seamlessly transfer between the first and third-

person perspectives we require paired data of these two

domains. Some recent work has explored data collected

from multiple viewpoints for a fine-grained understand-

ing human actions [15]. Due to the difficulty of acquir-

ing such data, this is generally done in a small-scale lab

setting [8, 15], with reconstruction using structure-from-

motion techniques [15], or matching camera and head mo-

tion of the exact same event [28, 44]. Most related to our

work is that of Fan et al. [8] which collects 7 pairs of videos

in a lab setting, and learns to match camera wearers between

third and first-person. In contrast, we look at thousands of

diverse videos collected by people in their homes.

2. Charades-Ego
In order to link first-person and third-person data, we

need to build a dataset that has videos shot in first and third-

person views. We also need the videos to be semantically

aligned, i.e., the same set of actions should appear in each

video pair. Collection in a controlled lab setting is difficult

to scale, and very few pairs of videos of this type are avail-

able on the web. In fact, collection of diverse egocentric

data is a big issue due to privacy concerns. So how do we

scale such a collection?
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Third-Person First-Person

Figure 2: Examples from Charades-Ego, showing third-person (left) and the corresponding first-person (right) video frames.

We introduce the Charades-Ego dataset in this paper.

The dataset is collected by following the methodology out-

lined by the “Hollywood in Homes” approach [37], origi-

nally used to collect the Charades dataset [35, 37], where

workers on Amazon Mechanical Turk (AMT) are incen-

tivized to record and upload their own videos. This in theory

allows for the creation of any desired data.

In particular, to get data that is both in first and third-

person we use publicly available scripts from the Charades

dataset [37], and ask users to record two videos: (1) one

with them acting out the script from the third-person; and

(2) another one with them acting out the same script in the

same way, with a camera fixed to their forehead. We en-

sure that all the 157 activity classes from Charades occur

sufficiently often in our data. The users are given the choice

to hold the camera to their foreheads, and do the activities

with one hand, or create their own head mount and use two

hands. We encouraged the latter option by incentivizing the

users with an additional bonus for doing so.∗ This strategy

worked well, with 59.4% of the submitted videos containing

activities featuring both hands, courtesy of a home-made

head mount holding the camera.

Specifically, we collected 4000† pairs of third and first-

person videos (8000 videos in total), with over 364 pairs

involving more than one person in the video. The videos

are 31.2 seconds long on average. This data contains videos

that follow the same structure semantically, i.e., instead of

being identical, each video pair depicts activities performed

by the same actor(s) in the same environment, and with

the same style. This forces a model to latch onto the se-

mantics of the scene, and not only landmarks. We eval-

∗We compensated AMT workers $1.5 for each video pair, and $0.5 in

additional bonus.
†Since the scripts are from the Charades dataset, each video pair has

another third-person video from a different actor. We use this video also in

our work.

uated the alignment of videos by asking workers to iden-

tify moments that are shared across the two videos, sim-

ilar to the algorithmic task in Section 4.3, and found the

median alignment error to be 1.3s (2.1s average). This of-

fers a compromise between a synchronized lab setting to

record both views simultaneously, and scalability. In fact,

our dataset is one of the largest first-person datasets avail-

able [8, 10, 20, 27], has significantly more diversity (112

actors in many rooms), and most importantly, is the only

large-scale dataset to offer pairs of first and third-person

views that we can learn from. Examples from the dataset

are presented in Figure 2. Our data is publicly available at

github.com/gsig/actor-observer.

3. Jointly Modeling First and Third-Person

As shown in Figure 1, our aim is to learn a shared repre-

sentation, i.e., a common embedding for data, from the cor-

responding frames of the first and the third-person domains.

In the example in the figure, we have a full view of a person

working on a laptop in third-person. We want to learn a rep-

resentation where the corresponding first-person view, with

a close-up of the laptop screen and a hand typing, has a sim-

ilar representation. We can use the correspondence between

first and third-person as supervision to learn this representa-

tion that can be effective for multiple tasks. The challenges

in achieving this are: the views are very visually different,

and many frames are uninformative, such as walls, doors,

empty frames, and blurry frames. We now describe a model

that tackles these challenges by learning how to select train-

ing data for learning a joint representation.

3.1. Formulation

The problem of modeling the two domains is a multi-

modal learning problem, in that, data in the first-person

view is distinct from data in the third-person view. Fol-

lowing the taxonomy of Baltrusaitis et al. [3] we formulate
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this as learning a coordinated representation such that cor-

responding samples in both the first and third-person modal-

ities are close-by in the joint representation. The next ques-

tion is how to find the alignment or corresponding frames

between the two domains. We define ground-truth align-

ment as frames from first and third-person being within ∆-

seconds of each other, and non-alignment as frames being

further than ∆′-seconds, to allow for a margin of error.

If a third-person frame x and a first-person frame z

map to representations f(x) and g(z) respectively, we want

to encourage similarity between f(x)∼g(z) if their times-

tamps tx and tz satisfy |tx − tz| < ∆. If the two frames

do not correspond, then we maximize the distance between

their learned representations f(x) and g(z). One possi-

ble way to now learn a joint representation is to sample

all the corresponding pairs of (x, z), along with a non-

corresponding first-person frame z′ and use a triplet loss.

However, this is not ideal for three reasons: (1) It is ineffi-

cient to sample all triplets of frames; (2) Our ground truth

(correspondence criteria) is weak as videos are not perfectly

synchronized. (3) We need to introduce a mechanism which

selects samples that are informative (e.g., hand touching the

laptop in Figure 1) and conclusive. These informative sam-

ples can also be non-corresponding pairs (negative).

We define the problem of learning the joint representa-

tion formally with our loss function lθ. The loss is defined

over triplets from the two modalities (x,z,z′). The overall

objective function is given by:

L = E
(x,z,z′)∼Pθ

[lθ(x,z,z
′)] , (1)

where lθ is a triplet loss on top of ConvNet outputs, and θ is

set of all the model parameters. The loss is computed over a

selector Pθ. We also learn Pθ, a parameterized discrete dis-

tribution over data, that represents how to sample more in-

formative data triplets (x,z,z′). Intuitively, this helps us find

what samples are likely too hard to learn from. To avoid the

degenerate solution where Pθ emphasizes only one sample,

we constrain Pθ by reducing the complexity of the function

approximator, as discussed in Section 3.2.

The joint model from optimizing the loss and the selector

can be used to generate the other view, given either first or

third-person view. We illustrate this in Figure 3, where we

find the closest first-person frames in the training set, given

a third-person query frame. We see that the model is able to

connect the two views from the two individual frames, and

hallucinate what the person is seeing.

Our setup is related to previous formulations in self-

supervised and unsupervised learning, where the pairs (x,z)
are often chosen with domain-specific heuristics, e.g., tem-

poral [14, 42] and spatial [6] proximity. Triplet loss is a

common choice for the loss lθ for these tasks [6,13,14,42].

We will now address how we model our loss function with a

ConvNet, and optimize it with stochastic gradient descent.

Third-Person Frame Nearest Neighbors in First-Person

First-Person Frame Nearest Neighbors in Third-Person

Figure 3: Using our joint first and third-person model we

can hallucinate how a scene might look through the eyes

of the actor in the scene. The top two rows show nearest

neighbours (on the right) from first-person videos. The bot-

tom two rows show the observer’s perspective, given a first-

person video frame.

3.2. Optimizing the objective

Optimizing the objective involves learning parameters of

both the triplet loss lθ, as well as the selector Pθ. This cor-

related training can diverge. We address this by using im-

portance sampling to rewrite the objective L (1) to an equiv-

alent form. We move the distribution of interest Pθ to the

objective and sample from a different fixed distribution Q

as follows:

L = E
(x,z,z′)∼Q

[

pθ(x,z,z
′)

q(x,z,z′)
lθ(x,z,z

′)

]

. (2)

We choose Q to be a uniform distribution over the domain

of possible triplets: {(x, z, z′) | |tx−tz|<∆, |tx−t′z|>∆′}.

We uniformly sample frames from first and third-person

videos, but re-weight the loss based on the informativeness

of the triplet. Here, pθ(x, z, z
′) is the value of the selector

for the triplet choice (x, z, z′).

Instead of modeling the informativeness of the whole

triplet, we make a simplifying assumption. We assume

the selector Pθ factorizes as pθ(x,z,z
′)=pθ(x)pθ(z)pθ(z

′).
Further, we constrain Pθ such the probability of selecting

any given frame in that video sums to one for a given video.

This has similarities with the concept of “bags” in multiple

instance learning [2], where we only know whether a given

set (bag) of examples contains positive examples, but not if

all the examples in the set are positive. Similarly, here we

learn a distribution that determines how to select the useful
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examples from a set, where our sets are videos. We use a

ConvNet architecture to realize our objective.

3.3. Architecture of ActorObserverNet

The ConvNet implementation of our model is presented

in Figure 4. It consists of three streams: one for third-

person, and two for first-person with some shared param-

eters. The streams are combined with a L2-based dis-

tance metric [13] that enforces small distance between

corresponding samples, and large distance between non-

corresponding ones:

lθ(x,z,z
′) =

e‖x−z‖
2

e‖x−z‖
2 + e‖x−z′‖

2

. (3)

The computation of the selector value, pθ(x,z,z
′), for a

triplet (x,z,z′) is also done by the three streams. The selec-

tor values are the result of a 4096×1 fully-connected layer,

followed by a scaled tanh nonlinearity‡ for each stream. We

then define a novel non-linearity, VideoSoftmax, to com-

pute the per-video normalized distribution over frames in

different batches, which are then multiplied together to form

pθ(x)pθ(z)pθ(z
′). Once we have the different components

of the loss in (2) we add a loss layer (“Final loss” in the fig-

ure). This layer combines the triplet loss lθ with the selector

output pθ and implements the loss in (2). All the layers are

implemented to be compatible with SGD [36]. More details

are provided in the supplementary material.

VideoSoftmax layer. The distribution Pθ is modeled with

a novel layer which computes a probability distribution

across multiple samples corresponding to the same video,

even if they occur in different batches. The selector value

for a frame x is given by:

pθ(x) =
efθ(x)

∑

x′∈V

efθ(x
′)
, (4)

where fθ(x) is the input to the layer and denominator is

the sum of efθ(x
′) computed over all frames x′ in the same

video V . This intuitively works like a softmax function, but

across frames in the same video.

Since triplet loss lθ is weighted by the output of the se-

lector, the gradient updates with respect to the triplet loss

are simply a weighted version of the original gradient. The

gradient for optimizing the loss in (2) with respect to the se-

lector in (4) is (with slight abuse of notation for simplicity):

∂L

∂f
∝ pθ(x,z,z

′)(lθ(x,z,z
′)− L), (5)

where the gradient is with respect to the input of the

VideoSoftmax layer f , so we can account for the other sam-

ples in the denominator of (4). Q is defined as a constant

‡The choice of Tanh nonlinearity makes the network more stable than

unbounded alternatives like ReLU.

Triplet Loss

Final Loss

First-person
Non-corresponding

First-person
Corresponding

Third-person

FC

VideoSoftmax

ResNet-152

FC

VideoSoftmax

ResNet-152

FC

VideoSoftmax

ResNet-152

Figure 4: Illustration of our ActorObserverNet. The model

has separate streams for first and third-person. Given a

triplet of frames from these two modalities, the model com-

putes their fc7 features, which are used to compare and learn

their similarity. The FC and the VideoSoftmax layers also

compute the likelihood of this sample with respect to the

selector Pθ.

over the domain, and can be ignored in the derivation. The

intuition is that this decreases the weight of the samples that

are above the loss L (1), and increases it otherwise. Our

method is related to mining easy examples. The selector

learns to predict the relative weight of each triplet, i.e., in-

stead of using the loss directly to select triplets (as in mining

hard examples). The gradient is then scaled by the magni-

tude of the weight. The average loss L is computed across

all the frames; see supplementary material for more details.

4. Experiments
We demonstrate the effectiveness of our joint modeling

of first and third-person data through several applications,

and also analyze what the model is learning. In Section 4.2

we evaluate the ability of the joint model to discriminate

correct first and third-person pairs from the incorrect ones.

We investigate how well the model localizes a given first-

person moment in a third-person video, from the same as

well as users, by temporally aligning a one-second moment

between the two videos (Section 4.3). Finally, in Section 4.4

we present results for transferring third-person knowledge

into the first-person modality, by evaluating zero-shot first-

person action recognition. We split the 8000 videos into

80% train/validation, and 20% test for our experiments.

4.1. Implementation details

Our model uses a ResNet-152 video frame classification

architecture, pretrained on the Charades dataset [37], and

shares parameters between both the first and third-person

streams. This is inspired by the two-stream model [38],

which is a common baseline architecture even in ego-centric
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Good Third-Person

Good First-Person

Bad Third-Person

Bad First-Person

Figure 5: A selection of frames, from third and first-person videos, the model assigns the highest and the lowest weights, i.e.,

pθ(x) and pθ(z) from (2) respectively. This provides intuition into what the model is confident to learn from.

videos [8, 23]. The scale of random crops for data aug-

mentation in training was set to 80−100% for first-person

frames, compared to the default 8−100% for third-person

frames. We set the parameter ∆ for the maximum distance

to determine a positive pair as one second (average align-

ment error in the dataset), and the parameter ∆′ for the neg-

ative pair as 10 seconds. More details about the triplet net-

work are available in the supplementary material.

We sample the training data triplets, in the form of a pos-

itive pair with first and third-person frames, which corre-

spond to each other, and a negative pair with the same third-

person frame and an unrelated first-person frame from the

same video. This sampling is done randomly following the

uniform distribution Q in (2). The scales of tanh are con-

strained to be positive. For the experiments in Sections 4.3

and 4.4, the parameters of the fully connected layers for

the two first-person streams are shared. Our code is imple-

mented in the PyTorch machine learning framework and is

available at github.com/gsig/actor-observer.

4.2. Mapping third­person to first­person

The first problem we analyze is learning to model first

and third-person data jointly, which is our underlying core

problem. We evaluate the joint model by finding a cor-

responding first-person frame, given a third-person frame,

under two settings: (1) using the whole test set (‘All test

data’); and (2) when the model assigns weights to each sam-

ple (‘Choose X% of test data’). In the second case, the

triplets with the top 5%, 10%, or 50% highest weights are

evaluated. Each triplet contains a given third-person frame,

and a positive and negative first-person frames. This allows

the model to choose examples from the test set to evaluate.

From Table 1 we see that the original problem (‘All

test data’) is extremely challenging, even for state-of-the-

art representations. The baseline results are obtained with

models using fc7 features from either ResNet-152 trained

on ImageNet or a two-stream network (RGB stream using

Random
ImageNet

ResNet-152

Charades

Two-Stream
ActorObserverNet

Same person

All test data 50.0 53.6 55.5 51.7

Choose 50% of test data 50.0 55.7 60.2 73.9

Choose 10% of test data 50.0 57.9 68.8 97.2

Choose 5% of test data 50.0 56.5 71.9 96.8

Different persons

All test data 50.0 50.6 51.7 50.4

Choose 50% of test data 50.0 50.4 51.6 76.3

Choose 10% of test data 50.0 49.6 50.8 98.8

Choose 5% of test data 50.0 45.6 51.4 98.3

Table 1: Given a third-person frame, we determine whether

a first-person frame corresponds to it. Results are shown

as correspondence classification accuracy (in %). Higher is

better. See Section 4.2 for details.

ResNet-152 from [37]) trained on Charades to compute the

loss. The baselines use the difference in distance between

positive and negative pairs as the weight used to pick what

samples to evaluate on in the second setting.

The results of the two-Stream network (‘Charades Two-

Stream’ in the table) and our ActorObserverNet using all

test data (‘All test data’) are similar, but still only slightly

better than random chance. This is expected, since many of

the frames correspond to occluded human actions, people

looking at walls, blurry frames, etc., as seen in Figure 5.

On the other hand, our full model, which learns to weight

the frames (‘Choose X% of test data’ in the table), out-

performs all the other methods significantly. Note that our

model assigns a weight for each image frame independently,

and in essence, learns if it is a good candidate for mapping.

We observe similar behavior when we do the mapping with

third and first-person videos containing the same action per-

formed by different people (‘Different persons’ in the table).

Figure 5 shows a qualitative analysis to understand what

the model is learning. Here, we illustrate the good and the

bad frames chosen by the model, according to the learned

weights, both in the third and first-person cases. We ob-

7401



Figure 6: Conv5 activations of ActorObserverNet. The col-

ors range from blue to red, denoting low to high activations.

We observe the network attending to hands, objects, and the

field of view.

Third-

Person

First-

Person

Figure 7: By backpropagating the similarity loss to the im-

age layer, we can visualize what regions the model is learn-

ing from. The colors range from blue to red, denoting low

to high importance.

serve that the model learns to ignore frames without ob-

jects and people, and blurry, feature-less frames, such as the

ones seen in the bottom row in the figure. Furthermore, our

model prefers first-person frames that include hands, and

third-person frames with the person performing an action,

such as answering a phone or drinking; see frames in the

top row in the figure.

Quantitatively, we found that 68% of high-ranked and

only 15% of low-ranked frames contained hands. This is

further highlighted in Figures 6 and 7 where we visualize

conv5 activations, and gradients at the image layer, respec-

tively. We observe the network attending to hands, objects,

and the field of view. Figure 8 illustrates the selection over

a video sequence. Here, we include the selector value of

pθ(z) for each frame in a first-person video. The images

highlight points in the graph with particularly useful/useless

frames. In general, we see that the weights vary across the

video, but the high points correspond to useful moments in

the first-person video (top row of images), for example, with

a clear view of hands manipulating objects.

4.3. Alignment and localization

In the second experiment we align a given first-person

moment in time, i.e., a set of frames in a one-second time

interval, with a third-person video, and evaluate this tempo-

0.5

1.0

1.5

2.0

time

  Selector 

Value

Figure 8: Our model learns to assign weights to all the

frames in both third and first-person videos. Here we show

the selector value pθ(z) (the importance of each frame) for

a sample first-person video, and highlight frames assigned

with high and low values. See Section 4.2 for details.

Random Chance Human
ImageNet

ResNet-152

Charades

Two-Stream
ActorObserverNet

Same person 11.0 1.3 8.3 6.5 5.2

Different persons 11.0 1.3 8.7 7.0 6.1

Table 2: Alignment error in seconds for our method ‘Ac-

torObserverNet’ and baselines. Lower is better. See Sec-

tion 4.3 for details.

ral localization. In other words, our task is to find any one-

second moment that is shared between those first and third-

person perspectives, thus capturing their semantic similar-

ity. This allows for evaluation despite uninformative frames

and approximate alignment. For evaluation, we assume that

the ground truth alignment can be approximated by tempo-

rally scaling the first-person video to have the same length

as the third-person video.

If m denotes all the possible one-second moments in a

first-person and n in a third-person video, there are m × n

ways to pick a pair of potentially aligned moments. Our

goal is to pick the pair that has the best alignment from this

set. The moments are shuffled so there is no temporal con-

text. We evaluate this chosen pair by measuring how close

these moments are temporally, in seconds, as shown in Ta-

ble 2. To this end, we use our learned model, and find one-

second intervals in both videos that have the lowest sum of

distances between the frames within this moment. We use

L2 distance between fc7 features in these experiments.

We present our alignment results in Table 2, and com-

pare with other methods. These results are reported as me-

dian alignment error in seconds. The performance of fc7

features from the ImageNet ResNet-152 network is close to

that of a random metric (11.0s). ‘Two-Stream’, which refers

to the performance of RGB features from the two-stream

network trained on the Charades dataset, performs better.

Our ‘ActorObservetNet’ outperforms all these methods.

We visualize the temporal alignment between a pair of
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First-

Person

Match

Third-

Person

Video 1
time

time
Video 2

Figure 9: Our model matches corresponding moments be-

tween two videos. We find the moment in the third-person

video (bottom row) that best matches (shown in green) our

one second first-person moment (top row), along with other

possible matches (gray). (Best viewed in pdf.)

Random
Charades

VGG-16

Charades

ResNet-152
ActorObserverNet

Accuracy 8.9 17.8 22.7 25.9

Table 3: Egocentric action recognition in the zero-shot

learning setup. We show the video-level mAP on our

Charades-Ego dataset. Higher is better. See Section 4.4

for details.

videos in Figure 9. We highlight in green the best moment

in the video chosen by the model: the person looking at

their cell phone in the third-person view, and a close-up of

the cell phone in the first-person view.

4.4. Zero­shot first­person action recognition

Since our ActorObserverNet model learns to map be-

tween third and first-person videos, we use it to transfer

knowledge acquired from a dataset of third-person videos,

annotated with action labels, to the first-person perspective.

In essence, we evaluate first-person action recognition in a

zero-shot setting. We annotated first-person videos in the

test set with the 157 categories from Charades [37] to eval-

uate this setup. Following the evaluation setup from Cha-

rades, we use the video-level multi-class mean average pre-

cision (mAP) measure.

In order to transfer knowledge from the third-person to

the first-person perspective, we add a classification loss to

the third-person model after the fc7 layer. To train this

framework, we use third-person training examples from the

Charades dataset, in addition to the training set from our

Charades-Ego dataset. Note that the third-person videos

from Charades are annotated with action labels, while our

data only has unlabelled first/third person pairs. Thus, we

use the mapping loss in (2) when updating the network pa-

rameters due to first/third person pair, and the RGB compo-

nent of the two-stream classification loss for an update due

to a Charades third-person example.

Our model now learns to not only map both first and

third-person frames to a shared representation, but also a

third-person activity classifier on top of that shared repre-

sentation. At test time, we make a prediction for each frame

in a first-person test video, and then combine predictions

over all the video frames with mean pooling. We present

the results in Table 3.

Baseline results. The performance of random chance is

8.9% on the Charades-Ego dataset. We also compare to the

RGB two-stream model trained on Charades (third-person

videos), using both VGG-16 and ResNet-152 architectures,

which achieve 18.6% and 22.8% mAP respectively, on the

Charades test set. Both are publicly available [37], and

show a 8.9% and 13.8% improvement respectively, over

random chance on our first-person videos.

Our results. Our ActorObserverNet further improves over

the state-of-the-art two-stream network by 3.2%. This

shows that our model can transfer knowledge effectively

from the third-person to the first-person domain.

To further analyze whether the gain in performance is

due to a better network, or third to first-person transfer, we

evaluated our network on the Charades test set. It achieves

23.5% on third-person videos, which is only 0.7% higher

than the original model, which suggests that the perfor-

mance gain is mainly due to the new understanding of how

third-person relates to first-person view.

5. Summary

We proposed a framework towards linking the first

and third-person worlds, through our novel Charades-Ego

dataset, containing pairs of first and third-person videos.

This type of data is a first big step in bringing the fields of

third-person and first-person activity recognition together.

Our model learns how to jointly represent those two do-

mains by learning a robust triplet loss. Semantic equiva-

lence in data allows it to relate the two perspectives from

different people. Our results on mapping third-person to

first-person, alignment of videos from the two domains,

and zero-shot first-person action recognition clearly demon-

strate the benefits of linking the two perspectives.
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