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Abstract

We present a system that builds 3D models of non-rigidly

moving surfaces from scratch in real time using a single

RGB-D stream. Our solution is based on the variational

level set method, thus it copes with arbitrary geometry, in-

cluding topological changes. It warps a given truncated

signed distance field (TSDF) to a target TSDF via gradient

flow. Unlike previous approaches that define the gradient

using an L2 inner product, our method relies on gradient

flow in Sobolev space. Its favourable regularity properties

allow for a more straightforward energy formulation that is

faster to compute and that achieves higher geometric detail,

mitigating the over-smoothing effects introduced by other

regularization schemes. In addition, the coarse-to-fine evo-

lution behaviour of the flow is able to handle larger mo-

tions, making few frames sufficient for a high-fidelity recon-

struction. Last but not least, our pipeline determines voxel

correspondences between partial shapes by matching sig-

natures in a low-dimensional embedding of their Laplacian

eigenfunctions, and is thus able to reliably colour the output

model. A variety of quantitative and qualitative evaluations

demonstrate the advantages of our technique.

1. Introduction

The abundance of affordable RGB-D cameras in recent

years triggered the creation of a variety of excellent real-

time methods for 3D mapping and tracking from a single

stream [22, 23, 29, 31, 32, 33, 49]. Nowadays depth sensors

are being integrated into new generations of mobile phones,

whose limited computational resources call for new solu-

tions. One major challenge is the reduced frame rate, which

can be as low as 5 frames per second on a Tango tablet [17].

While static reconstruction methods have been successfully

ported to mobile devices [21], when it comes to dynamic

scenes, algorithms will have to cope with larger frame-to-

frame motions, which is one of the goals of this paper.

DynamicFusion [31] is the breakthrough work that first

performed real-time 3D reconstruction of a non-rigid scene
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Figure 1. SobolevFusion example. Our method reconstructs

scenes containing multiple non-rigidly interacting agents, captured

with a single RGB-D sensor.

using a single depth camera. Several follow-ups improved

its tracking via additional constraints, such as colour fea-

tures [18], albedo [15] or human skeleton [52]. While

showing ever-improving visual quality, all of these methods

only demonstrate examples of relatively contrived move-

ments. Even state-of-the-art multi-view systems [9] utilize

extremely high frame-rate cameras of up to 200 fps [12] to

ensure that frame-to-frame motion is minimal.

KillingFusion [40] is the only single-stream approach

that has shown capture of more free movements to date.

It warps an input TSDF towards the current canonical re-

construction via a variational formulation that estimates a

flow field. However, the underlying gradient flow is based

on an L2 inner product, which is known to be suscepti-

ble to local minima [45]. In order to counteract this issue

and stabilize the level set evolution, KillingFusion employs

a combination of regularizers, which are difficult to bal-

ance and thus result in over-smoothing and loss of high-

frequency details. Here we propose to define the gradient

flow in the Sobolev space H1 [30, 45]. It acts as a pre-

conditioner that favours consistent motion and features a

desirable coarse-to-fine evolution of the TSDF. This reduces
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the risk of getting trapped in local minima without chang-

ing the global optimum [44]. Therefore, it lets us define

an energy of reduced complexity that is faster to evaluate

and yields more detailed reconstructions. Moreover, thanks

to improved convergence, SobolevFusion can capture even

larger motion, thus only several scans are sufficient to build

a realistic 3D model.

As the proposed approach is based on the variational

level set method [53], it can handle topological changes, but

preserving correspondence information is more challenging

than for mesh-based techniques [36]. This usually limits

the applicability to tasks such as texture transfer and charac-

ter animation. Therefore we take inspiration from spectral

techniques for matching over voxel representations [28, 38].

Using a low-dimensional embedding of the eigenspace of a

shape’s Laplacian matrix, the alignment problem is reduced

to matching eigenfunction signatures [28]. However, as we

are dealing with partial shapes from noisy data, we keep

only high-confidence matches. Thus we only obtain a set of

sparse correspondences per frame, but can reliably texture

the final canonical reconstruction.

To sum up, we propose a variational non-rigid fusion

technique, called SobolevFusion, which:

• is based on Sobolev gradient flow, allowing for a more

straightforward, faster to compute energy that pre-

serves geometric details without over-smoothing;

• handles topological changes and large motion, thus re-

quiring only a few views to build a model;

• can estimate voxel correspondences and colour the re-

construction.

2. Related Work

Most real-world scenes consist of agents that interact

with each other and their surroundings. Reconstructing

them is a challenging task due to its high dimensionality.

Compelling state-of-the-art capture systems constrain the

problem through the use of multiple cameras [4, 6, 8, 10, 20]

or template models [3, 16, 55], requiring custom set-ups and

recording studios. Here we address the scenario of a single

RGB-D camera, which is more convenient for the user.

Dynamic reconstruction Template-free methods for

non-rigid fusion using a single depth sensor have been on

the rise since 2015 with the development of the offline bun-

dle adjustment scheme of Dou et al. [11] and the first real-

time solution for simultaneous surface tracking and recon-

struction, DynamicFusion [31]. A line of research improved

on it, including VolumeDeform [18] which combines its

dense depth correspondences with sparse SIFT features,

and the integration of surface albedo constraints by Guo et

al. [15]. However, the examples shown in these publications

mostly contain slow motion and no changing topology.

Large motion KillingFusion [40] tackles the problem

from another perspective, whereby instead of extracting a

mesh from the cumulative model for correspondence esti-

mation, it stays within the TSDF representation and warps

it incrementally. As level sets inherently handle topological

changes and can recover from large distances, examples on

less constrained motion have been shown.

Similar to most approaches derived from the variational

level set method, the gradient flow used for warping is de-

fined via an L2-type inner product [34, 35, 53]. Although

widely used, it assumes a metric that may lead to slow con-

vergence and sub-optimal solutions [45]. Techniques to

stabilize the evolution include re-initialization or additional

regularizers imposing the level set property of unit gradient

magnitude [26], as done by KillingFusion. However, it does

not hold strictly in the discrete case, and is not valid at the

border of voxel truncation, causing over-smoothing effects.

Gradient flow in the Sobolev space H1 has been shown

to have superior performace without changing the global

minimum [45]. Re-casting the notion of gradient in this way

has a pre-conditioning effect that induces flow with coarse-

to-fine behaviour which first evolves lower-frequency com-

ponents and is thus less susceptible to local minima [5, 44].

The concept was developed in the context of numerical so-

lutions of PDEs. We refer the reader to the book of Neu-

berger [30] for a mathematical introduction. It has been ap-

plied for segmentation [1, 14, 45], registration [44, 46, 54]

and sharpening [5] of 2D images or complete 3D volumes

in medical imaging. Here we propose to employ it for the

profoundly different task of incremental 3D reconstruction

from depth images. As its regularity properties will permit

us to define an energy functional with fewer terms, we ex-

pect faster processing, in addition to the discussed improved

convergence and better preservation of geometric details.

Voxel correspondence A major limitation of approaches

based on level set evolution is their inability to track cor-

respondences [36, 50]. One possibility to recover them is

to convert the resulting shape to a mesh and use spectral

matching techniques [2, 19], which utilize the fact that the

graph Laplacian of a shape is invariant to isometric defor-

mations [25, 37]. As mesh extraction would entail temporal

overhead, our aim is to determine correspondences between

an initial TSDF and its warped counterpart. To this end we

follow an approach similar to that of Mateus et al. [28], who

deal with shapes represented as voxel sets. They first find

a lower-dimensional embedding of the Laplacian spectrum,

then determine an ordering of the eigenvalues by matching

eigenfunction signatures, and finally reduce the correspon-

dence estimation problem to rigid alignment in the embed-

ded space. However, their approach is applied only to whole

shapes and does not fit into real-time constraints. Therefore

we propose a modified strategy over TSDFs of incomplete

shapes that only keeps the most likely matches.
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Figure 2. SobolevFusion pipeline. Given an input RGB-D pair, we first generate its projective TSDF φi
proj from the current camera

pose estimate. Next, we warp it towards the canonical model TSDF φi−1

model, obtaining φi
warped. Afterwards we optionally estimate voxel

correspondences between φi
proj and φi

warped in order to transfer colour to the warped TSDF. Then we fuse φi
warped into the canonical

model, obtaining its updated state φi
model. Finally, we run a backward warp from φi

model to φi
proj to visualize the live frame to the user.

3. Overview

In the following we briefly describe our mathematical

notation and outline the proposed SobolevFusion approach.

3.1. Mathematical Preliminaries

Our system takes an RGB-D stream consisting of pairs

(IiRGB , I
i
D), where i is the frame index, IRGB is the 3-

channel colour image and ID is the aligned depth map.

We assume a calibrated camera and a projection function

π : R3 7→ N
2 from 3D coordinates to pixels.

We discretize the pre-defined bounding volume into cu-

bic voxels of a selected side length. They are indexed by

integer tuples (x, y, z) ∈ N
3. Let (X,Y, Z) ∈ R

3 be the

coordinates of the respective voxel’s center in 3D space. A

single RGB-D frame allows the generation of a projective

TSDF φ : N3 7→ R. We follow the traditional scaling and

truncation scheme [39]:

d(x, y, z) = ID(π(X,Y, Z))− Z , (1)

φ(x, y, z) =

{

sgn(d(x, y, z)) if |d(x, y, z)| ≥ δ ,

d(x, y, z)/δ otherwise ,
(2)

ω(x, y, z) =

{

1 if d(x, y, z) > −η ,

0 otherwise .
(3)

Here d is the directional signed distance, which is truncated

to the interval [−1,+1] to disregard voxels that are far away

from the surface. In practice we set the responsible param-

eter δ to 5-10 times the voxel size. The parameter η deter-

mines the expected object thickness and is set to 2-3 voxels.

Voxels outside the object and within this thickness receive

a confidence weight ω of 1, while non-observed ones get 0.

TSDFs from multiple views are fused together via the

weighted averaging scheme of Curless and Levoy [7], re-

sulting in a true (not projective) TSDF.

Finally, we will be estimating a vector flow field Ψ =
(U, V,W ) : N3 7→ R

3 of the same resolution as the TSDFs.

U , V and W denote its x-, y- and z-components respec-

tively, each of which is a scalar grid N
3 7→ R. We denote

the vector applied at voxel (x, y, z) by (u, v, w).

3.2. SobolevFusion Pipeline

Our proposed pipeline is displayed in Figure 2. Given

an existing state of the cumulative model φi−1
model and an in-

coming RGB-D pair (IiRGB , I
i
D), we iteratively estimate a

deformation field that warps the projective TSDF φi
proj gen-

erated from IiD towards φi−1
model, resulting in φi

warped, us-

ing the Sobolev deformation scheme described in Section 4.

We then estimate voxel correspondences between the initial

and warped TSDFs in order to transfer colour from φi
proj to

φi
warped, as explained in Section 5. Then we fuse φi

warped

into the global model, obtaining its new state φi
model. Fi-

nally, we run a backward deformation from φi
model towards

φi
proj in order to provide a live update to the user.

4. Sobolev 3D Reconstruction

Here we describe our variational model for non-rigid re-

construction, as well as how the concept of Sobolev gradient

flow is employed for computing a minimizer of this model.

4.1. Deformation Energy

As a new RGB-D frame is acquired and we estimate the

approximate camera pose, we generate the corresponding

projective TSDF φproj . Next, we warp it towards the canon-

ical TSDF φmodel. In iteration t, we estimate a deformation

field increment Ψ = (U, V,W ) and apply it to the current

warped TSDF φ
(t)
proj , obtaining its new state φ

(t+1)
proj via tri-

linear interpolation. We do this following a variational for-

mulation consisting of a data term and a regularizer:

Edef (Ψ) = Edata(Ψ) + wregEreg(Ψ) , (4)

where wreg > 0 controls the trade-off between data fidelity

and regularity. A solution of this model can be found via a

gradient descent scheme with step size α > 0:

Ψ(t+1) = Ψ(t) − α ∇Edef

(

Ψ(t)
)

, (5)

where ∇Edef

(

Ψ(t)
)

denotes the variational derivative of

the energy with respect to the deformation field. It is im-

portant to note that ∇Edef depends on the choice of the

underlying inner product as explained in Section 4.2.
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Data term Our data term enforces similarity between the

TSDF that we are warping and the target canonical model

by minimizing their squared voxel-wise difference:

Edata(Ψ) =
1

2

∑

x,y,z

(

φproj(x+ u, y + v, z + w)−

−φmodel(x, y, z)
)2

.
(6)

Applying standard calculus of variations we obtain:

∇Edata(Ψ) =
(

φproj(Ψ)− φmodel

)

∇φproj(Ψ) . (7)

Note that we use the symbol ∇ both for the spatial gradient

of φ and for the variational derivatives of the energy terms.

Regularizer Our pipeline targets noisy Kinect data,

which might cause inconsistencies within voxel neighbour-

hoods that result in holes in the reconstruction. Therefore

we employ a classical Tikhonov-type regularizer that re-

duces spurious artifacts by imposing uniform motion:

Ereg(Ψ) =
1

2

∑

x,y,z

(

|∇U(x, y, z)|2+

+|∇V (x, y, z)|2 + |∇W (x, y, z)|2
)

.

(8)

Using calculus of variations we obtain:

∇Ereg(Ψ) = −(∆U,∆V,∆W )⊤ , (9)

where ∆U denotes the Laplace operator applied to the x-

component of the flow field, and similarly for V and W .

4.2. Sobolev Gradient Flow

The main idea of Sobolev gradient flows can be sum-

marized as follows: compute the variational derivative of

an energy with respect to the inner product of a smooth

subspace of L2, i.e. a Sobolev space, to obtain a gradi-

ent, which employed in a descent scheme yields a gradient

flow that favours globally consistent solutions and is less

susceptible to undesired local minima. Sundaramoorthi et

al. [44] coined the term coarse-to-fine evolution for this ef-

fect, which accurately summarizes the fact that coarse-scale

changes are favoured over fine-scale ones. In the context of

incremental 3D reconstruction, this means that the warped

TSDF will first adapt to more global deformations before

eventually converging also w.r.t. to fine-scale details.

To compute a Sobolev gradient, it is sufficient to project

the original gradient ∇Edef to the Sobolev space H1 [5].

Identifing ∇Edef from Eq. (5) as the L2 gradient ∇L2Edef ,

we obtain:

∇H1Edef = (Id− λ∆)−1 ∇L2Edef , (10)

where Id denotes the identity operator. Eq. (10) involves

the solution of an equation system, but it is possible to de-

rive an approximate way of obtaining Sobolev gradients.

First we note that Eq. (10) can be realized via

∇H1Edef = S ∗ ∇L2Edef , (11)

where the filter S is the impulse response of the operator

(Id − λ∆)−1. In practice, we approximate S for a chosen

value of λ and filter size s by solving the following system:

(Id− λ∆)S = v , (12)

where v is a one-hot vector that corresponds to a discretized

Dirac impulse of size s×s×s voxels, and ∆ is the Laplacian

matrix discretized via a 7-point finite-difference stencil.

However, 3D convolutions might become prohibitively

expensive for large values of s. Thus we further approxi-

mate the Sobolev kernel S by three separable 1D convolu-

tions. To this end, we calculate the tensor higher-order SVD

decomposition [24] of S and retain only the first singular

vector from each resulting U matrix, and after normaliza-

tion to unit sum obtain the 1D s-element filters Sx, Sy and

Sz . As they contain the same entries, the subscript denotes

spatial direction of application. Note that this is an approxi-

mation of S that has indispensable performance advantages.

At this point it is important to remark the following:

• A Sobolev gradient flow only enforces a more regular

evolution to the desired minimum and not a more reg-

ular solution itself. Thus it favours globally consistent

motions without changing the global optimum [45]

and does not hamper the reconstruction of fine details,

as we will demonstrate in our experiments.

• Thanks to this more consistent evolution, we do not

need to enforce rigidity constraints, such as embedded

deformation [43] or as-rigid-as-possible schemes [42]

over meshes used by DynamicFusion [31] and its re-

lated methods [11, 18], or impose a divergence-free

vector field prior like KillingFusion [40].

• Furthermore, our scheme does not require explicit re-

initialization [34] or level set regularization [26, 27] to

stabilize the evolution of the TSDF. This is in contrast

to, for instance, KillingFusion [40] that uses both level

set and rigidity priors, which are hard to balance and

may cause over-smoothing effects.

4.3. Implementation Details

We use a default setting of neighbourhood size s = 7,

filter parameter λ = 0.1, motion smoothness wreg = 0.2
and gradient descent step size α = 0.1. Our model is robust

with regard to the parameter choice and achieves good re-

sults with a variety of settings (c.f . also an overview in sup-

plementary material). To explain their acceptable ranges,

we display reconstructions of the full-loop Andrew-Chair

sequence from Dou et al. [11] in Figure 3.

A Sobolev filter size s = 3 is not sufficient to achieve sat-

isfactory results. However, a larger kernel impedes speed,

while the differences with s ≥ 7 become negligible.

The parameter λ has an effect on the convergence rate.

We empirically determined that doubling its value reduces

2649



(a) s = 3 (b) wreg = 0 (c) default

Figure 3. Extreme versus recommended parameter choices for

Sobolev neigbourhood s, kernel strength λ and motion regularity

wreg: (a) a small neigbourhood is not able to fully overcome the

effects of noise; (b) no motion regularization results in inconsistent

geometry; (c) the default setting yields a detailed reconstruction.

the number of iterations by 3-8%. Moreover, as Figure 3(b)

shows, motion regularity is essential to overcome noise.

The ranges λ ∈ [0.05; 0.4] and wreg ∈ [0.1; 0.5] yield high

fidelity reconstructions, and we set the default values in the

middle of those intervals.

Although our energy consists of only two terms, runtime

is dominated by the Sobolev convolutions. Depending on

the bounding volume, we use a voxel size in the range 4-

12 mm in order to fit our regular voxel grid into GPU mem-

ory. Our pipeline achieves 30 fps for 643 voxels on a lap-

top with an Nvidia Quadro K1100M GPU with 2 GB of

global memory, and for 1283 voxels on a desktop PC with

an Nvidia Titan Black with 6 GB memory.

5. Voxel Correspondences

Having developed a strategy for reliable non-rigid re-

construction, we now aim to colour the resulting model.

However, as level set methods do not preserve correspon-

dences [36, 50], colours would diffuse into each other if we

warp an RGB grid in the same way as the TSDF [41].

We therefore turn to techniques based on the spectrum

of the Laplacian matrix of a shape, which is invariant to

isometric deformations [2, 19]. Its lower-frequency eigen-

functions, corresponding to the smallest eigenvalues, repre-

sent the base shape (e.g. a human body), while the higher-

frequency ones carry details (limbs, wrinkles) [25, 37].

Recently it has been attempted to implicitly transfer cor-

respondences in a level set framework via a term based on

the difference of the lowest-frequency eigenfunctions [41].

As the overall scheme involves TSDF evolution, it has been

shown to succeed only on constrained motion of complete

shapes. We thus develop a scheme for direct voxel matching

between TSDFs of incomplete shapes, based on the eigen-

function signature matching proposed by Mateus et al. [28].

Spectral embedding Our objective is to find correspon-

dences between φproj and φwarped. We first calculate the

normalized graph Laplacian matrices of these voxel grids.

Let the number of voxels in the narrow band that is not

truncated to ±1 be l (they do not need to be the same for

both shapes). We refer to them as occupied in the current

context. This is the main difference between our proposed

solution and other spectral methods, which typically con-

sider the entire shape. The adjacency matrix W of size l × l
has an entry 1 when adjacent voxels are occupied, and 0

elsewhere. Note that the diagonal entries are 0, as a voxel

is not adjacent to itself. The degree matrix D contains the

degree of each voxel, i.e. the row-wise sums of elements in

W , on its diagonal. Then the normalized Laplacian is:

L = D−
1

2 (D −W )D−
1

2 . (13)

According to Umeyama’s theorem, finding correspon-

dences between the two shapes can be done through align-

ment of their Laplacian eigenspaces [47]. Let L = UΛU⊤

be the eigendecomposition. As the number of voxels in

our shapes is very large, we resort to a lower-dimensional

embedding containing the K smallest non-zero eigenvalues

and their eigenvectors [28]. The columns of the respective

matrix UK are the K retained eigenvectors, while its l rows

are the K-dimensional coordinates of the embedded shape.

However, there is no guarantee that the eigenvalues are

reliably ordered in the embedding, so we need to find a

K × K permutation matrix P that aligns the eigenspaces

of our two shapes. In addition, due to sign ambiguity, we

have to determine a sign matrix M , resulting in an overall

transformation T = MP , as described in the next part. It

relates the reduced embeddings as follows:

(UK
warped)

⊤ = T (UK
proj)

⊤ . (14)

The correspondences between the embeddings are trans-

ferred to the voxels of the original shapes via nearest neigh-

bour search between embedded- and voxel-coordinates.

Eigenfunction signature matching We seek an optimal

assignment between the column eigenvectors u
i
proj and

u
j
warped, i, j ∈ {1, ...,K} of UK

proj and UK
warped. The

approach of Mateus et al. [28] suggests to construct his-

tograms from these eigenvectors, since they are invariant to

the value ordering and the number of entries l, and view

them as signatures of the eigenfunctions. We thus build a

200-bin histogram hist(·) from each vector and store the

similarity of each eigenvector pair as the ℓ1 histogram dif-

ference in a score matrix A:

Ai,j = min(||hist(ui
proj)− hist(±u

j
warped)||1) . (15)

Additionally, a matrix M ′ stores the sign of ±u
j
warped that

yielded the lower score.

This is an assignment problem between eigenfunction

signatures, which we solve for the lowest cost via the
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RGB-D KillingFusion [40] SobolevFusion RGB-D KillingFusion [40] SobolevFusion

Figure 4. Comparison of SobolevFusion to KillingFusion [40] on scenes with interacting subjects, such as two people playing with a

ball, high-fiving and hugging. Both methods handle the motion, but SobolevFusion demonstrates better capture of geometric details, while

KillingFusion tends to over-smooth and thus, for instance, creates the impression that limbs are fused into the body (see marked regions).

Munkres algorithm [13] over A. We then build the permu-

tation matrix P according to its output, and look up M ′

for the appropriate sign in M . Thus we obtain the sought

transformation matrix T = MP and use it to estimate the

correspondence. If a near-surface voxel is assigned to an

off-surface voxel, we discard the match.

After obtaining initial matches, we use the Weiszfeld

algorithm [48] to determine the geometric median in a

3 × 3 × 3 neighbourhood in order to retain only the most

likely correspondence. This step is crucial, since as opposed

to Mateus et al. [28] and other prior work, we are dealing

with partial shapes, so their Laplacian eigenfunctions might

carry information about non-overlapping regions.

In our implementation we choose K ≤ 20, since higher-

frequency eigenfunctions might be contaminated by noise

or pertain to details of the shape rather than its base struc-

ture, which is undesirable for partial TSDFs. As paralleliza-

tion of the voxel matching procedure is not straightforward,

in practice we run it on the CPU while the next frame(s) are

being warped on the GPU. It takes 58-500 ms per frame on

a 2.80 GHz Intel Core i7 CPU, depending on the volume

size. Once done, it continues with the latest warped frame,

effectively avoiding temporal overhead.

6. Evaluation

Figure 1 demonstrates that SobolevFusion can recon-

struct a complete 3D model of a subject moving in a 360◦

loop, undergoing large motion and interacting with a bal-

loon, leading to merging and splitting topology.

ground KF [40] SF ground KF [40] SF

truth 3.9 mm 3.7 mm truth 3.5 mm 3.1 mm

Figure 5. Evaluation of geometric error on objects with ground-

truth canonical pose models from KillingFusion [40]. The error

is given under the respective output of KillingFusion (KF) and

SobolevFusion (SF). In addition to achieving higher geometric ac-

curacy, our method is less susceptible to high-frequency noise on

the Duck and to over-smoothing on the Snoopy sequence.

In this section we carry out various experiments in order

to assess the performance of SobolevFusion and compare it

to state-of-the art techniques. We test the different aspects

of our system separately, namely geometric accuracy, per-

formance under large motion, and ability to transfer colour

to the output model.

6.1. Geometric Fidelity

Most related to our method is KillingFusion [40] due

to the variational formulation based on signed distance

field deformation. In Figure 4 we compare SobolevFusion

against our implementation of KillingFusion with default

parameters on data that we acquired with a Kinect v1, fea-

turing fast motion, multiple interacting subjects and thus

topological changes (more results can be found in our sup-

plementary video). As expected, both methods are able to

handle such motion. However, KillingFusion tends to over-
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every 3rd every 5th every 10th every 15th KillingFusion [40] every 10th

Figure 6. Lower frame-rate test. We use only every nth frame, as indicated under the results. SobolevFusion outputs high-fidelity

reconstructions using only 20% of the frames. For slow motion, even less frames give good results, while for large motion some of the

geometry cannot be recovered, resulting in artifacts. The right-most columns show the KillingFusion [40] result for every 10th frame,

exhibiting similar degradation properties as SobolevFusion does for every 15th frame due to its better convergence.
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Figure 7. Canonical model comparison on the full-loop Squeeze

sequence from DynamicFusion [31]. SobolevFusion recovers the

fine structures on the face better than KillingFusion [40].

smooth facial features and folds on clothes, while these are

more clearly visible with our approach. Our reconstructions

contain less noise as the underlying Sobolev gradient flow

provides higher robustness to it. Moreover, our method cap-

tures concavities better and defines sharper edges, both at

the shape outline and where surfaces touch. Last but not

least, we observed that SobolevFusion requires up to 15 %

less iterations to converge.

For quantitative evaluation we test on the fast-motion

mechanical toy sequences from KillingFusion [40], where

it has already been demonstrated that a TSDF-based ap-

proach performs better than a mesh-based technique, such

as VolumeDeform [18], under large motion and topologi-

cal changes. Figure 5 shows that our SobolevFusion fur-

ther decreases the geometric error and outputs more de-

tailed reconstructions. This is especially noticeable on

Snoopy for which the regularizers of KillingFusion lead to

over-smoothing, while our Sobolev gradient flow keeps fine

details while avoiding spurious artifacts caused by noise.

Therefore SobolevFusion achieves both an increased level

of geometric detail and a lower reconstruction error than

KillingFusion.

Similarly, in Figure 7 we demonstrate better preserva-

tion of detail than KillingFusion [40] on the 360◦ Squeeze

sequence from DynamicFusion [31]. For instance, the fa-

cial features are much more conspicuous in our case. Note

that due to the used regular voxel grid our result is still less

detailed than that of DynamicFusion.

We also compare the level of geometric detail of a TSDF

warped via Sobolev gradient flow versus that of a mesh-

based technique. For this purpose in Figure 8 we show

live frames from the Umbrella sequence used in VolumeDe-
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0

VolumeDeform [18] KillingFusion [40] SobolevFusion

Figure 8. Warped live frame comparison on the Umbrella from

VolumeDeform [18]. SobolevFusion yields similar or higher level

of detail as VolumeDeform without artifacts at the edge, while

KillingFusion [40] over-smooths thin elements such as the tip.

form [18]. Our method recovers similar, or even higher,

level of detail as VolumeDeform, without creating spurious

elements around the open edge or fusing the strap into the

umbrella. Furthermore, KillingFusion over-smooths the tip,

while SobolevFusion manages to capture this fine structure

using the same voxel size.

6.2. Large Motion

Even though datasets from the previous section exhibit

large motion, we simulate a lower frame-rate sensor by tak-

ing every nth frame from 360◦ sequences. To this end we

use the slow-motion Andrew-Chair from Dou et al. [11] and

the fast Alex sequence from KillingFusion [40], as displayed

in Figure 6. Naturally, when less frames are fused, the cu-

mulative TSDF is noisier. However, when only every 10th

frame is used, the reconstruction is still consistent for the

slower Andrew-Chair sequence, while the faster Alex se-

quence starts creating artifacts due to misaligned geome-

try. Moreover, due to improved convergence of the Sobolev

scheme, our method manages to recover even larger motion

than KillingFusion. This can be concluded from the last two

columns of Figure 6, as the KillingFusion result for Alex at

10-frame speedup is similar to that of SobolevFusion for

15-frame speedup.
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Figure 9. Colour transfer from reference frame i to target frame

i + n. With larger distance the amount of transferred colour de-

creases, but remains correct due to our carefully designed scheme.

6.3. Texture Transfer

The reconstruction part of our pipeline is independent of

the voxel matching, therefore it can be run separately. Here

we assess the quality of colour propagation that we achieve.

In Figure 9 we display the amount of colour that our

technique can transfer on the Minion sequence from Vol-

umeDeform [18]. We test on consecutive frames, as well

as on frames separated by a larger distance. The amount of

texture that is being transferred decreases with the increas-

ing pose difference, but our scheme manages to determine

stable matches even when views are 15 frames apart. Fur-

thermore, our procedure for match rejection makes sure that

only reliable correspondences are returned, and thus there is

no transfer of incorrect colours.

Further textured examples are shown in Figure 10. As

explained in the implementation part of Section 5, we do not

necessarily determine matches for every frame in order not

to hamper speed. This is justified, since consecutive frames

have a significant overlap. However, a certain amount of

voxels might remain un-coloured. In that case, we assign to

them the colour that the gradient flow propagates from the

initial projective TSDF. Due to the multiple interpolation

steps, this colour is typically contaminated by the colours

of nearby voxels, but is a plausible estimate.

Figure 1 shows the texture we are able to recover after

the subject does a complete 360◦ loop. Colours on the front

are rather crisp, since the difference between the canonical

pose and the initial frames is not too large and thus match-

ing is very exact. The back shows more mixed colours, as

the poses become more distant and matching becomes more

challenging, but the result remains visually pleasing.

Our main goal is to reliably colour the reconstructions

we obtain, rather than to estimate a dense set of corre-

spondences. Nevertheless, we quantitatively evaluate on the

yt sequence with Vicon markers used in BodyFusion [52],

which features a human executing various motions. We

observed that our matching procedure typically returns a

low error for markers on the torso of the subject, which

is a region where mesh-based correspondences often ex-

hibit sliding. However, since the lower-frequency Lapla-

cian eigenfunctions do not always capture limbs, often cor-

respondences are not estimated for markers located on the

arms. As 12 out of the 18 Vicon markers are placed on

the subject’s arms, this dataset is not optimally suited for

Figure 10. Coloured canonical-pose models, obtained with our

voxel matching scheme between TSDFs of incomplete shapes.

our method, which on average returns matches for half the

markers per frame. Yet, our mean ℓ1 error of 7.7 cm over

the entire sequence is comparable to the 4.4 cm of Dynam-

icFusion [31] and 3.7 cm of VolumeDeform [18], consider-

ing that we always stay in voxel space and thus accumulate

more discretization error, while the other methods explicitly

determine correspondences for deformation field calcula-

tion (BodyFusion achieves a lower error by combining with

a human skeleton prior; c.f . Table 1 of their paper [52]).

This is a promising result for the incorporation of explicit

correspondences into implicit level set frameworks.

7. Limitations and Future Perspectives

Although our framework runs at interactive rates, its

speed and memory consumption can be further optimized

by replacing the regular voxel grid TSDF representation by

an appropriate hashing [33] or hierarchical structure [21].

The voxel matching opens up more avenues for future

work. One of our goals is to obtain denser correspondences.

A possibility to do this is an expectation-maximization pro-

cedure over the spectral matches, which is, however, not

feasible in real time [28]. An alternative would be to learn

a mapping from sparse to dense fields [51], or even learn

correspondences in the spectral embedding. Moreover, seg-

mentation can be helpful in the case of multiple objects, so

that for each one we can compute a separate, more repre-

sentative Laplacian matrix.

8. Conclusion

We have presented a method for non-rigid fusion of

scenes undergoing free motion, including fast movements,

changing topology and interacting agents. The introduced

variational energy formulation is cheaper to compute, con-

verges faster and leads to reconstructions of higher geomet-

ric quality than related techniques. It is minimized using

a Sobolev gradient flow, for which we have developed an

efficient separable 1D convolution implementation. More-

over, we have proposed a correspondence estimation strat-

egy over TSDFs of partial shapes, allowing realistic colour-

ing of the obtained models. Our system uses a single RGB-

D stream and can cope with significantly less frames than

other approaches, paving the way to applications such as

unconstrained performance capture and 3D avatar creation

under large motion.
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