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Abstract

Fully convolutional neural network (FCN) has been

dominating the game of face detection task for a few years

with its congenital capability of sliding-window-searching

with shared kernels, which boiled down all the redundant

calculation, and most recent state-of-the-art methods such

as Faster-RCNN, SSD, YOLO and FPN use FCN as their

backbone. So here comes one question: Can we find a uni-

versal strategy to further accelerate FCN with higher accu-

racy, so could accelerate all the recent FCN-based method-

s? To analyze this, we decompose the face searching space

into two orthogonal directions, ‘scale’ and ‘spatial’. Only a

few coordinates in the space expanded by the two base vec-

tors indicate foreground. So if FCN could ignore most of the

other points, the searching space and false alarm should be

significantly boiled down. Based on this philosophy, a novel

method named scale estimation and spatial attention pro-

posal (S2AP ) is proposed to pay attention to some specific

scales in image pyramid and valid locations in each scales

layer. Furthermore, we adopt a masked-convolution oper-

ation based on the attention result to accelerate FCN cal-

culation. Experiments show that FCN-based method RPN

can be accelerated by about 4× with the help of S2AP and

masked-FCN and at the same time it can also achieve the

state-of-the-art on FDDB, AFW and MALF face detection

benchmarks as well.

1. Introduction

In the field of computer vision, face detection is the fun-

damental problem for plenty of other applications such as

face alignment, recognition and tracking [30, 31, 18, 20,

39], which is developing faster from the beginning of [34]

with the emergence of efficient network structure [6, 32].

But how to make the face detector both efficient and effec-

tive is still a problem.
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Figure 1. S2AP is able to considerably diminish the amount of

calculation for FCN-based methods such as RPN. It speeds up

RPN with image pyramid by 4X on average with 98% of recall,

which indicates the ratio of the number of predicted scales to the

number of ground truth and also the number of predicted location

proposals to the number of ground truth.

Face detection is a the special case of generic object

detection. Among the top-performing region-based CNN

methods, Faster RCNN [26] and its variants [43, 10, 41,

12, 13] have been developed for face detection task and

achieved the state-of-the-art performance. Almost all these

methods utilize two-stage mechanism. Proposals are first

generated in the first stage, then fed into the second stage

with ROI pooling for refinement. However, these methods

meet the same problem: the tremendous cost of computa-

tion for both extracting features of full image and handling

the variance of scales. In order to accelerate the detection

pipeline and as much as possible maintain performance, SS-

D [17] and YOLO [25] adopt single-shot scale-invariant

way and try to find a trade-off between speed and precision.

[22, 42] adopt this manner and detect faces with different

scales by using different layers of the network which gain-

s better performance. Although the scale-invariant method

may handle faces in variable scales, it is still unstable to
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handle a wide range of scale variance, such as from 32× 32
to 1024×1024. In view of this situation, the image pyramid

is used for handling face scales [1, 11, 7] with a large range

of scales and a dense sampling of scales guarantees a higher

recall. But the new problems ensue. For one hand, it is hard

to choose good layers in image pyramid which include all

faces in proper scale. For another hand, the multiple lay-

ers in image pyramid with different scales may introduce

false alarms, and that will degrade performance. So we will

naturally think of the following questions -What should the

sampling scales be? and Can we decrease false alarms in

image pyramid?

To better analyze this, we decompose the face searching

space into two orthogonal directions, ‘scale’ and ‘spatial’.

Assume that we know the coarse spatial locations and s-

cales of faces, we can pay attention to some specific scale

ranges and corresponding locations so that FCN will ne-

glect most of the other space. Then the searching space

could be significantly boiled down. Based on this philoso-

phy, scale estimation and spatial attention proposal (S2AP )

is proposed to determine the valid layers in image pyramid

and valid locations in each scale layer. Furthermore, the

masked-convolution operation is used to expedite FCN cal-

culation base on the attention results.

The scheme of S2AP and masked-convolution operation

are comfortable for variable scales, and both convolution

operations and scale sampling procedures can be greatly di-

minished. S2AP includes two aspects of attention, ‘scale’

and ‘spatial’. The former one ensures only the potential lay-

ers in image pyramid will be paid attention by FCN and the

latter one gets rid of the most background. S2AP is devised

using tiny FCN structure and the computational cost is neg-

ligible compared with the later FCN. As shown in Fig 1,

FCN-based method such as RPN [26] takes advantages of

S2AP . When the recall of scale and location is equal to

98% on FDDB, AFW and MALF, RPN with S2AP can be

accelerated by 4× on average. The ‘scale’ attention further

neglects unnecessary scales in the image pyramid which

greatly decreases the tremendous time consumption of im-

age pyramid. Further more, experiments demonstrate the

FCN-based method RPN with S2AP greatly diminish false

alarms and accomplish the state-of-the-art performance.

To sum up, our contributions in this work are as follows:

1) We propose a novel method named scale estimation

and spatial attention proposal (S2AP ) that simultaneously

estimates the ‘scale’ and ‘spatial’ proposals of the face us-

ing the high-level representation in CNN.

2) Masked-convolution operation is implemented for a

large reduction of convolution computation in the invalid

region with the assist of ‘spatial’ proposals.

3) Our method not only has a significant acceleration ef-

fect on FCN-based methods such as RPN but also achieves

new state-of-the-art results on FDDB, AFW and MALF

face detection benchmarks.

2. Related Work

From the CNN-based methods emerging [33] to the

breakthrough of approaches [35], the gap between human

and face detection algorithms has been significantly re-

duced. However, large span of face scales and acting con-

volution operation in the whole image greatly limit the effi-

ciency of face detection.

Many object detection methods have been applied to face

detection task such as Faster-RCNN [26] and R-FCN [2]

etc. The region proposals of the interest area are extracted

from RPN and the later stage will further to refine the result

of regression and classification. Although these methods

can reach the high recall and achieve the satisfactory perfor-

mance, but the training of the two stages is tedious and time-

consuming so that the practical application is hindered. Al-

though [23] designs an alternative joint training architec-

ture for RPN and fast R-CNN, however the single-scale de-

tector requires the image pyramid which also causes expen-

sive computational cost.To break through this bottleneck,

YOLO [25] is proposed to conduct a single stage detection.

They perform detection and classification simultaneously

by decoding the result from the feature maps and classifying

a fixed grid of boxes while regressing them. However, the

information of targets with large scale variance is slightly

deficient in the high-level feature maps which makes it not

easy for multi-scale face detection. SSD [17] is proposed

for better handling the object with large variation by com-

bining multi-level of predictions from different feature map-

s. And also, [15, 3] use the feature pyramid to extract the

different object information in multi-scale and merge box-

es for objects to get high recall. These methods are usually

more compatible with multi-scale objects, but the expensive

computational cost makes it learn hardly and astatically.

Other researches on face detection are using multi-shot

by single-scale detector. The single-scale detector is config-

uring for detecting a narrow range scale variance and can-

not decode features in other scales. The image pyramid

method is proposed for assisting this detector by resizing

the image to multi-level scales and then forward the detec-

tor. [1, 11] use the image pyramid to make the single-scale

detector capture objects with different scales. When the

sampling of scales is dense enough, the higher recall will

be achieved. [7] achieves state-of-the-art performance in

face detection benchmark based on a proposal network with

input pyramid. Although the dense sample of scales will

make it possible to detect faces with different scales, but

the speed is greatly limited and many different valid sam-

ples of scale will bring unreasonable false positives. Almost

all the methods can not escape the bondage to seek a trade-

off between the detector’s speed and performance. Is there

a fundamental method that could accelerate FCN while im-
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Figure 2. The pipeline of the proposed method. Given an image, it will be fed into the S2AP with specific scale 448 × 448 and S2AP

can approximate the potential scales of faces with the corresponding locations. The results of spatial and scale attention are grouped in

sixty main feature maps F = {F1, · · · , Fb}(b = 1, · · · , 60). Then, quantitative information precise scale S and meticulous location C

are calculated by scale-spatial compute unit(SSCU) and the input Ii(i = 1, · · · , length(S)) and Rj(j = 1, · · · , length(C)) are available

for subsequent detection processes. In the last Mask-FCN detector, scale attention helps it zoom in on the image properly and the spatial

attention will make the masked-convolution operations and the invalid area will be ignored to better speed up the calculation and effectively

dispose of false positives.

proving the performance? To analyze this, we decompose

the object searching space into two orthogonal directions,

‘scale’ and ‘spatial’. In order to fully tap the ability of CN-

N for extracting ‘scale’ and ‘spatial’ information, inspired

by [5, 1], we proposed the scale estimation and spatial at-

tention proposal (S2AP ) to better utilize the CNN’s ability

in approximating the face information of ‘scale’ and ‘spa-

tial’. Different from SAFD [5] using scale information only,

location information is further explored for better assisting

the prediction of scale while guiding the convolution oper-

ator for greatly reducing computation cost and decreasing

false positives. [19] also utilizes the scale information for

handling variance scales, and the feature map is predicted

by the 2× larger than it. The obvious difference from [19]

is that the scale and spatial information in our framework

are highly collaborative work and they will promote each

other to make faster and higher accuracy. As the same time,

we design the detailed usage of ‘spatial’ for guiding the

masked-convolution unlike STN [1] rough interesting area

processing for ROI convolution. The experiments demon-

strate S2AP can greatly accelerate the FCN while deposing

the false alarm to further improve performance.

3. S2AP with Masked-convolution

S2AP is designed to decrease the cost of computation

and false positives. In this section, we depict each compo-

nent of our system (Fig 2). The whole system consists of

two sub designs S2AP and FCN with masked-convolution.

S2AP is a lightweight FCN structure used for fully mining

the scale and spatial information of the face. The system

will first prognosticate the face scales and location infor-

mation included in the image. Then the image will be fed

into the latter Mask-FCN with the quantitative information

which has been calculated based on the previous scale and

spatial information. In the later sub-sections, we will in-

troduce the scale estimation and spatial attention proposal

(S2AP ), scale-spatial computation unit (SSCU) and loca-

tion guided Mask-FCN, respectively. At last, we discuss

the adaptability of our algorithm’s design over FCN-based

method.

3.1. S2AP

In order to adequately explore the scale and spatial

information of face and take advantage of two orthogo-

nal directions ‘scale’ and ‘spatial’, we devise the delicate

lightweight scale estimation and spatial attention proposal

(S2AP ) which is a fast attention model for pre-detection.

The network is a shallow version of ResNet18 [6] followed

by two components, i.e. scale attention and spatial atten-

tion.

Definition of bounding box. S2AP is devised for ex-

ploring the information of ‘scale’ and ‘spatial’ so that the

misalignment of ground truth bounding box has the ob-

vious effect on training S2AP . Manual labeling of face

bounding box is a very subjective task and prone to add

noise and in order to retain face size consistent through-

out the training dataset, we prefer to derive face box from

the more objectively-labeled 5 point facial landmark anno-

tations (xi, yi)(i = 1, 2, . . . , 5) which corresponds to the

location of left eye center, right eye center, nose, left mouth

corner and right mouth corner. We define (pi, qi)(i =
1, 2, . . . , 5) for the normalized facial landmark annotation-

s which are formulated as pi = xi−X1

w
and qi = yi−Y1

h

where w and h mean the height and width of corresponding

manual labeling box and (X1, Y1) means the top left corner

of manual labeling box. The mean point (mpi,mqi)(i =
1, 2, . . . , 5) is computed by averaging all the (pi, qi)(i =
1, 2, . . . , 5) in dataset. We define the transformation matrix

T which is a learned similarity transformation between the
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original landmarks and the standard landmarks as:




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mqi
1





T
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xi

yi
1
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T

T (1)

Following this, the consistent bounding boxes can be com-

puted by:





xtl xdr

ytl ydr
1 1





T

=





0 1
0 1
1 1





T

T−1 (2)

where (xtl, ytl) and (xdr, ydr) mean the top left and bottom

right corner of bounding box, respectively.

Scale Attention. The output of S2AP is a set of feature

maps F with m channels (default value of m is 60). Let

Fb(b ∈ [1, · · · ,m]) signifies the feature map which only

administrates assigned range of scales. Since the scale of

face changes along with the image scaling, we establish a

rule to map the face scale to the feature map. The mapping

of face size x and index b is defined as:

b = 10[log2(
x

Lmax

× Smax)− 4] (3)

where Lmax denotes the maximum value of image’s side

length and Smax indicates the predefined longer edge length

of the image, which is set to 1024 in our experiment. The

computation of x via the consistent bounding boxes can be

formulated as:

x =
√

(xdr − xtl) ∗ (ydr − ytl) (4)

When the image is resizing to Smax, faces with scale 24 to

210 are equally mapping to sixty main bins [1, 60].
Spatial Attention. According to the scale attention, Fb

express a specific face scale. In the ‘spatial’ attention com-

ponent, we further explore the information that each coor-

dinate point in Fb should contain. Rationalizing a strategy

with the assist of the consistent bounding boxes, the value

of each coordinate in the Fb is formulated as:

Fb(
(xdr + xtl)

2Ns

,
(ydr + ytl)

2Ns

) = 1, b ∈ B (5)

where Ns means the stride of the S2AP network and the

face scale defined by (xtl, ytl) and (xdr, ydr) corresponds

to specific index b. We defined ( (xdr+xtl)
2Ns

,
(ydr+ytl)

2Ns

) for at-

tention center. For other coordinates in F , the value of them

are set to 0. However, simply employing the design above

has many drawbacks. It’s obvious that the computation of

b via Eq.(3) are very sensitive to noise and a little deviation

from bounding box may cause the difference of b. Mean-

while, the interval between the two adjacent scales index b

and b+ 1 is ambiguous, and its performance drops rapidly

with the interval deviation.

Considering the reason above, we utilize a more soft

approach for forming ground-truth Fb by comprehensive-

ly considering the current index b and its neighbors. For

each coordinate value calculated by Eq.(5), the value of its

neighbor bin can be formulated as:

Fb+i(x, y) = Fb+i(x, y) + (SI)
|i|, i ∈ [−4, 4], i 6= 0 (6)

where SI = 1
2 which plays the role of extending the ef-

fect of current index b to the neighbors and there should be

Fb+i(x, y) = min(Fb+i(x, y), 1). We can note that values

in j-th bin will be enhanced if it is the neighborhood of

multi attention centers.

By doing this, the S2AP is more immune to the interval

deviation between adjacent scales since Eq.(6) makes bor-

der restrictions less stringent. If there appears more than

one bounding boxes, these actions are performed for each

bounding box.

Unified global supervision. S2AP unifies the ‘scale’

and ‘spatial’ attention to a single lightweight FCN as shown

in Fig 2. The output F is treated as the pixel-wise classifi-

cation problem and is directly supervised by sigmoid cross

entropy loss:

L = − 1
N

∑N

n=1[pn(x, y)logp̂n(x, y)

+(1− pn(x, y))log(1− p̂n(x, y))] (7)

where N denotes the total number of coordinates in F ,

p̂n(x, y) is the approximated response to coordinate (x, y)
by the network (normalized by sigmoid function) and

pn(x, y) is the computed ground truth.

Note that during each iteration, the gradient will propa-

gate to each coordinate in F and with the global supervi-

sion, the S2AP can automatically generate scale and loca-

tion proposal according to features which encode rich in-

formation of face, as shown in S2AP of Fig 2. The glob-

al gradient backpropagation not only drives the network to

concentrate on the high response scale and location but al-

so instructs the network to distinguish invalid regions and

scales.

3.2. Scale­Spatial Computation Unit

We have access to scale and spatial information via pre-

detection with S2AP and how can the FCN-based detec-

tor make use of aforementioned information? We adop-

t the Region Proposal Network(RPN) as face detector in

our pipeline to verify versatility of S2AP for FCN-based

methods, because RPN is the general expression of FCN

and other methods can be extended based on RPN. In or-

der to better embed the scale and spatial information, we

employ the Single-Scale RPN which has only one anchor

with size 64
√
2 and has a narrow face size from 64 to 128

pixels. The design guarantees that the overlap between face

and anchor is greater than 0.5 for the face scale within the
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detection range. To capture all faces with different scales, it

needs to take multiple shots sampled from an image pyra-

mid.

Define vector of scale information as Sv =
{max(F1), · · · ,max(Fb)}(b ∈ [1, 60]), where max(Fb)
indicates the max value in the feature map Fb. We utilize

the effective strategy to get the robust information from

Sv , and scale proposals are obtained by smoothing the Sv

and carrying out 1D non-maximum suppression (NMS).

The threshold of IOU in 1-D NMS can be regarded as

the neighborhood range with [−4, 4] which means the

{Sb+i
v |i ∈ [−4, 4], i 6= 0} will be abandoned while Sb

v has

higher confidence. Because of the deviation of network

learning, there may be not completely accurate between

the ground truth scale and prediction of S2AP . For better

handle the prediction gap and make ample use of scale

information, we zoom the image as:

Lt =
26.5

x
× Lmax (8)

where Lt indicates the length of the image’s long edges

which will be scaled to, x is computed by Eq.(3) accord-

ing to the scale proposals b predicted by S2AP and Smax is

1024 similar with Eq.(3). Note that it is beneficial to scale

the image to the anchor center size 26.5. By doing this, we

can guarantee that the target face can also be recalled with

overlap greater than 0.5 even if there is a certain deviation

[−4, 4] between the predicted scale index value and the true

scale index value.

Spatial information can be decoded from F according to

the scale proposals generated by Sv . Taking into account

the same situation existing deviation as mentioned above,

the final location Cb corresponding to scale index b can be

formulated as:

Cb(x, y) = max({Fb+i(x, y)|i ∈ [−4, 4]}) (9)

where (x, y) indicates the coordinates in the feature map.

Given the threshold, the regions including faces can be

formed from Cb.

3.3. Location Guided Mask­FCN

Kernel

Figure 3. Detail of masked-convolution.

The massive computation incurred at test phase of FCN-

based methods often limits the practical application. Al-

though the detection stage has been slightly accelerated by

FCN, however the cost of convolution computation takes

up about more than 90% of the time in running time, which

greatly restricts the speed.

In view of this situation, we implement a more practical

approach with the assist of ‘spatial’ information to consid-

erably expedite the speed of FCN-based method. According

to the predicted scale Sb
v and its face center location Cb, we

generate the face regions ((xtl, ytl), (xdr, ydr)) and scale

it to anchor center size 26.5. Besides, in order to retain the

context information and alleviate the deviation between pre-

dicted location and truth location in Fb, we enhance the side

length from lo =
√

(xdr − xtl) ∗ (ydr − ytl) to lo + 2Ns

where Ns means the stride of FCN. Then, we can gener-

ate the location guided mask map where the value is 1 in

the potential regions of face and others are 0. Following

this, we implement the masked-convolution in the later FC-

N. The core of this mechanism is that convolution operator

only acts on the regions masked as 1, while ignore other

regions. As shown in Fig 3, we illustrate the input of con-

volution I with size C ×H ×W and the number of output

is Cout. On the details of implementation, the input data of

original convolution is converted to matrix D with dimen-

sions (H ×W )× (CK2) and for the masked-convolution,

only the area where the value in the center of sliding win-

dow is 1 will get our attention. Then the attention region

will be converted to a matrix Dm = (h × w) × (CK2)
and h × w is the number of non-zero entries in the mask

map. Similarly, we can use the matrix multiplication to ob-

tain the output O = Dm × F where matrix F is the fil-

ter matrix with dimension Cout × (C × K2). Finally, we

put each element of O to the corresponding position of the

output. Note that the computation complexity of masked-

convolution is (h × w) × CK2 × Cout, therefore we can

considerably diminish the computation cost according to

the masked-convolution operation guided by the spatial in-

formation.

3.4. Discussion

Excellent lifting power of S2
AP to FCN-based meth-

ods The region proposal network is used as our baseline.

In our framework, we adopt one anchor with fixed size as

the single-scale detector. For handling variable scales of the

face, the image pyramid is used via sampling scale dense-

ly to make sure each scale face will fall into the detection

range of the detector. If only one scale of the face ex-

ists in the image, numerous acceleration gains can be ob-

tained with ‘scale’ proposals. Furthermore, another com-

putation that can be greatly accelerated is convolution op-

eration which takes up most of the computing time. ‘Spa-

tial’ proposals can come in handy and masked-convolution
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can considerably lessen the time of convolution operation

through acting on the attention regions while ignoring in-

valid area. Absence or error in prediction of ‘scale’ and ‘S-

patial’ proposals will bring performance degradation, there-

fore, we have added many fine designs aforementioned to

solve this problem. Another thing worth noting is that the

dense sampling of scales and convolution operations for in-

valid regions will introduce many false positives. Operat-

ing on the specific scale and location will depose the false

alarms thereby the performance is capable of further pro-

motion. The latter experiment will prove this strongly.

4. Experiments

In the section, we first introduce our setup of experimen-

t and the ablation study to verify the effectiveness of each

component in our method. Next, we compare exhaustive-

ly with the baseline RPN [26] and state-of-the-arts in face

detection on popular benchmarks. We also perform experi-

ments on generic object to verify generality and robustness

of S2AP .

4.1. Setup and Implementation Details
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Figure 4. Recall v.s. the ratio of predicted proposals number to

ground truth proposals number. This expression can be intuitively

responsive to the performance of the network.

The FDDB [9], AFW [24] and MALF [37] are used for

testsets and the configuration is same as [5]. Our training

set has about 190K images collected from internet and all

faces are labeled with bounding boxes and five landmark-

s. The structure of S2AP is a lightweight ResNet18 for

time efficiency. Similarly, RPN with original ResNet from

input to res3b3 as our baseline. Using shallow and tiny net-

work to be the backbone is faster than using a whole large

network like VGG [28] or ResNet. In another hand, there

is no sufficient receptive field for shallow network to de-

tect large object, so the image pyramid input is significant.

Considering the above aspects, the RPN in our experiments

is a single-scale multi-shot detector with fixed anchor size

64
√
2. Only the faces in [64, 128] can be detected and in

training process, we resize the image once to make sure at

least one face falls into the scale of [64, 128]. The train-

ing of S2AP and the RPN detector are initialized by model

trained on ImageNet [27]. In order to ensure the balance

of different scale samples while training, we take a ran-

Figure 5. Samples of FDDB detected by RPN and RPN+S2AP .

Our algorithm not only deposes many false alarms marked by the

red box but also is comfortable with the large scale range of face.

dom crop on the image to get samples with different scale

face. We balance ratio of the positive and the negative to

be 1 : 1 in training RPN. The base learning rate is set to

0.001 with a decrease of 90% every 10,000 iterations and

the total training iteration is 1,000,000. Stochastic gradient

descent is used as the optimizer. In the multi-scale testing

stage of baseline, each image is scaled to have long sides of

1414× 2k(k = 0,−1,−2,−3,−4,−5).

4.2. Performance of S2AP

The performance of S2AP is of vital importance to the

computational cost and accuracy in the latter FCN-based

detector. We validate the performance of the S2AP on face

detection benchmarks and Fig 4 demonstrates the overall

‘scale’ and ‘spatial’ recall with predicted scale and location

on three benchmarks. We use the number ratio (x, the ra-

tio of total predicted proposals number to total ground truth

number) and recall (y, correct predicted proposals over all

ground truth proposals) to be the evaluation metric. Com-

pared with [5], our evaluation metric is more precise and

the performance is very impressive. We can better recal-

l the most of the ground truth while mistakes are rare at

x = 1. Note that CNN can better explore the scale and s-

patial information in the high-level representation and this

also proves that the network can learn both of the scale and

spatial information of the face at the same time.

4.3. Ablation Study on S2AP

In this section, we perform serial specific designed abla-

tion study on FDDB dataset to detailed prove the effect of

S2AP for FCN-based methods.

First, acceleration capability. Theoretically S2AP can

accelerate most of the FCN-based methods with deep CNN

architecture whether it is single-scale multi-shot detector or

multi-scale single-shot detector. We evaluate the accelera-

tion capability of S2AP on our baseline single-scale multi-

shot RPN with image pyramid and Fig 1 shows the different

acceleration abilities at the different recall of scale and lo-

cation proposals. Note that there is a great improvement

especially in the lower recall. In the follow-up experiments,
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Method RPN RPN+S2AP

Dataset FDDB AFW MALF FDDB AFW MALF

Absolute inference speed (ms)@98%recall 95.3 95.4 94.6 14.2 28.9 26.3

Table 1. The proposed algorithm is more computationally efficient than baseline RPN. The Absolute inference speed (ms) at 98% recall is

reported in the table which is performed on NVIDIA P100. The RPN uses the image pyramid.
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Figure 7. Comparison to state-of-the-art on face detection benchmarks. The proposed method S2AP also considerably improves the

performance of RPN and outperforms against other methods with an appreciable margin.
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means the scale and spatial recall

of S2AP .
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Figure 6. Ablation study on S2AP .

we used the threshold of S2AP at 98% recall and the accel-

eration performance at this point is shown in Table 1.

Second, the ability to improve performance. The perfor-

mance of S2AP has a significant impact on the later stage

and we evaluate the ability to improve performance at dif-

ferent recall on FDDB with our baseline. Fig 6(a) demon-

strates the performance at different recall of S2AP . Focus

on the true positive rate at false positive number = 50, the

performance at recall=0.98 is excellent and at recall=0.92

is showing very low performance because many faces on

FDDB are gathered in the same scale, and S2AP at recal-

l=0.92 failed to predict this scale which leads to significant-

ly reduced of true positive rate compared with others. Fol-

lowing the better performance at recall=98%, we further

compare the performance of RPN and RPN+S2AP , the re-

sult is shown in Table 2. S2AP significantly improves the

performance of both methods in terms of not only the speed

but also the accuracy. Fig 5 illustrates that S2AP can better

Method FDDB

False positive number 50 100 150

RPN 91.39% 92.03% 92.45%

RPN+S2AP 93.59% 94.16% 94.67%

Table 2. The comparison of FCN-based method with S2AP . The

threshold of S2AP is determined by S2AP recall=98%.

depose the false alarms and is comfortable with the large

scale range of face.

It is particularly important to explore which attention

module works, ‘scale’ or ‘spatial’, so we conduct other ab-

lation study on FDDB to explore the ability of each atten-

tion. Fig 6(b) reports the performance on subcomponent.

Experiments show that both of the ‘scale’ or ‘spatial’ play

their part and promote speed and accuracy more effectively

with each other.

Figure 8 shows intuitively the prediction map contain-

ing ‘scale’ and ‘spatial’ information. The information can

be fully excavated from the high response region. It can be

observed the correlation between ‘scale’ and ‘spatial’ that

they focus on the target that fall within their control areas

in collaboration. By choosing the appropriate threshold,

more effective ‘scale’ and ‘spatial’ information can bene-

fit the subsequent detection process.

4.4. Comparing with State­of­the­art

We conduct face detection experiments on three bench-

mark datasets FDDB, AFW and MALF and we compared

with all public methods [8, 21, 36, 7, 14, 38, 26, 1, 11, 29,

19, 42, 40] and so on. We regress the annotation with 5 fa-

cial points according to Eq. 2 and Fig 7 demonstrates the

comparison. As can be seen from the figure, our method
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Figure 8. The prediction map generated by S2AP . The number in

the upper right corner represents the index b in F .

outperforms all previous methods by a appreciable mar-

gin. On AFW, our algorithm achieves an AP of 99.94% us-

ing RPN+S2AP . On FDDB, RPN+S2AP recalls 93.59%

faces with 50 false positive higher than [19] which also uti-

lizes the scale information and on MALF our method recalls

77.92% faces with zeros false positive. Note that the shape

and scale definition of bounding box on each benchmark

varies. In particular, the label of the FDDB is an ellipse

which is different from the standard of the bounding boxes

we regress according to landmarks. In order to better adapt

the standard of FDDB, we learn a transformer to transform

our bounding boxes to the target and RPN+S2AP+Trans

in the setting of FDDB continuous significantly enhances

performance.

4.5. Generality of S2AP on Generic Object

Face detection is the specific task of generic object de-

tection. The excellent performance on ‘scale’ and ‘spatial’

of S2AP largely depends on the unified appearance of hu-

man face. In order to verify scalability of S2AP , we per-

form experiments on popular generic object datasets Pas-

cal VOC [4] and COCO [16]. Images from training sets of

V OC2012 + 2007 and COCO2014 are used for training

set and the testing is performed on testsets of V OC2007
and minival of COCO2014. The configuration is same as

above and the result of S2AP is shown in Figure 9. Note

that even though the aspect ratio is not uniform for generic

objects, S2AP can also achieve high recall on both of scale

and location. The performance in COCO2014 is higher be-

cause of the concentrated distribution of object scale. Ro-

bustness of S2AP makes it possible to be embedded into

FCN-based methods with no hesitate.

5. Conclusion

In this paper, we decompose the face searching space in-

to two orthogonal directions, ‘scale’ and ‘spatial’. A novel

method named scale estimation and spatial attention pro-

posal (S2AP ) is proposed to pay attention to specific scales

in image pyramid and valid locations in each scales layer.
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Figure 9. Performance of S2AP on V OC2007 and COCO2014.

Additional, we adopt a masked-convolution operation to ac-

celerate FCN based on the attention result. Experimental re-

sults show that our algorithm achieves new state-of-the-art

while greatly accelerate FCN-based methods such as RPN.

S2AP and masked-convolution can dramatically speed up

RPN by 4× on average. Moreover, ‘scale’ and ‘spatial’ in-

formation estimated from the high-level representation by

robust S2AP can benefit other tasks based on FCN.
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