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Abstract

We present Im2Pano3D, a convolutional neural network

that generates a dense prediction of 3D structure and a

probability distribution of semantic labels for a full 360◦

panoramic view of an indoor scene when given only a par-

tial observation (≤ 50%) in the form of an RGB-D image.

To make this possible, Im2Pano3D leverages strong con-

textual priors learned from large-scale synthetic and real-

world indoor scenes. To ease the prediction of 3D structure,

we propose to parameterize 3D surfaces with their plane

equations and train the model to predict these parameters

directly. To provide meaningful training supervision, we use

multiple loss functions that consider both pixel level accu-

racy and global context consistency. Experiments demon-

strate that Im2Pano3D is able to predict the semantics and

3D structure of the unobserved scene with more than 56%

pixel accuracy and less than 0.52m average distance error,

which is significantly better than alternative approaches.

1. Introduction

People possess an incredible ability to infer contextual

information from a single image [16]. Whether it is by us-

ing prior experience or by leveraging visual cues [2, 24],

people are adept at reasoning about what may lie beyond the

field of view and make use of that information for building a

coherent perception of the world [15]. Similarly, in robotics

and computer vision, extrapolating useful information out-

side a camera’s field of view (FOV) plays an important role

for many applications, such as goal-driven navigation[41, 4]

or next-best-view approximation [18], where a global repre-

sentation of the environment can improve preemptive plan-

ning for intelligent systems.

However, prior work in view extrapolation typically only

predicts the color pixels beyond the image boundaries [25,

40, 31]. While inspiring, these methods do not predict 3D

structure or semantics, and hence cannot be used directly

for high-level reasoning tasks in robotics applications.
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Figure 1. Semantic-structure view extrapolation. Given a par-

tial observation of the room in the form of an RGB-D image, our

Im2Pano3D predicts both 3D structure and semantics for a full

panoramic view of the same scene.

In this paper, we explore the task of directly extrapolat-

ing 3D structure and semantics for a full panoramic view of

a scene when given a view covering 50% or less as input.

We refer to this task as semantic-structure view extrap-

olation. Our method, Im2Pano3D, takes in a partial view

of an indoor scene (e.g., a few RGB-D images) and uses a

convolutional neural network to generate dense predictions

for 3D structure and a probability distribution of semantic

labels for a full 360◦ panoramic view of that same scene.

This is a very challenging task. However, by learning the

statistics of many typical room layouts, we can train a data-

driven model to leverage contextual cues to predict what is

beyond the field of view for typical indoor environments.

For example, as shown in Fig.1, given half of a bedroom

(180 ◦horizontal field of view), the system can predict the

3D structure and semantics for the other half. This requires

it not only to extend the partially observed room structures

(walls, floor, ceiling, etc.), but also to predict the existence

and locations of objects that are not directly observed in the
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input (bed, window and cabinet) using statistical properties

learned from data.

Semantic-structure view extrapolation poses three main

challenges, which we address with corresponding key ideas

shaping our approach to the task:

· How to leverage strong contextual priors for indoor en-

vironments.

· How to represent the 3D structure in a way that is good

not only for recognition but also for reconstruction.

· How to design meaningful loss functions when the

possible solution is not unique – a small change to ob-

ject locations may still result in a valid solution.

To leverage strong contextual priors for indoor environ-

ments, we represent 3D scenes in a single panorama image

with channels encoding 3D structure and semantics. We

train our model over a large-scale synthetic (SUNCG [33])

and real-world indoor scenes (Matterport3D [5]) encoded in

this representation to learn the contextual prior.

To leverage strong geometric priors for indoor environ-

ments, we represent the 3D structure for each pixel with a

3D plane equation, rather than raw depth value at each pixel.

By doing so, we take advantage of the fact that indoor en-

vironments are often comprised largely of planar surfaces.

Since all pixels on the same planar surface have the same

plane equation, the 3D structure is piecewise constant in a

typical scene, which makes dense predictions of plane equa-

tions more robust than alternative representations.

To provide meaningful supervision for the network to

cover the large solution space, we make use of multiple

loss functions that account for both pixel level accuracy

(pixel-wise reconstruction loss) and global context consis-

tency (adversarial loss, and scene attribute loss).

The primary contribution of our paper is to propose the

task of semantic-structure view extrapolation and present

Im2Pano3D, a unified framework able to produce a com-

plete room structure and semantic labeling when given a

partial observation of a scene. This unified framework is

able to handle different camera configurations and input

modalities. The experimental results show that direct pre-

diction of the 3D structure and semantics for the unobserved

scene provides a more accurate result than alternative meth-

ods. Both the plane equation encoding and the context

model learned from multi-level supervision with large scale

indoor scenes help to improve prediction quality.

2. Related Work

The general scene understanding problem focuses on un-

derstanding what is present in an image, including scene

classification [21, 39], semantic segmentation [22], depth

and normal estimation [9, 37], etc. In this section, we re-

view prior work on these tasks beyond the visible scene.

Texture synthesis and image inpainting. Texture syn-

thesis methods can be used for image hole filling and image

extrapolation [6, 14]. For example, Barnes et al. [3] fills

holes by cloning structures from similar patches. Pathak et.

al [25] train an autoencoder network. These methods can

achieve very impressive inpainting results for holes in color

images. However, it is challenging for them to predict im-

age content far outside the field of view, since they don’t

explicitly model structure and semantics.

Stitching images from the Internet. Methods have also

been proposed to extrapolate images drastically beyond the

field of view using collections of Internet images. For

example, Shan et al. [31] produce “uncropped images”

by stitching together collections of images captured in the

same scene. Hays and Efros [12] fill large holes by copy-

ing content from similar images in a large collection. While

these methods produce impressive results, they only work

for scenes where collections are available with many im-

ages from nearby viewpoints.

User-guided view extrapolation. FrameBreak [40] per-

forms dramatic view extrapolation. However, it uses a

“guide image” provided by a person to constrain the im-

age synthesis process. The guide image is chosen from a

collection of panorama images, aligned with the input im-

age, and then used to guide a patch-based texture synthesis

algorithm. In this work, we aim to produce an image extrap-

olation framework that can be used for any common indoor

environment without human intervention.

Predicting 3D structure in occluded regions. Recently

there have been many works addressing the problem of

shape completion for individual objects [35, 26, 38] or

scenes [36, 33, 8]. Given a partial observation of an ob-

ject or scene, the task is to complete the shape of object in

the occluded regions within the field of view. Unlike these

methods, Im2Pano3D needs to predict the 3D structure out-

side the field of view, where there is no direct observation,

which makes the problem much harder.

Predicting semantic concepts beyond the visible scene.

Khosla et al. [19] propose a framework to predict the loca-

tions of semantic concepts outside the visible scene, e.g.,

answering questions like “where can I find a restaurant”

given a street-view image without direct sight of any restau-

rant. Although related, their work focuses on outdoor street

view scenes and provides only high-level sparse semantic

predictions. In contrast, we produce dense pixel-wise pre-

dictions for both 3D structure and semantics for pixels out-

side the observed view for indoor scenes.

3. Semantic-Structure View Extrapolation

We formulate the semantic-structure view extrapolation

problem as an image inpainting task by representing both
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Figure 2. Probability distribution of semantics. The first row shows the average distribution of each semantic category over all training

examples. The following rows show the predicted probability distribution of semantics from Im2Pano3D overlaid on top of the ground

truth testing images. Red areas on the heat maps indicate higher probabilities.

the input observation and output prediction as multi-channel

panoramic images. The goal of Im2Pano3D is to predict the

3D structure and semantics for all missing regions in the in-

put panorama. For the semantic prediction, instead of repre-

senting it as a discrete category, we model it as a probability

distribution over all semantic categories as shown in Fig.2,

which explicitly models the prediction uncertainty.

3.1. Whole Room Panoramic Representation

Traditional view synthesis works [30, 29] represent ob-

servations and new views using a set of disjoint images with

their camera parameters. However this requires the network

to handle arbitrary numbers of input views, infer spatial re-

lationships between them, and reason about how scene ele-

ments cross image boundaries.

In contrast, we propose to represent the 3D scene using

a single panorama where each pixel is labeled with multiple

channels of information (color, 3D structure, and semantic)

or marked as unobserved. This data representation allows

the network to learn a consistent whole-room context model

by describing both the observed and unobserved parts of the

entire scene from a single viewpoint. It is particularly effi-

cient for deep learning because the observations and predic-

tions are resampled in a regular 2D parameterization suit-

able for convolution. Meanwhile, it can naturally support

different input camera configurations through reprojection

(see Fig.10). Given an observation of a 3D scene recon-

structed from registered RGB-D images, we pick a virtual

camera center and render the mesh onto four perspective

image planes in a sky-box like fashion (see Fig.3). Each

image plane has a 90◦ horizontal FoV and a 116◦ vertical

FoV with a image size 256 × 160. Virtual camera centers

are chosen depending on the dataset: for the Matterport3D

dataset, we use tripod locations; for the SUNCG dataset, we

randomly select locations in empty space; for short RGB-D

videos, we use the median of all camera centers.
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Figure 3. Whole room representation. We use a sky-box-like

multi-channel panorama to represent 3D scenes. The views are cir-

cularly connected, hence, observing the inner two views is equiv-

alent to observing the outer two views of its shifted panorama.

3.2. Representing 3D Surfaces with Plane Equations

While deep networks have been shown to perform well

for predicting color pixels and semantic labels, they con-

tinue to struggle at predicting high-quality 3D structure.

Current methods for direct regressing raw depth values pro-

duce blurred results [34, 20, 7], partly due to the viewpoint-

dependent nature of depth maps and the large value variance

of depth values even for nearby pixels on the same 3D plane.

Surface normal predictions are generally higher quality;

however, solving depth from normals is under-constrained

and sensitive to noise. Other more complicated encodings,

such as HHA [11], are designed for recognition, but cannot

be used directly to recover the 3D structure.

In response to these issues, we propose to represent 3D

surfaces with their plane equations: surface normal n and

plane distance p to the virtual camera origin. We expect this

representation to be easier to predict in indoor environments

composed of large planar surfaces because all pixels on the

same planar surface share the same plane equation – i.e.,

the representation is mostly piecewise constant. Moreover,
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Observation

Prediction

(A) Depth encoding (B) Plane equation encoding (C) Plane fitting on (B)

Figure 4. 3D structure prediction with different encodings. The

plane equation encoding (B) is a better output representation than

raw depth encoding (A); its regularization enables the network to

predict higher quality geometry.

the 3D location of each pixel can be solved trivially from its

plane equation by intersection with a camera ray.

Our network is trained to optimize the predicted plane

equations. We find this representation of 3D structure to

be more effective than raw depth values. Fig.4 shows the

qualitative comparison. We also have a post-processing step

to further improve visual quality of the predicted geometry

using plane-fitting on the predicted parameters (this step is

not included in our quantitative evaluations).

3.3. Network Architecture

Our network architecture follows an encoder-decoder

structure (Fig.5), where the encoder produces a latent vector

from an input panorama with missing regions, and the de-

coder uses that latent vector to produce an output panorama

where the missing regions are filled. In this section, we dis-

cuss the key features of our network architecture.

Multi-stream network. Since our panoramic data repre-

sentation consists of multiple channels (e.g. color, normal,

plane distance to the origin, and probability distribution of

semantics), we structured our network to process each chan-

nel with disjoint streams before merging into and after split-

ting from the middle layers. In the encoder, each stream is

made up of three convolutional layers. The features pro-

duced from each stream are merged together by concate-

nation across channels and then passed through six joint

convolutions layers to produce the latent vector. Mirroring

this structure, the decoder passes the latent vector through

six joint convolutions layers before splitting into multiple

streams. This multi-stream structure provides the network a

balance of learning both channel-specific parameters within

each stream, and joint information through shared layers.

Reconstructing 3D surfaces with PN-Layer Although

our network architecture predicts the parameters of the

plane equation as separate channels (surface normals n and

plane distances p), there is no explicit supervision to enforce

the consistency between these two outputs. As a result, we

find that with only the individual supervision, the 3D sur-

faces reconstructed from the predicted parameters tend to be

noisy. To address this issue, we designed an additional layer

in the network (called the PN-Layer) which takes the nor-

mal and plane distances as input, and uses the plane equa-
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Figure 5. Im2Pano3D network architecture. the network uses a

multi-stream autoencoder structure. A PN-layer is used to ensure

consistency between normal and plane distance predictions.

tion to produce a dense map of 3D point locations (x, y, z)

for each pixel based on its respectively predicted n, p, and

pixel location. This layer is fully differentiable, and there-

fore an additional regression loss can be added on the pre-

dicted 3D point locations in order to enforce the consistency

between the surface normal and plane distance predictions.

3.4. Network Losses

When predicting the scene content for the unobserved

regions, the plausible solution might not be unique. For ex-

ample, a valid prediction with slight changes to its locations

could still represent an valid solution. To provide the su-

pervision that reflects this flexibility, we use multiple losses

to capture three levels of information: pixel-wise accuracy,

mid-level contextual consistency using Patch-GAN (adver-

sarial) loss [17], and global scene consistency measured by

scene category and object distributions. The final loss for

each channel is a weighted sum of the three level losses:

Pixel-wise reconstruction loss. As part of network super-

vision, we backpropagate gradients based on the pixel-level

reconstruction loss between the prediction and the ground

truth panoramas. The loss differs for each output channel.

We use softmax loss for semantic segmentation s, cosine

loss for normal n, and L1 loss for plane distance p and final

3D point locations (x, y, z).

Adversarial loss. Following the recent success of gener-

ative adversarial networks, we model supervision for gener-

ating high-frequency structures in the output panoramas by

using a discriminator network [10] adapt from PatchGAN

[17]. Similar to the generator, the discriminator network

processes each channel with disjoint streams before merg-

ing features into shared layers. For the real semantic ex-

amples, we converted them into a probabilistic distribution

over C classes of size H × W × C before feeding them

into the discriminator. We adopt the method proposed by

Luc et al. [23]: For each pixel i, given its ground-truth la-

bel l, we set the probability for that pixel and that label to

be yil = max(γ, s(x)il), where s(x)il is the corresponding

prediction from netwotk, and γ = 0.8. For all other classes
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(b) Im2Pano3D

(c) Image inpainting (d) Semantic and structure predictions on (c)

(a) Input

Figure 6. Directly predicting 3D structure and semantics (b)

(rgbpn2pns) provides a more accurate result than predicting the

same information from generated color pixels (d) (inpaint).

we set yic = s(x)ic(1− yil)/(1− s(x)il), so that the label

probabilities in y sum to one for each pixel.

Scene attribute loss. We add additional supervision to the

network in order to regularize high level scene attributes

such as scene category and overall object distributions. To

make the network aware of different scene categories, we

added two fully connected layers that predict the room cat-

egory (over 8 scene categories) of the input panorama from

its latent code generated by the encoder. We backpropa-

gate gradients directly through the encoder from the soft-

max classification loss on the scene category predictions.

Furthermore, we added another auxiliary network that com-

putes the pixel-level distribution of different object classes

from its semantic prediction, and backpropagates gradients

from comparing this distribution to the ground truth distri-

bution through an L1 loss. Our ablation studies in Sec.4

demonstrate that these additional losses help to improve the

semantic predictions, especially for small objects.

4. Evaluation

In this section, we present a set of experiments to eval-

uate Im2Pano3D. We not only investigate how well it pre-

dicts semantics and structure for unseen parts of a scene,

but also study the impact of each algorithmic components

through ablation studies. In most of our experiments, we

consider the case where the input observation has a 180◦

horizontal and 116◦ vertical FoV, resulting in 50% partial

observation (Fig.8). In later experiments, we demonstrate

our approach on other camera configurations. All evalua-

tions are performed on unobserved regions only.

4.1. Datasets

For our experiments, we use both synthetic (SUNCG

[33]) and real (Matterport3D [5]) datasets. The former is

used for pre-training and ablation studies. The latter is used

for final evaluation on real data.

· SUNCG [33]: This dataset contains synthetically ren-

dered panoramic images with color, depth and seman-

tic of synthetic 3D indoor rooms. In total, we use

58,866 panoramas for training, and 480 for testing.

· Matterport3D [5]: This dataset contains real RGB-

D panoramas captured with a tripod-mounted Matter-

port camera. We use color, depth and semantics pro-

Observation Completion by different users Ground truth

Im2Pano3D

ceiling wall floor bedwindow objectdoor cabinet chair furnituresofa tv table

Figure 7. Human completion. Left shows the input observations.

Middle shows completion results from different users overlaid on

the observations. Right shows ground truth and our prediction.

vided by the dataset, but re-rendered them to form our

panoramic representation (Sec. 3.1). In total, we use

5,315 panoramas for training, and 480 for testing.

4.2. Baseline Methods

To our knowledge, there is currently no prior work that

performs our task exactly. To provide baselines for compar-

ison, we consider the following extensions to related work:

· Average distribution (avg) computes a per pixel aver-

age of all images within the training set.

· Average distribution by scene category (avg-type)

computes a per pixel average of all training images

within the scene category. The prediction is chosen

by the testing images’ ground truth scene categories.

· Nearest neighbor (nn) retrieves the nearest neighbor

image based on ImageNet features, and uses its seman-

tic segmentation and depth map as the prediction.

· Image inpainting (inpaint) uses the context encoder

of [17] to directly predict the color pixels in the unob-

served regions, followed by a segmentation and plane

equation estimation network with the same architec-

ture as Im2Pano3D. Fig.6 shows an example result.

· Human completion (human) asks people to complete

the 3D scene using a 3D design tool [1], where users

can define room layouts and furniture arrangements.

Fig.7 shows a few example completions, and Tab.2

shows the average performance across four users.

Tab.1 and 2 summarize the quantitative results. Models

are labeled by their input and output modality acronyms;

rgb: color, s: semantics, d: depth, p: plane distance, n: sur-

face normal. For example, model [d2d] takes in a depth map

as input and predicts the raw depth values of the unobserved

regions. To evaluate the algorithm’s performance indepen-

dent of segmentation accuracy over the observed regions,

for the [pns2pns] models, we assume ground truth segmen-

tation for the observed region as input.

Evaluation Metrics. We measure the quality of the pre-

dicted 3D geometric structure with the following metrics:
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models semantics 3D surface (m) normals (◦)

type+loss PoG↑ exist↑ size↓ emd↓ IoU↑ acc. ↑ incept. ↑ mean ↓ med. ↓ 0.2(%) 0.5(%) 1(%)↑ mean ↓ med. ↓ 11.25(%) 22.5(%) 30(%)↑

pn2pn+A - - - - - - - 0.320 0.119 67.6 81.4 91 38.5 5.5 70.3 74.5 76

d2d+A - - - - - - - 0.353 0.148 63.1 79.6 90.1 59.0 41.2 12.7 29.3 38.9

rgbpns2pns+A+S 0.386 0.704 0.764 1.24 0.313 0.707 0.444 0.335 0.145 64.4 80.8 91.1 37.8 5.1 70.9 75.1 76.8

rgbpn2pns+A+S 0.376 0.688 0.702 1.204 0.321 0.721 0.446 0.306 0.124 67.1 82.4 92.1 36.0 4.6 72.5 76.5 78.2

pns2pns+S 0.379 0.613 0.653 1.184 0.313 0.728 0.375 0.416 0.227 51.8 74.3 88.9 32.5 7.6 62.3 72.2 76.0

pns2pns+A 0.370 0.681 0.750 1.269 0.318 0.719 0.452 0.343 0.15 63.3 80.4 90.9 37.7 4.4 72.2 76.0 77.4

pns2pns+A+S 0.382 0.710 0.754 1.204 0.330 0.716 0.463 0.339 0.151 64.0 80.8 91.1 36.9 4.6 73.0 76.4 77.8

Table 1. Ablation studies on SUNCG. Models are named by their input and output modalities. rgb: color, s: semantic segmentation, d:

depth, p: plane distance, n: surface normal. A: adversarial loss, S: scene attribute loss.

models semantics 3D surface (m) normals (◦)

type train PoG↑ exist↑ size↓ emd↓ IoU↑ acc. ↑ incept. ↑ mean ↓ med. ↓ 0.2(%) 0.5(%) 1(%)↑ mean ↓ med. ↓ 11.25(%) 22.5(%) 30(%)↑

human - 0.303 0.650 1.474 0.943 0.203 0.522 - 0.661 0.449 29.1 57.7 78.7 49.9 17.4 51.2 58.2 60.8

avg all m 0.131 0.228 1.574 2.007 0.098 0.498 - 0.925 0.685 12.6 37.8 67.9 46.2 41.8 3.1 17.5 31.4

avg type m 0.155 0.260 1.265 2.089 0.107 0.508 - 0.905 0.668 13.8 39.6 69.6 45.8 40.4 4.5 20.7 34.0

nn m 0.126 0.531 1.901 2.820 0.078 0.302 - 1.286 0.898 15.8 33.6 56.4 65.1 58.1 23.8 31.2 34.9

inpaint s+m 0.145 0.488 1.407 1.984 0.082 0.347 0.183 0.867 0.591 19.3 46.3 72.3 59.5 50.4 23.3 32.8 37.9

rgbpn2pns s 0.185 0.56 1.589 1.729 0.129 0.378 0.233 0.609 0.365 32.3 63.4 82.5 47.2 20.8 43.6 54.7 59.4

rgbpn2pns m 0.245 0.542 0.933 1.535 0.174 0.566 0.394 0.603 0.361 37.4 63.7 82.1 39.1 22.4 34.9 52.6 60.4

rgbpn2pns s+m 0.275 0.616 0.936 1.487 0.208 0.566 0.402 0.524 0.280 43.6 69.5 85.5 43.6 19.0 42.9 57.2 62.8

pns2pns s 0.317 0.658 0.858 1.507 0.256 0.603 0.365 0.581 0.367 32.3 65.0 84.4 44.1 15.5 52.1 61.8 65.4

pns2pns m 0.304 0.618 0.854 1.526 0.243 0.61 0.406 0.610 0.373 32.6 63.4 83.2 42.3 20.0 37.9 57.3 63.6

pns2pns s+m 0.355 0.665 0.881 1.425 0.282 0.623 0.427 0.563 0.321 38.5 67.6 84.6 41.2 19.7 40.3 56.9 63.2

Table 2. Comparing to baseline methods on Matterport3D. Row 2 to 5 shows baseline methods. Our models are named by their input

output modalities (same as Tab.1) and training set (s: SUNCG, m: Matterport3D). Bold numbers indicate best performances in each group.

· Normal angle: the mean and median angles (in de-

grees) between prediction and the ground truth, and the

percentage of pixels with error less than three thresh-

olds (11.25◦, 22.5◦, 30◦).

· Surface distance: the mean and median L2 distances

(in meters) between final predicted 3D point locations

and the ground truth, and the percentage of pixels with

error less than three thresholds (0.2m, 9.5m, 1m).

We measure the quality of the predicted semantic with

the following metrics:

· Probability over ground truth (PoG): the pixelwise

probability prediction of the ground truth labels aver-

aged within each class then averaged across categories.

· Class existence (exist): the F1 score of object

class existence predictions averaged across all classes

(where existence defined as ≥ 400 pixels).

· Class size (size): the pixel size difference between

ground truth and predictions divided by the ground

truth size. Evaluated on the object categories with cor-

rect existence predictions only.

· Earth Mover’s Distance (EMD): the average Earth

Mover’s Distance [27] between the predicted and

ground truth 3D points for the categories with correct

existence prediction. The weight of each 3D point is

assigned with its predicted probability. The probability

is normalized to sum up to one for each category. We

use k-center clustering (k=50) to cluster the 3D points

before calculating the EMD.

· IoU: the intersection over union of the most likely pre-

dicted pixel label, averaged across all classes.

· Accuracy (acc): the percentage of correctly predicted

pixels across all pixels.

· Inception score (incept.): the scene classification

score on the generated semantic map using an off-

the-shelf image classification network (ResNet50[13])

trained on ground truth semantic maps, similar to the

FCN scores that are normally used to measure the gen-

erated image quality [28].

The first four metrics of semantic evaluation are newly in-

troduced for this task. Unlike most semantic segmentation

tasks, where predictions are made for pixels directly ob-

served with a camera, our task is to predict semantics for

large regions of unobserved pixels. For this task, predict-

ing the existence and size of unseen objects is already very

difficult and useful for many applications, and thus we in-

clude the existence and size metrics, which are invariant to

precise object locations. We also introduce metrics based

on the predicted probability distribution (PoG and EMD),

which account for soft errors in position. We use PoG to

rank algorithms in our comparisons.

4.3. Experimental Results

Tab.1 and 2 summarize the quantitative results and Fig.8

shows qualitative results. More results and visualizations

can be found in the supplementary material.
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model: [rgbpn2pns (s)]

IoU:  ceiling: 0.905  floor: 0.785 

wall: 0.352  window: 0.450 
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Input Output
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Figure 8. Qualitative Results. For each example, we show semantic segmentations labeled using the highest predicted class probability

for each pixel, and normal maps from 3D structure predictions. We also show reconstructed 3D point clouds (right column), colored by

semantic labels, with bounding boxes around semantically connected components. More results in supplementary material.

Comparing to Baseline Methods. Comparing our model

[rgbpn2pns (s+m)] to all baseline methods (Tab.2 row 2-5),

our proposed model produces better predictions in terms of

both semantics and 3D structure. In particular, compared

to the two-step process of predicting semantic labels over

predicted color images in the unobserved regions [inpaint],

directly predicting semantic labels in a one-step process can

generate a more accurate result (+13% in PoG and -0.24m

in surface distance). Fig.6 shows a qualitative comparison.

Do different surface encodings matter? Comparing the

model using raw depth values [d2d] to the model using the

plane equation encoding [pn2pn] (Tab.1 and Fig.4), we can

see that the plane equation encoding provides a strong reg-

ularization allowing the network to predict higher quality

3D geometry with lower surface distance and normal error,

0.03m and 21◦ less respectively.

What are the effects of different losses? Comparing the

model trained with adversarial loss [pns2pns+S+A] and

without [pns2pns+S] in Tab.1, we can see that the adversar-

ial loss improves the prediction accuracy for small objects,
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Figure 9. Experiments. (a) shows mean IOU with respect to dis-

tance from observation. (b) shows accuracy of predictions in the

unobserved regions while increasing input horizontal FoV from 5
◦

to 350
◦. The error bar shows the error margin across test cases.

which is reflected in higher IoU (+2%). Meanwhile the ad-

versarial loss reduces recall for objects with big pixel area,

which is reflected in lower total pixel accuracy (-1.2%).

Similarly, the scene attribute loss also improves IoU (+2%),

with a small compromise on total pixel accuracy (-0.3%).

Does synthetic data help? Comparing our models [pns]

and [rgbpn2pns] trained with and without the SUNCG
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Figure 10. Camera configurations. For different camera configurations, Im2Pano3D provides a unified framework to efficiently filling in

missing 3D structure and semantics of the unobserved scene. The observation coverage is shown in parentheses. 3D structure is represented

with normals. The data for [RGB-D+motion] comes from NYUv2 [32]. More examples can be found in supplementary material.

dataset and testing on the Matterport3D dataset, we ob-

serve that pre-training on SUNCG significantly improves

the model’s performance, 9% and 4% improvement in PoG

respectively. In particular, when the input is a segmentation

map instead of a color image [pns2pns], the model trained

only on SUNCG can even achieve better performance than

the model trained on Matterport3D alone (+1.3% in PoG

and -0.08m in surface distance). This result demonstrates

that training on synthetic data is critical for this task, as it

enables the network to learn a rich whole-room contextual

prior from a large variety of indoor scenes, which is ex-

tremely expensive to obtain with real data.

How is accuracy influenced by distance to observation?

Fig.9 (a) shows the average IoU with respect to its distance

to the nearest observed pixel. As expected, the performance

for Im2Pano3D decreases for pixels that are further from the

input observation. However, the performance is still much

higher than other baselines when the region is far from the

observation or completely behind the camera, yet still not

as high as human performance.

How is accuracy influenced by input FoV? To investi-

gate how the input FoV affects the prediction accuracy, we

do the following experiment: we keep the vertical FoV of

the input image at 116◦ while steadily increasing the hori-

zontal FoV from 5◦ to 350◦, and ask the network to predict

the structure and semantics for the full panorama. Fig.9 (b)

shows prediction accuracy in the unobserved regions with

respect to input FoV, which shows that the prediction accu-

racy improves as the input FoV increases.

Generalizing to different camera configurations. In

most of our evaluations, we consider the case where the in-

put observation has a 180◦ horizontal FoV. However, in real

robotic applications, systems may be equipped with differ-

ent types of cameras resulting in different observation FoV

patterns. Here we demonstrate how Im2Pano3D can gen-

eralize to other cases. The camera configurations we con-

sider includes: single or multiple registered RGB-D cam-

eras such as Matterport cameras (Fig.10 (a-d)), single RGB-

camera middle1 middle3 top6 bottom6 middle6 rgbpano rgbpano+1

obs.(%) 5.3 16.7 40.4 40.1 32.7 100 100

PoG 0.188 0.304 0.269 0.286 0.392 0.393 0.425

normal 29.0 13.4 14.3 14.0 8.8 11.3 9.5

surface 0.454 0.238 0.237 0.322 0.148 0.290 0.250

Table 3. Camera configurations. The table shows the average

PoG, median surface and normal error for each configuration. Ex-

ample inputs for each configuration can be found in Fig.10. For

models [rgbpano] and [rgbpano+1], we evaluate on regions that

do not have depth observation. For all other models, we evaluate

on regions with no color and depth observation.

D camera capturing a short video sequence (e), color-only

panoramic camera (f), and color panoramic cameras paired

with a single depth camera (g). To improve the ability of

the network to generalize to different input observation pat-

terns, we use a random view mask during training. Tab.3

shows the qualitative evaluation. For all of these camera

configurations, Im2Pano3D provides a unified framework

that effectively fills in the missing 3D structure and seman-

tic information of the unobserved scene.

5. Conclusion
We propose the task of semantic-structure view extrapo-

lation and present Im2Pano3D, a unified framework to pro-

duce a complete room structure and semantic estimation

conditioned on a partial observation of the scene. Exper-

iments demonstrate that the direct prediction of structure

and semantics for the unobserved scene provides more ac-

curate results than alternative approaches. However, while

Im2Pano3D explores the possibilities of whole-room con-

textual reasoning for 3D scene understanding, the proposed

system is still far from perfect. Possible future directions

may include: explicitly modeling semantics at the instance-

level as opposed to category-level, and exploring alternative

data representations that consider occluded regions.
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