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Abstract

In this paper, we propose an automatic seed generation

technique with deep reinforcement learning to solve the in-

teractive segmentation problem. One of the main issues

of the interactive segmentation problem is robust and con-

sistent object extraction with less human effort. Most of

the existing algorithms highly depend on the distribution of

inputs, which differs from one user to another and hence

need sequential user interactions to achieve adequate per-

formance. In our system, when a user first specifies a point

on the desired object and a point in the background, a se-

quence of artificial user input is automatically generated

for precisely segmenting the desired object. The proposed

system allows the user to reduce the number of input sig-

nificantly. This problem is difficult to cast as a supervised

learning problem because it is not possible to define glob-

ally optimal user input at some stage of the interactive seg-

mentation task. Hence, we formulate automatic seed gen-

eration problem as Markov Decision Process (MDP) and

then optimize it by reinforcement learning with Deep Q-

Network (DQN). We train our network on the MSRA10K

dataset and show that the network achieves notable perfor-

mance improvement from inaccurate initial segmentation on

both seen and unseen datasets.

1. Introduction

Segmenting the object of interest in an image is one of

the fundamental problems in computer vision. However,

without knowing the user’s intention, automatic object se-

lection has inherent limitations because where and what ob-

jects should be extracted differs by users. For this reason, an

interactive segmentation approach that receives information

on the desired object roughly from a human in the form of

a scribble or a bounding box and performs segmentation is

widely used to extract the object from an image and video.

∗First two authors contributed equally

Figure 1. An automatic seed generation example. The green and

red dots represent the foreground and the background seeds, re-

spectively. (a) RW result is the output of random walker segmen-

tation [13] algorithm with the initial seeds and our result is the

segmentation output with the generated seeds from the SeedNet.

(b) Seed generation process through the SeedNet. At each step,

the SeedNet creates a new foreground or background seed input.

One of the critical components of the interactive segmen-

tation algorithm is robust object extraction while match-

ing the human intention. For many objects with a com-

plex background, the user often has to spend much effort

to refine the results obtained from the algorithm. In this

regard, how to reduce human effort while maintaining the

performance in interactive segmentation is very important.

In [14], the number of additional efforts by users is used as

a measure of system performance. In this study, we pro-

pose a novel technique to simulate the human process of

guiding the interactive segmentation system to obtain the
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desired object. When the user enters a point on the desired

object and a point on the background, our system automat-

ically generates the sequence of artificial user input to ac-

curately localize the target object of interest, as illustrated

in Figure 1. The proposed system is designed to achieve

high performance while significantly reducing the number

of user input.

In this work, we formulate the automatic seed generation

problem as a sequential decision-making problem and train

the seed generation agent with deep reinforcement learn-

ing. Our agent starts by analyzing the image and the fore-

ground/background segmentation produced with the initial

seeds by the user, and then determines a new foreground

or background seed. After creating a new segmentation by

combining the created seed with the initial seeds, our agent

uses this segmentation as a next input and repeats the pro-

cess of creating seeds. Deep reinforcement learning is suit-

able for our task because we cannot define globally optimal

seed at some stage of interactive segmentation. Addition-

ally, for effective learning, we propose a novel reward func-

tion depending on the intersection-over-union (IoU) score.

The advantage of the proposed system is that consistent

performance has been achieved in images in unobserved

datasets as well as in previously observed datasets.

The contributions of this paper include (1) the introduc-

tion of a Markov Decision Process (MDP) formulation for

the interactive segmentation task where an agent puts seeds

on the image to improve segmentation and (2) the novel re-

ward function design to train the agent for automatic seed

generation with deep reinforcement learning.

2. Related Works

Interactive segmentation: As one of the major problems in

computer vision, interactive segmentation has been studied

for a long time. Many interactive segmentation algorithms

have tried to segment a desired object with various user

input such as contour, scribble or bounding box. Numer-

ous methods such as GrabCut [26], random walks [13, 16],

geodesics [5], and methods with shape prior [30, 14] have

been proposed.

Recently, learning-based interactive segmentation algo-

rithms have attracted considerable attention. Wu et al. [33]

considered interactive segmentation problem as a weakly

supervised learning problem. In [33], sweeping line multi-

ple instance learning (MIL) technique was presented. The

MIL-based classifier is trained with foreground and back-

ground bags from user-annotated bounding box. Santner et

al. [27] also treated the interactive segmentation problem

in a weakly supervised learning manner. [27] showed that

HoG descriptors learned with random forests successfully

segment out a textured object. Kuang et al. [18] trained op-

timal parameters for a single image. The weights for color,

texture, and smoothing terms are tuned during the iteration

process.

Meanwhile, various studies have been carried out on al-

gorithms for extending seed information. These studies are

closely related to our work, in that extended seed informa-

tion is used. Seeded region growing (SRG) techniques [1] is

representative work. In each step of SRG, the most similar

pixel among adjacent pixels is taken as an additional seed

point. This process extends the seed set. GrowCut [31] also

uses a similar algorithm concept. It uses cellular automaton

as an image model. Automata evolution models the seg-

mentation process. In each step, a labeled cell tries to at-

tack its neighbors. If the defender cell’s strength is lower

than that of the attacker, the label of defender cell changes

to that of the attacker. However, our method differs in that

it proposes new points rather than expanding the seed area.

With the recent development of deep learning, Xu et

al. [34] proposed a neural network architecture for inter-

active segmentation. Semantic information is considered

by using fully convolutional neural networks (FCN) in their

framework. By fine-tuning FCN block, the CNN structure

can be used efficiently for interactive segmentation prob-

lems. Liew et al. [15] improved segmentation performance

by creating global and local branches based on CNN ar-

chitecture. However, our goal is not to train binary mask

directly, but to train seed generation step that can help the

existing segmentation algorithms.

Deep reinforcement learning: Research on deep rein-

forcement learning has been actively carried out due to

its excellent performance in an Atari game via Deep Q-

Network (DQN) [22]. Techniques such as prioritized ex-

perience replay [28], double DQN [29], dueling DQN [32],

and A3C [21] have been studied to improve the performance

of the reinforcement learning algorithm. The reinforce-

ment learning algorithm is often applied in Atari games or

robotics problems, but it also has many potential applica-

tions in computer vision fields.

A typical application to computer vision using reinforce-

ment learning is the object localization problem. In [9], the

authors interpreted the object localization problem as a se-

quential dynamic decision-making problem. In each deci-

sion step, an action is represented by the transformation of

a detection box. With a deep representation of an image

and previous actions, DQN predicts the action of next step.

Similar to [9], [7] used box transformation actions and DQN

to predict the next action. They employed a tree-structured

search to enable the localization of multiple objects in a sin-

gle run.

Reinforcement learning framework is also used for im-

age classification problems [4], image captioning [24],

video tracking [36], face hallucination [10] and video ac-

tivity recognition task [35]. Andreas et al. [3] applied re-

inforcement learning to solve the question answering prob-

lem. They trained a network structure predictor with rein-
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Figure 2. Overview of the proposed SeedNet. The image and the segmentation mask are the input of the DQN. The seed set is updated

using the newly created seed from the DQN, and the mask is generated using the revised seed set. The obtained mask is used to calculate

the reward value by comparing with the GT mask, and this process is repeated. The gray arrows indicate state-related behavior, red arrows

indicate action-related behavior, and green arrows indicate reward-related behavior.

forcement learning technique.

In most computer vision applications, researchers used

a combination of attention models and reinforcement learn-

ing. However, we solved the problem of generating seed

points by directly using the image space as a large action

space.

3. Automatic Seed Generation System

3.1. System Overview

In this work, we propose a novel automatic seed gener-

ation system for the task of interactive segmentation. We

call it SeedNet. When an image and sparse seed informa-

tion are entered, the ultimate goal of the proposed system

is to create additional seed points and obtain accurate seg-

mentation result. The core module of SeedNet is a deep

reinforcement learning agent for generating artificial seed

points. Also, SeedNet includes an off-the-shelf segmenta-

tion model that performs the segmentation operation with

the generated seed. The entire system is constructed by

learning the DQN [22] agent using the segmentation result.

The overall process of SeedNet is shown in Figure 2. The

operation of the system proceeds with the image and the ini-

tial seed map given by the user. By utilizing this input in-

formation, performing interactive segmentation yields a bi-

nary mask. We use Random Walk (RW) segmentation [13]

as an off-the-shelf interactive segmentation algorithm. The

obtained binary mask and image are concatenated and then

input to the DQN. The DQN model proposes new seed in-

formation by using the input. The new seed information

contains the position and label of the proposed seed. As a

result, the seed map is updated by adding the proposed seed

point to the existing seed information. In addition, segmen-

tation of the image using the new seed information results

in a new binary mask. The obtained binary mask is used

for two purposes: the first is to compute the reward signal

by comparing the obtained mask with the ground truth (GT)

mask. The reward is a value that evaluates the operation of

the DQN and is used to update the network. Second, the

acquired binary mask is used as an observation of the next

iteration.

The sequence of cyclic operations is repeated throughout

the training process. However, during the test time, the re-

ward part is omitted, and only the seed generation process

is performed. By repeating the steps of generating a seed, a

seed map containing several artificial seeds is obtained. In

this way, we significantly reduce the human effort on inter-

active segmentation task.

3.2. Markov Decision Process (MDP)

The core part of the proposed SeedNet is to generate a

sequence of seeds by the agent. We define the problem

as an MDP consisting of state, action, and reward and the

agent operates through the MDP. The agent takes the cur-

rent state as an input, performs some action, and receives a

corresponding reward. This section presents the definition

of the proposed MDP.

State: The state should contain enough information to al-

low the agent to make the best choice. For our problem

formulation, information on the whole image is essential.

Additionally, the state should include information on ob-

servation that changes at each step. We can obtain two

kinds of information when a seed is generated at every step:

one is the newly created seed map, and the other is a bi-
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nary mask using off-the-shelf interactive segmentation al-

gorithm. Given that we want the proposed system to be

robust to the seed position, we exclude the seed position in-

formation and add only the binary mask information to the

state. In addition, past observations are not used, and only

the current observation is utilized as the state.

As a result, in our formulation, the state is defined as

the current binary segmentation mask and image features.

Unlike many existing works, the proposed system does not

use any deep feature representation as the state.

Action: Given a state, the agent selects an action within the

action space. In our formulation, the action is defined as

a positioning new seed point. The agent decides the label

(foreground/background) and position of the seed in the 2D

grid given the states. If we set the 2D grid to correspond

to all the pixels in the image, the action space becomes too

large, causing problems in training. Therefore, the 2D grid

where the new seed can be placed is sparsely set to 20× 20
size. There are a total of 800 kinds of actions because of the

foreground and background grids. If an agent selects one of

800 actions, a new seed point is created at the corresponding

location. Meanwhile, there is no explicit terminal action

because it is hard to define the termination station. Thus,

we terminate the process after proposing 10 seed points.

Reward: The reward signal evaluates the result for the ac-

tion of the agent. Generally, in a game environment, a score

or win/loss is used as a reward function. In our system, the

results of agent action are seed position and segmentation

mask. Thus, we can use the accuracy of the segmentation

mask as a score concept. The accuracy of the mask can

be determined by comparison with the ground truth (GT)

mask. For evaluation, IoU is the common metric. There-

fore, the intuitive basic reward function is to use IoU as a

reward function. The reward function with IoU is described

as RIoU.

RIoU = IoU(M,G), (1)

where M denotes the obtained segmentation mask and G

denotes the GT mask. Another basic reward function is to

use the change trend of IoU. It compares the IoU value of

the current mask with the IoU of the previous step mask and

gives a success signal if the value is increased and a failure

signal if it is decreased. It is like win/loss reward signal in

the game environment. In our environment, however, we

can obtain the amount of change as well as the direction of

change. Therefore, a more flexible reward signal can be de-

signed by using the variation of IoU as the value of reward

instead of the binary type reward. It is described as Rdiff.

Rdiff = IoU(M,G)− IoU(Mprev, G), (2)

where Mprev is the segmentation mask of the previous step.

In addition, by using an exponential IoU model(Rexp) in-

stead of a linear IoU model, we can design a reward signal

that gives more attention to changes in high IoU values.

Rexp =
expk∗IoU(M,G)

− 1

expk − 1
, (3)

where k is a constant value. Meanwhile, given that we

have information on the seed position as well as informa-

tion about the mask, we can generate an additional signal

to assist the IoU reward. Instead of judging success/failure

by using the change in IoU, we can judge by comparing

GT mask with the newly generated seed. That is, if the

label of the new seed matches the GT label of the corre-

sponding location, it is a success; otherwise, it is a failure.

With a similar concept, we divide the GT mask into four

regions and compare them with the seed label. To divide

GT mask into four regions, we create additional boundaries

inside and outside the object that give some margin from

the object boundary. That is, four regions are generated

from three boundaries, including an existing object bound-

ary. These four regions are named strong foreground (SF),

weak foreground (WF), weak background (WB), and strong

background (SB), in the order from the center of the object

to the edge of the image. When a new seed point is as-

signed, different reward functions are applied to the divided

areas according to seed type.

For example, if the newly given foreground seed belongs

to the SF area of the mask, we apply exponential IoU re-

ward. Also, if foreground seed belongs to the WF domain,

it is also a success case but is not recommended, so a re-

duced reward signal is applied. Otherwise, if foreground

seed is wrongly suggested on the background area, a fixed

reward value of -1 is returned. Likewise, when a new back-

ground label seed is given, we can obtain a reward similar

to the foreground case. The Rour used in this paper is as

follows:

Rour =











Rexp if Fseed ∈ SF or Bseed ∈ SB

Rexp − 1 if Fseed ∈ WF or Bseed ∈ WB

−1 otherwise

, (4)

where Fseed means foreground seed and Bseed means back-

ground seed. We obtain a continuous score reward from

the mask information and a discrete success/failure reward

from the seed information. Finally, we propose a novel re-

ward function by mixing the two types of reward. We com-

pare the differences between the newly proposed reward

function and other reward functions in the experimental sec-

tion.
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Figure 3. DQN architecture for SeedNet. The red block is the

network for the state value function, and the green block is the

network for the advantage function.

4. Training an Agent with Deep Reinforcement

Learning

4.1. Deep Q­Network (DQN)

With the proposed MDP formulation, the seed genera-

tion agent can be trained through the deep reinforcement

learning. In this study, we use the DQN algorithm by

Mnih et al. [22] to train the agent. DQN learns the action-

value function Q(s, a), the expected reward that the agent

receives when taking action a in a state s. After training, the

agent selects the action with the learned Q-function. The Q-

learning target can be defined with the given s, a, s′:

r + γmaxa′Q(s′, a′), (5)

where r is the reward, γ is a discount factor, and s′ and a′

represent the state and action of the next step, respectively.

DQN is a technique that approximates the Q-function with

a deep neural network. The loss function for training the

Q-function can be expressed:

Loss(θ) = E[(r+γmaxa′Q(s′, a′; θ)−Q(s, a; θ))2]. (6)

For effective learning, we employ various techniques

from Mnih et al. [22]. First, we use a target network to

solve the problem of poor learning stability. By introduc-

ing a target network separately from the online network, the

parameters of the target network during a few iterations are

fixed while the online network is updated. This method has

significantly improved the stability of learning. Next, we

use an ǫ-greedy policy as a behavior policy. The ǫ-greedy

policy uses a random action with a probability of ǫ and an

action that maximizes the Q-function with a probability of

1-ǫ. The last is experience replay to solve the correlation

problem of data used for DQN learning. We created an

experience replay buffer, proceeded with the episode, and

stored the replay memory in the buffer (s, a, r, s′). During

the learning process, samples of the batch size are randomly

selected from the buffer to reduce the correlation between

the data.

4.2. Model Architecture

The DQN used in this study is shown in Figure 3. The

structure of DQN used is almost similar to that of [22].

To improve the performance of the algorithm, we use the

double DQN structure of [29] and dueling DQN structure

of [32]. The input image and the binary mask resulting from

the segmentation at the previous stage are resized to 84×84
and input to the network. Three convolution operations fol-

lowed by ReLU activation are performed on the input. By

taking advantage of the dueling structure, the 512-D layer

after the fully-connected operation is split into two parts to

learn the advantage function and state value function. Then,

through a fully-connected operation, the advantage function

A(a, s) comes out as an 800-D output corresponding to the

action space size. Meanwhile, the state value function V (s)
is a scalar value. Finally, the advantage function is added to

the state value function to obtain the Q-function. The action

is determined according to the Q-function having the maxi-

mum value. If the action label is less than 400, it will be the

foreground seed. Otherwise, it will be the background seed

and reduces the action label by 400 for conversion to grid

coordinates. Finally, converting the action label to 20 × 20
grid coordinates will determine where the new seed will be

located.

5. Experiments

We have experimented with several types of datasets.

First, we use the MSRA10K saliency dataset [11] to train

and compare our results against the initial results from the

initial seed. We also conduct a comparative experiment on

various single object datasets that were not included in the

training dataset.

5.1. Network Learning

In this paper, SeedNet is trained for MSRA10K saliency

dataset from scratch. In the training process, 10,000 pre-

training steps are preceded to build an experience replay

buffer to be used for learning. During the pre-training step,

the actual learning does not proceed, but the experience

that goes through the episode is stored in the buffer. We

used 50,000 experience as a buffer and 32 as a batch size.

For exploration, we use ǫ-greedy policy. During training,

ǫ decreases from 1 to 0.2 over 10,000 steps. In the sub-

sequent training process, ǫ is fixed to 0.2. As the learning

progresses, the action is randomly selected as the probabil-

ity of ǫ, and the action according to the learned network is

selected by the probability of 1-ǫ. The parameters for the

specific network size are shown in Figure 3, and the dis-

count factor γ is set to 0.9. Each episode contains a total

of 10 seed point generation processes. For training, we use

an Adam optimizer [17] and utilize a learning rate of 1e-4.

Also, the update rate to the target network is set to 1e-7.
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Figure 4. MSRA10K results. The left part shows the input image, GT mask, and initial seed with corresponding RW [13] result. The right

part shows the SeedNet result, showing the first three steps and final result.

As previously mentioned, a 20 × 20 size grid is used as

the action space, and the k value of the exponential reward

function is set to 5.

5.2. Interactive Segmentation Results

First, our performance evaluation is done on the

MSRA10K dataset. The MSRA10K dataset consists of

10,000 images, and we use 9,000 of them as training and

the remaining 1,000 as test. Each image consists of an RGB

image and a mask representing the GT, and seed informa-

tion is not included. The size of the image is approximately

400 × 300 pixels. To accelerate the learning process, each

image and GT are reduced to 1/4 size in the learning stage.

The same image size of 84× 84 is input to the DQN during

training and testing. However, when segmentation is per-

formed with a newly generated seed, segmentation is ap-

plied to a 1/4 size image in the learning process to obtain

a fast result, and the original image size is used in the test

time. As the size of segmented images increases, the size

of the seeded points increases simultaneously. In training,

a circle with a diameter of 3 pixels is used as a seed, and a

circle with a diameter of 13 pixels is used as a seed in the

test.

Given that seed information is not included in the

MSRA10K dataset, we experiment with initial seed point

randomly generated using the GT mask information. We

apply dilation and erosion separately to the GT mask to

form a region slightly distant from the object boundary and

Table 1. MSRA10K Result

Method Set 1 Set 2 Set 3 Set 4 Set 5 Mean

RW [13] 39.59 39.65 39.71 39.77 39.89 39.72

SeedNet 60.70 60.12 61.28 61.87 60.90 60.97

Table 2. Comparison with supervised methods

Method FCN [19] iFCN [34] SeedNet

IoU 37.2 44.6 60.97

randomly select foreground and background seed points

from each region. As the initial seed point is determined

randomly, we perform five experiments sequentially and

evaluate the performance using the average value. We use

the RW segmentation method as an off-the-shelf segmen-

tation algorithm in our system. The results obtained using

only the initial seed point and the newly proposed seeds of

this system are compared and shown in Table 1. The IoU

metric is used for evaluation.

The results show that the accuracy is significantly in-

creased when seed information generated by the proposed

SeedNet is used compared with RW segmentation using

only the initial seed. Meanwhile, we change the initial seed

distribution from Set 1 to Set 5, but it is not significantly
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Figure 5. SeedNet learning progress graph using RIoU (left), Rdiff (center), and Rour (right). The reward value is indicated by the blue line

and the left axis, and the IoU value is indicated by the orange line and the right axis. A common x-axis represents the progression of the

learning iteration. For better visualization, the change is displayed every 100 steps and each point represents the running average value for

1000 steps.

affected by the initial seed distribution, and both RW and

SeedNet show similar results. Qualitative results are shown

in Figure 4. As shown in the figure, the automatically gen-

erated seed information gives better results than the initial

seed. The figure 4 also shows the results up to step 3 and the

final result. The average number of seeds used until satura-

tion is 5.39 clicks. Therefore, the threshold of the proposed

algorithm, which proposes generation up to 10 times, is rea-

sonable. However, given that SeedNet generates a seed on a

sparse grid, it is difficult to propose a seed in a finer position

as in the case of the third row. Nevertheless, the additional

seed is well presented without losing the intention of the

initial seed.

Comparison with supervised methods: Additionally, we

implement the FCN [19] and the iFCN [34] baseline. We in-

put 80×80 image similar to our network input size, change

the fully-connected layer to convolution layer in our net-

work, give padding to make 10 × 10 output map, and per-

form deconvolution to the original size. Also, networks are

trained from scratch. We add two seed input channels to the

RGB channel for iFCN. The results are shown in Table 2.

Although it is possible to obtain better performance by us-

ing the pretrained network and larger images, it is observed

that the supervised segmentation has lower performance in

the current configuration.

5.3. Ablation Experiments

To analyze the proposed system, we replace several key

components of the system. Experiments are carried out

while changing only the corresponding elements and keep-

ing other parts intact.

Reward: Our DQN is updated with a reward comparing the

GT with the observation. To verify the effectiveness of the

proposed reward function, we train the system using a sim-

ple reward described in 3.2. For comparison, RIoU and Rdiff

are used, and the change in reward value according to the

learning time and the change in IoU accuracy of the train-

ing set according to the learning time are shown in Figure 5.

Table 3. Ablation Experiments : Reward

Method Set 1 Set 2 Set 3 Set 4 Set 5 Mean

RW [13] 39.59 39.65 39.71 39.77 39.89 39.72

RIoU 42.00 42.77 43.69 42.96 41.33 42.55

Rdiff 44.33 44.80 45.09 44.19 43.82 44.45

Rour 60.70 60.12 61.28 61.87 60.90 60.97

Table 4. Ablation Experiments : Segmentation

Method Set 1 Set 2 Set 3 Set 4 Set 5 Mean

GC [26] 38.15 38.29 38.35 38.70 38.71 38.44

SeedNet

(GCver.)
52.43 51.89 51.84 52.10 52.26 52.10

GSC [14] 57.85 58.10 58.50 58.57 58.70 58.34

SeedNet

(GSCver.)
63.09 62.70 64.24 63.16 64.19 63.48

The reward axis shown on the left has different axes for each

graph because the scales are different for each reward func-

tion. Meanwhile, the IoU axis on the right has the same axis

for all three graphs. Comparing the three graphs, we can

see that simple reward functions initially increase in reward

value but stay at a certain level, so that IoU no longer im-

proves. Meanwhile, in the proposed reward function, both

the reward and IoU values are steadily increased. The re-

sult of applying SeedNet learned by each reward function

to the test set is shown in Table 3. As expected, we can

confirm that the proposed reward function has better results

than other reward functions.

Segmentation: SeedNet uses RW as an off-the-shelf seg-

mentation algorithm, which can be replaced by other algo-

rithms. SeedNet is trained using GrabCut (GC) [26] and

GSCseq (GSC) [14], respectively. The results are shown in
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Figure 6. MSRA10K result with SeedNet GC (upper two rows)

and GSC versions (bottom two rows).

Table 4. Both the GC and GSC versions of SeedNet show an

increase in IoU compared with the initial results. As other

segmentation algorithms can be applied in this way, better

results can be expected using CNN based algorithms, such

as iFCN [34]. The results of using GC and GSC are shown

in Figure 6.

5.4. Unseen Dataset Experiments

To verify the scalability of the proposed SeedNet, we

conducted experiments on an unseen dataset. As this system

is learned using the saliency dataset, MSRA10K, we test our

agent on various single-object binary segmentation datasets

instead of the validation images of the MSRA10K datasets.

The experimental setup is the same as that of MSRA10K,

and the evaluation is also performed with an average IoU

for five random initial seeds.

GSCSEQ [14]: This dataset consists of a total of 151 im-

ages, including 49 pieces from the GrabCut dataset [26], 99

pieces from the Pascal VOC dataset [12], and 3 pieces from

the Alpha matting dataset [25]. The dataset includes RGB

images, GT binary masks, and scribble information. How-

ever, in this experiment, seed points are generated from the

mask without using scribble information.

Weizmann Single Object [2]: The Weizmann single object

dataset consists of 100 single object images, including three

types of GT binary masks for each image. The three types

of GT are slightly different depending on the subject of the

labeling user, and we only use the first GT for evaluation.

Weizmann Horse [8]: A total of 328 images contain a side

view of the horse. The dataset contains images and GT bi-

nary masks.

iCoseg [6]: iCoseg is a dataset mainly used for cosegmen-

tation, and it has 38 categories and consists of 643 images

Figure 7. Results for unseen datasets. The horizontal axis repre-

sents each dataset, and the vertical axis represents the average IoU

accuracy.

in total. There are GT binary masks for each image.

IG02 [20]: The new annotation of the Graz-02 dataset [23]

from INRIA consists of three categories: bikes, cars, and

people. A total of 479 test images from each category are

used for this experiment. Some images contain several ob-

jects, but only one object is tested in this experiment.

The experimental results are shown in Figure 7. In all

five datasets, we can see that the result of using seed gener-

ated through SeedNet is significantly improved compared

with the initial seed. In particular, the Weizmann Horse

dataset shows an increase in accuracy of more than 20%.

SeedNet, on the other hand, is relatively weak for the IG02

dataset, where multiple objects exist because we only train

from a single object case. Nevertheless, we can confirm

that the proposed SeedNet is applied well even though it is

a dataset of different nature that has never been seen during

training.

6. Conclusion

We have proposed a novel interactive segmentation agent

for assisting a user to segment an object accurately. The

agent can predict the user’s intention and reduce the user’s

effort. Also, this approach has the potential to leverage the

user’s intent in various computer vision problems such as

semantic segmentation. Furthermore, our agent can help to

reduce the cost of pixelwise labeling task.
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