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Figure 1: Example registration results. Our approach solves challenging registration problems by maximizing the number of corre-

sponding semantic regions – such as windows, doors or balconies – for datasets from different modalities, with large amounts of noise and

outliers, little data overlap, or significantly different data statistics.

Abstract

We propose a novel method for the geometric registra-

tion of semantically labeled regions. We approximate se-

mantic regions by ellipsoids, and leverage their convexity to

formulate the correspondence search effectively as a con-

strained optimization problem that maximizes the number

of matched regions, and which we solve globally optimal

in a Branch-and-Bound fashion. To this end, we derive

suitable linear matrix inequality constraints which describe

ellipsoid-to-ellipsoid assignment conditions. Our approach

is robust to large percentages of outliers and thus applica-

ble to difficult correspondence search problems. In multiple

experiments we demonstrate the flexibility and robustness of

our approach on a number of challenging vision problems.

1. Introduction

Correspondence search is a fundamental subproblem of

many computer vision tasks including pixel matching in 3D

reconstruction as well as feature matching in shape match-

ing, localization, retrieval or registration tasks. With the

wide availability of reliable semantic classification algo-

rithms for images or 3D data, our goal is to leverage se-

mantic information to resolve ambiguities and improve the

efficiency of correspondence search.

We target challenging correspondence problems with
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small data overlap, large amounts of noise and outliers, or

the registration of datasets with significantly different data

statistics. Figure 1 shows examples of such difficult regis-

tration problems. For instance, the registration of two 3D

models captured at day and night light conditions is ex-

tremely challenging with only classical local features such

as structure-from-motion (SfM) feature points [2, 46]. An-

other example is the registration of a building scan with

a corresponding computer-aided design (CAD) model in

which the data statistics of the two input meshes differ sub-

stantially. Nevertheless, higher semantic features such as

windows, doors or balconies are nowadays easy to detect

and more descriptive and robust than classical SfM features.

In this paper, we aim to unify such correspondence prob-

lems and consider the geometric registration of multiple

compact regions with semantic labels that can be linked via

an affine or projective transformation. We seek to estimate

a transformation which maximizes the number of match-

ing regions with the same semantic label. To account for a

considerable amount of data variations, we approximate the

semantically labeled regions with ellipsoids whose proper-

ties are also beneficial for an effective global optimization

strategy. We derive necessary conditions for ellipsoid-to-

ellipsoid inclusion test that can be embedded as constraints

into consensus maximization problem.

Contributions. We propose a global optimization frame-

work for semantic region assignments. To account for noise

and outliers we approximate the semantic regions by el-

lipsoids and derive suitable linear matrix inequality (LMI)

constraints that allow for ellipsoid-to-ellipsoid correspon-

dence testing within a consensus maximization framework.
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Due to the global optimization approach, our method al-

lows for large amount of outliers. We demonstrate the ver-

satility of our method in multiple experiments on real and

synthetic data and show competitive registration results for

two computer vision problems, namely: similarity transfor-

mation, and purely rotating cameras.

2. Related Work

Our work builds upon a large body of previous theoreti-

cal results for effective consensus maximization. Moreover,

for the applications we consider, there are a handful of re-

lated works using specialized registration methods which

are usually tailored for a particular problem case only.

Consensus Maximization. Distinguishing between model

inliers and outliers and the maximization of the number of

inliers has been a central computer vision problem from

early on. Due to their effectiveness and low runtime,

stochastic or local methods like RANSAC [20] and its vari-

ants [16, 35] gained great popularity. Although being ef-

fective for many tasks these methods have no optimality

guarantees and are slow or break down entirely for large

amounts of outliers that we consider in this work.

We therefore build on global methods for consensus

maximization. The vast majority of global methods prunes

the search paths during exhaustive search using the Branch-

and-Bound (BnB) strategy, e.g. [4, 5, 10, 25, 29, 38, 45]. To

speed up the BnB optimization, several methods combine it

with Mixed Integer Programming (MIP) [13,18,29,43]. As

an alternative search strategy, Chin et al. [14] use A∗-search

to traverse the solution space.

Specialized Registration Methods. Many works consider

affine transformation problems or more specialized trans-

formations during consensus maximization. For instance,

rotations [5,25], rotation+focal length [4], translation [21],

rotation+translation [10], rotation+translation+scale [32]

or essential matrices [44]. Speciale et al. [38] provide a

more general framework handling most of these transfor-

mation types as long as they can be expressed by linear

matrix inequality constraints. Closely related to our work,

Paudel et al. [33] consider polygon to ellipsoid inclusions

with different semantics in order to solve for 2D homogra-

phies or 3D projective transformations. In contrast to our

approach they need some known semantic correspondences

and do not use consensus maximization. Apart from some

works which estimate correspondences among semantically

similar objects or regions in different images [9, 23, 24, 40],

there are few works which consider semantic information

for registration problems.

Application-wise, there are a few methods which

also targeted difficult registration problems, like out-

door/indoor registration of building scans [17]. The prob-

lem of day/night registration has been considered for

aligning structure-from-motion models [34], image-based

localization [46], image matching [3, 26, 47] and video reg-

istration [2].

In sum, there are mostly specially tailored solutions for

solving particular registration problems and few of them are

able to incorporate semantic information. Currently, there

exists no generic method which tackles a larger class of such

registration problems. Therefore, we aim to introduce a sin-

gle generic approach which leverages semantic information

and which handles a wide-range of applications.

3. Background and Notations

We denote matrices with upper case letters and their ele-

ments by double-indexed lower case letters: A = (aij). The

row-wise representation of m × n matrices are denoted by

A = [a1, . . . , ai, . . . , am]⊺, where ai are n-dimensional vec-

tors. We express positive semi-definiteness (resp. positive-

definiteness) of a symmetric matrix by A � 0 (resp. A ≻ 0).

We further define a n-dimensional vector e = (0, ..., 0, 1) ⊺

and the upper-left (m− 1)× (n− 1) block of A by Â.

A key ingredient of our work is the so-called S-

Procedure, which defines conditions under which a par-

ticular quadratic inequality is a consequence of another

quadratic inequality.

Lemma 3.1 (S-Procedure [42]) Let A0 and A1 be symmet-

ric matrices. x⊺A0x ≤ 0 holds for all x which satisfy

x⊺A1x ≤ 0, if there exists λ ≥ 0 such that λA1 � A0.

An important tool for converting some nonlinear matrix in-

equalities into linear inequalities is called Schur comple-

ment.

Lemma 3.2 (Schur Complement [27]) A symmetric

block-partitioned matrix D =

[

A B

B⊺ C

]

� 0, if and only if

both A � 0 and C− B⊺A−1B � 0.

3.1. Region Inside an Ellipsoid

We represent source and target semantic regions with the

help of ellipsoids. Given two ellipsoids, one from the under-

approximation of the source region and other from the over-

approximation of the target region, we are interest to know

whether the source ellipsoid can be transformed such that it

fits inside the target ellipsoid.

Definition 3.3 (Ellipsoid) An ellipsoid E in a (d − 1)-
dimensional space can be represented by a d × d matrix

Q � 0 whose (d− 1)× (d− 1) upper-left block Q̂ satisfies

Q̂ ≻ 0. Using homogeneous coordinate vectors, in which

points in (d − 1)-space are represented by x ∈ IRd, E is

defined by E = {x : x⊺(Q− ee⊺)x ≤ 0}.

In this work, the outer and inner ellipsoids are estimated

in the form of extremal volume ellipsoids: the minimum
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Figure 2: Definitions of Inner and Outer Ellipsoids. The left

two images show a point cloud and its convex hull. The inner

ellipsoid is the largest ellipsoid that fits into the convex hull. The

outer ellipsoid is the smallest ellipsoid which encloses the point

cloud (see Def. 3.4 and 3.5).

volume ellipsoid that covers a given set of points or the

maximum volume ellipsoid that lies inside a convex poly-

hedron. An illustration of the approximated ellipsoids are

shown in Fig 2.

Definition 3.4 (Outer Ellpsoid [7]) The minimum volume

ellipsoid – so called Löwner-John ellipsoid – of a compact

and non-empty set S ⊆ IRd is the outer ellipsoid E that

covers S .

For a convex set S , the volume of an ellipsoid E being

proportional to

√

det(Q̂−1) [8, p.48], the minimum volume

ellipsoid can be obtained by solving the following concave

maximization problem:

max
Q

log det Q̂

s.t. x⊺ (Q− ee⊺) x ≤ 0, ∀x ∈ S, Q̂ ≻ 0, Q � 0.
(1)

Definition 3.5 (Inner Ellipsoid [7]) The maximum volume

ellipsoid for a non-empty polyhedron S = {x : a
⊺

i x ≤
0, i = 1, . . . n} is the inner ellipsoid E enclosed within S .

As in (1), the optimal solution for the maximum volume

ellipsoid can be obtained using interior point methods [7],

by solving the following concave minimization problem:

min
Q

log det Q̂

s.t. a
⊺

i (Q− ee⊺) ai ≤ 0, ∀ i, Q̂ ≻ 0, Q � 0.
(2)

3.2. Ellipsoid under Projective Transformation

Consider a linearly parameterized projective transforma-

tion matrix H ∈ IRd×d. This transformation relates source

and target data points, with homogeneous coordinate vec-

tors y and x respectively, by y ≃ Hx. Typically, the prob-

lem of source to target data registration is to estimate un-

known H from known correspondences between points. In

our work, such correspondences are unknown. Instead, we

consider the correspondences are given in the form of se-

mantic regions, which are approximated with the help of

ellipsoids. Now, we are interested to establish the relation-

ship between ellipsoids under the transformation H.

When an ellipsoid E = {x : x⊺(Q− ee⊺)x ≤ 0} under-

goes a projective transformation y ≃ Hx, the transformed

ellipsoid can be expressed as,

E(H) = {y : y⊺H−T(Q− ee⊺)H−1y ≤ 0}, (3)

such that (Hx)⊺H−T(Q− ee⊺)H−1(Hx) ≤ 0 is satisfied.

4. The Consensus Maximization Problem

Given the putative correspondences between two sets of

semantic regions, one from the source and the other from

target data, we aim to maximize their consensus such that

their exists a geometric transformation matrix H. Recall

that we represent the source and target regions by inner and

outer ellipsoids, respectively. Let an unknown projective

transformation matrix H that relates a known pair of such

ellipsoids P = {E , E}. We refer P as a putative assign-

ment, if it is not guaranteed to be true, rather it is a candidate

that needs to be probed for its validity. Then, the problem

of consensus maximization for semantic region correspon-

dences can be stated as follows:

Problem 4.1 Given a known set S = {Pi}
n
i=1,

max
H,ζ⊆S

|ζ|,

s.t. E i ⊆ E i(H), ∀Pi ∈ ζ.
(4)

This problem, however, is difficult to solve due to its

combinatorial nature. Our following feasibility condi-

tions for ellipsoid-to-ellipsoid correspondences are impor-

tant tools for solving this problem in an efficient manner.

4.1. Ellipsoid­to­Ellipsoid Assignment Conditions

Proposition 4.2 Let P = {E , E} be a pair of correspond-

ing ellipsoids, defined as E = {y : y⊺(Q− ee⊺)y ≤ 0} and

E = {x : x⊺(Q− ee⊺)x ≤ 0}. The ellipsoids are related

by a projective transformation y ≃ Hx by E ⊆ E(H) if and

only if, there exists a scalar λ ≥ 0 such that,

λ(Q− ee⊺) � HT(Q− ee⊺)H. (5)

Proof E ⊆ E(H) =⇒ y⊺(Q− ee⊺)y ≤ 0 for every y :
y⊺H−T(Q− ee⊺)H−1y ≤ 0. Now, from Lemma 3.1, E ⊆
E(H) iff ∃λ ≥ 0 : λH−T(Q− ee⊺)H−1 � Q− ee⊺. This

condition turns to (5) under the similarity transformation1

with a full rank matrix H.

In general, the feasibility test of (5) for known P and un-

known H is a non-convex problem. However, it is still pos-

sible to derive its convex relaxations for some specific prob-

lems. Please, refer to the supplementary materials for few

such relaxation examples.

1In linear algebra, P−1 AP is a similarity transformation of matrix A.
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In this paper, we focus on the cases when the matrix H

represents affine transformations. Note that for affine ma-

trices, the last row of H takes the form hd = e. More impor-

tantly, the assignment condition of (5), under affine trans-

formations, can be expressed as a Linear Matrix Inequality

(LMI)2. The feasibility of such LMIs can be tested using

Semi-Definite Programming (SDP). Our following proposi-

tion offers the ellipsoid-to-ellipsoid assignment conditions

in the form of LMIs.

Proposition 4.3 For the Cholesky decomposition of posi-

tive semi-definite matrix Q = L⊺L (inner ellipsoid) and an

affine matrix H, the following statements are equivalent:

(i) ∃λ : λ(Q− ee⊺) � HT(Q− ee⊺)H.

(ii) ∃λ :

[

Id×d LH

(LH)⊺ λ(Q− ee⊺) + ee⊺

]

� 0.
(6)

Proof One can obtain the equivalence directly by applying

Lemma 3.2 on statement (ii) for hd = e.

4.2. Mixed­Integer Programming

Using the proposed LMI conditions for ellipsoid-to-

ellipsoid assignments, the Problem 4.1 for semantic con-

sensus maximization can be expressed as a Mixed Integer

Semi-Definite Program (MI-SDP) [18, 43], as in [38]. In

this regard, we represent inlier/outlier assignments as bi-

nary variables for each putative correspondences, whereas

the assignment conditions are expressed as LMI constraints.

The MI-SDP then jointly searches for the binary variables

as well as the transformation matrix such that the maximum

number of assignment conditions are satisfied. We present

this idea more precisely in our following preliminary result.

Result 4.4 The Problem 4.1 can be solved optimally for the

affine matrix H, binary variables zi, scalar λ, and a suffi-

ciently large positive semi-definite matrix M, by solving the

following MI-SDP,

min
H,zi,λ

n
∑

i=1

zi,

s.t.

[

Id×d LiH

(LiH)
⊺ λ(Qi−ee⊺) + ee⊺

]

� −zi M,

λ ≥ 0, zi ∈ {0, 1} ∀i.

(7)

Note that a common λ is sufficient for all the assignments.

This is because, if Eq. (5) is true for any assignment with

some λi, it must also be true for any λ ≥ λi. Here, we

seek a single λ such that λ ≥ λi, ∀i. Although (7) is

still a large combinatorial problem, the optimal search of its

2Linear Matrix Inequality is a constraint on y such that A(y) � 0, where

A(y) = A0 +
∑

n

i
yiAi for Ai � 0 ∀ i, and y = [y1, . . . , yn]⊺ ∈ IRn.

variables can be performed efficiently using a Branch-and-

Bound (BnB) paradigm specifically designed for MI-SDP.

One can observe from Eq. (7) that the putative assign-

ment Pi is an inlier if zi = 0, and an outlier otherwise. It

is important to notice the problem of (7) is always feasible

when zi = 1, ∀i, irrespective to the legitimacy of the as-

signments. Similarly, all the assignment conditions must be

satisfied if (7) is feasible with zi = 0, ∀i. Therefore, we

maximize the inlier set by minimizing the sum of zi for all

the assignments. In this case, the sufficiently large positive

semi-definite matrix M helps us to ignore the constraints

that arise form outlier measurements. In fact, it is a com-

mon practice in optimization to ignore invalid constraints

by using a constant such as M. See [15, Ch. 7] for guide-

lines on selecting this constant.

4.3. Multiple Regions with Same Semantics

In practice, both source and target data consist of mul-

tiple regions with same semantics. In such cases, it is dif-

ficult to establish one-to-one putative correspondences be-

tween region, using only the knowledge about semantic la-

bels. Therefore, we assign every region from the source data

to all the target regions with the same semantics. However,

we are interested to only those solutions which also respect

the one-to-one assignment criteria.

Let lj , j = 1, . . . , s be the semantic labels in the source

data and L(E) be the label of the ellipsoid E . For every label

lj , we define a set of ellipsoids in the source data by Sj =
{E : L(E) = lj} and in the target data by Tj = {E : L(E) =
lj}. Then, the assignments for label lj is given by a set

Aj = Sj×Tj , where × refers to the Cartesian product. The

set of all putative assignments is given by P =
⋃s

j=1 Aj ,

where every pair Pi ∈ P is a candidate assignment.

We now state our main result:

Result 4.5 Assume that we are given semantic labels

lj , j = 1, . . . , s and a set of putative assignments P , whose

inlier assignments must respect an affine transformation

H ∈ R
4×4, with h4 = e. For a binary decision variable

zi corresponding to every pair Pi ∈ P , an unknown scalar

λ, and a sufficiently large known positive semi-definite ma-

trix M, the consensus among all the pairs Pi ∈ P can be

obtained by solving the following MI-SDP,

min
H,zi,λ

∑

Pi∈P

zi,

s.t.

[

I4×4 LiH

(LiH)
⊺ λ(Qi−ee⊺) + ee⊺

]

� −zi M,

λ ≥ 0, zi ∈ {0, 1} ∀i,
∑

Pi∈Aj(E)

(1− zi) ≤ 1, ∀E ∈ Sj , ∀j,

∑

Pi∈Aj(E)

(1− zi) ≤ 1, ∀E ∈ Tj , ∀j,

(8)
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where, A(E) are all the assignments involving ellipsoid E .

Note that the task of enforcing one-to-one assignment

in (8) is addressed by following these two simple rules: (i)

every ellipsoid from source data must have no more than

one valid assignment; (ii) every ellipsoid from target data

must have no more than one valid assignment. Recall, if the

binary variable zi = 0, the assignment Pi is an inlier. Oth-

erwise, Pi is an outlier. In practice, enforcing one-to-one

assignment criteria not only generates geometrically mean-

ingful results, but also speeds up the MI-SDP significantly.

5. Applications

In this section, we specialize our Result 4.5 to the prob-

lems of similarity transformation and pure rotation estima-

tion with additional problem-specific constraints.

5.1. SfM Reconstruction to Euclidean Scene

Let us consider that the inner and outer ellipsoids, E i

and E i, are extracted form the Structure-from-Motion (SfM)

reconstruction and its Euclidean counterpart, respectively.

Given assignments Pi based on their semantic labels, we

wish to estimate the transformation matrix H that maxi-

mizes the assignment’ consensus. In this particular case,

H ∈ R
4×4 is a similarity matrix, therefore offers an addi-

tional constraint that can be expressed as an LMI [38]. Note

that similarity transformation is represented by a scaled-

rotation matrix and a translation vector. The following def-

inition deals with the structure of a scaled-rotation matrix.

Definition 5.1 (SSO(3)) Given a real, compact, linear al-

gebraic group Q, a 3-dimensional scaled-special ortho-

gonal group is defined by,

SSO(3) = {Q∈Q : QQ⊺=α2 I3×3, det(Q)=α3, α>0},
(9)

Recall that the upper-left block Ĥ of H, must satisfy the

Definition 5.1. Now, the following theorem provides us a

convex relaxation for Ĥ as an LMI.

Theorem 5.2 (SSO(3) Orbitope [38]) A 3× 3 matrix Q ∈
SSO(3), only if there exists a scalar α > 0:

α I4×4 + L(Q) � 0, (10)

for a linear function L : IR3×3 → IR4×4 is defined by,

L(A) =









a11 + a22 + a33 a32 − a23 a13 − a31 a21 − a12
a32 − a23 a11 − a22 − a33 a21 + a12 a13 + a31
a13 − a31 a21 + a12 a22 − a11 − a33 a32 + a23
a21 − a12 a13 + a31 a32 + a23 a33 − a11 − a22









. (11)

For a sufficiently large α, Eq. (10) is always satisfied.

However, α is not an arbitrary scalar value, but the scale

of the reconstruction. Given a rough knowledge about the

scale of the reconstruction, α can be bounded. In practice,

such bounds can be computed only form some vague prior

knowledge, such as IMU/GPS measurements, or even from

the extracted semantics. Once α is bounded, (10) turns

out to be very useful during MI-SDP. We solve the prob-

lem of similarity transformation estimation using our Re-

sult 4.5 with additional constraint α I4×4 + L(Q) � 0 and

α ≤ α ≤ α. Where, α and α are known lower and upper

bounds of the reconstruction scale, respectively.

5.2. Purely Rotating Cameras

The problem of pure rotation estimation appears while

dealing with cases such as pan-tilt-zoom (PTZ) cam-

eras [30] or image stitching [39] for panoramas. In this

context, we assume that the cameras are calibrated and their

measurements are given in the camera coordinate frame.

Let S = {ûi}
n
i=1 and T = {v̂j}

m
j=1 be unit normalized

points sets of source and target images with same seman-

tics. Then, we extract the inner and outer ellipsoids, E and

E , using (3.4) and (3.5), repetitively for S and T . For

Ĥ ∈ SO(3), these two ellipsoids must satisfy,

∃λ : λ(Q− ee⊺) �

[

Ĥ 0
0 1

]T

(Q− ee⊺)

[

Ĥ 0
0 1

]

. (12)

Remark 5.3 LMI constraint for Ĥ ∈ SO(3), involving

only rotation with no scale, can be expressed similarly as

in (10) by eliminating the scalar/scale variable α.

We solve the problem of rotation estimation of purely

rotating cameras using our Result 4.5 for (12), with the ad-

ditional LMI constraint I4×4 + L(Ĥ) � 0.

6. Results

We present experiments for the problems described in

Sec. 5, both on synthetic and real data. Our approach was

implemented in MATLAB2017a using the Yalmip3 toolbox

and Mosek4 as SDP solver. All experiments were carried

out on an Intel Core i7 CPU 2.60GHz with 12GB RAM.

6.1. Synthetic Data

We show the general properties of our method for the two

cases of Similarity Transform and Purely Rotating Camera

problems. We proceed by synthetically generating points

enclosed within an ellipsoid, as it can be seen in Fig. 2, rep-

resenting each semantic region. These ellipsoids are called

source ellipsoids.

By applying an experiment-specific random transforma-

tion to the source ellipsoids, we obtain N target ellip-

soids, representing the ground-truth ellipsoid pair corre-

spondences. To assess robustness, we generate test corre-

spondences by adding different levels of noise to the point

3https://yalmip.github.io/
4https://www.mosek.com/
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Figure 3: Runtime (synthetic data): with increasing number of

ellipsoids and outlier ratio.

sets. In addition, we simulate outliers by adding a high

amount of noise to a subset of these correspondences.

6.1.1 Similarity Transform

We begin by performing a series of experiments for the Sim-

ilarity Transform problem. For all our experiments, we re-

strict α ∈ [0.2, 5.0], recall α in Theorem 5.1. In Fig. 3,

we show runtimes for varying numbers of ellipsoidal corre-

spondences and outlier ratios.

The metrics used for evaluating the quality of the results

are: 3D root mean square error (RMSE), errors in rotation

R, translation T , and scale S. For each experiment, we

compute the errors ∆r = ||r − rgt||, ∆t = ||t − tgt||, and

∆s = ||s − sgt||. Here, r is a vector obtained by stacking

three rotation angles in degrees, and rgt, tgt and sgt are the

ground truth values. The errors reported in Fig. 4 as ∆R,

∆T , and ∆S are the average values of 1000 experiments

for the cases of 10, 20 and 30 ellipsoids.

10%1% 2% 3% 4% 5% 6% 7% 8% 9%

0.1

0.2

0.3

0.4

Figure 4: Errors Plots (synthetic data): 3D RMSE, Rotation

(� R), Translation (� T ), and Scale (� S) errors for different num-

bers of ellipsoids tested with increasing noise level.

In addition, Fig. 5 illustrates the behavior of the Branch-

and-Bound during the exploration of the search space.

Local Refinement. Fig. 6 shows a comparison between

a local method like ICP [6] that establish point correspon-

dences, and our global method with ellipsoidal correspon-

dences. The combination of both methods yields the lowest

RMSE, because our method is only globally optimal with

respect to ellipsoid correspondences. The ellipsoids-based

representation allows for uncertainty during fitting and also
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Figure 5: Branch-and-Bound (synthetic data). Plots with N =
100 ellipsoids. On the left, the bounds convergence are shown

for an outlier ratio of 75 %, with and without the additional LMI

constraint (eq. (10)). The runtime until convergence was 186s and

890s, respectively. Note the LMI constraints help to considerably

reduce the number of iterations by pruning the search space. On

the right, the plot shows how BnB scales with memory usage for

outlier ratios of 25 %; 50 %and 75 %.

Figure 6: Local vs. Global (synthetic data): plot for N = 20 el-

lipsoids, each ellipsoid comprises 5 points for a total of 100given

points. The noise level was 2 %. We have generated different ini-

tializations by adding a perturbation in rotation (left) or translation

(right) to the ground-truth alignment. Since our method is global,

it is not affected by these different configurations. Note that local

methods can be useful for further refinement of our results.

leads to less accurate registration results. In particular, the

size ratio between the source and target ellipsoids essen-

tially defines the noise level that our method will tolerate

during the correspondence search (comparable to the inlier

threshold for RANSAC). Therefore, a subsequent local re-

finement may further improve our estimation. Hence, our

solution can be used to initialize local methods like ICP.

Moreover, we are targeting challenging registration tasks

(Section 6.2) which cannot be handled by any variant of ICP

(or other local methods) either due to the difference in data

modalities, e.g. CAD model vs. scan, or due to the lack of

a good initialization. Therefore, a global method that can

make use of semantic labels is highly demanded for such

tasks.

6.1.2 Purely Rotating Cameras

In Fig. 7, a comparison to other global methods is pro-

vided: Chin et al. [14], Bazin et al. [5], Speciale et al. [38].

The available open-source code of these methods was used

without modifications. We conducted the experiments for

the Purely Rotating Camera problem, which is the over-

lapping problem to all these methods, and whose runtime

(for the exact same setup) is reported. The runtime com-

parison to [14] on homography estimation for purely rotat-

ing calibrated cameras is depicted in Fig. 7 as A ∗-Search.
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