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Abstract

3D shape completion from partial point clouds is a fun-

damental problem in computer vision and computer graph-

ics. Recent approaches can be characterized as either data-

driven or learning-based. Data-driven approaches rely on

a shape model whose parameters are optimized to fit the ob-

servations. Learning-based approaches, in contrast, avoid

the expensive optimization step and instead directly pre-

dict the complete shape from the incomplete observations

using deep neural networks. However, full supervision is

required which is often not available in practice. In this

work, we propose a weakly-supervised learning-based ap-

proach to 3D shape completion which neither requires slow

optimization nor direct supervision. While we also learn a

shape prior on synthetic data, we amortize, i.e., learn, maxi-

mum likelihood fitting using deep neural networks resulting

in efficient shape completion without sacrificing accuracy.

Tackling 3D shape completion of cars on ShapeNet [5] and

KITTI [18], we demonstrate that the proposed amortized

maximum likelihood approach is able to compete with a

fully supervised baseline and a state-of-the-art data-driven

approach while being significantly faster. On ModelNet

[49], we additionally show that the approach is able to gen-

eralize to other object categories as well.

1. Introduction

3D shape perception is a long-standing problem both in

human [35, 36] and computer vision [17]. In both disci-

plines, a large body of work focuses on 3D reconstruction,

e.g., reconstructing objects or scenes from one or multi-

ple views, which is an inherently ill-posed inverse prob-

lem where many configurations of shape, color, texture and

lighting may result in the very same image [17]. Both hu-

man and computer vision are related through insights re-

garding the cues and constraints used by humans to per-

ceive 3D shapes. Motivated by results from human vi-

sion [35, 36], these priors are usually built into 3D recon-

Figure 1: Illustration of the 3D Shape Completion Prob-

lem. Top: Given a 3D bounding box and an incomplete

point cloud (left, red), our goal is to predict the complete

shape of the object (right, beige). Bottom: Shape comple-

tion results on a street scene from KITTI [18]. Learning

shape completion on real-world data is challenging due to

sparse / noisy observations and missing ground truth.

struction pipelines through explicit assumptions. Recently,

however – leveraging the success of deep learning – re-

searchers started to learn shape models from data. Pre-

dominantly generative models have been used to learn how

to generate, manipulate and reason about 3D shapes, e.g.,

[4, 20, 41, 48, 49], thereby offering many interesting possi-

bilities for a wide variety of problems.

In this paper, we focus on the problem of inferring and

completing 3D shapes based on sparse and noisy 3D point

observations as illustrated in Fig. 1. This problem occurs

when only a single view of an individual object is pro-

vided or large parts of the object are occluded as, e.g.,

in autonomous driving applications. Existing approaches

to shape completion can be roughly categorized into data-

driven and learning-based methods. The former usually

rely on learned shape priors and formulate shape comple-
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Figure 2: Proposed Amortized Maximum Likelihood (AML) Approach to 3D Shape Completion. We illustrate our

amortized maximum likelihood (AML) approach on KITTI [18]. We consider two steps. In step 1 (left), we use car models

from ShapeNet [5] to train a variational auto-encoder (VAE) [26]. In our case, the car models are encoded using occupancy

grids and signed distance functions (SDFs) at a resolution of 24 × 54 × 24 voxels. In step 2 (right), we retain the pre-

trained decoder (with fixed weights) and train a novel deterministic encoder. This network can be trained using a maximum

likelihood loss without requiring further supervision. The pre-trained decoder constrains the predictions to valid car shapes

while the maximum likelihood loss aligns the predictions with the observations. See text for further details.

tion as optimization problem over the corresponding (lower-

dimensional) latent space [3, 10, 13, 22]. These approaches

have demonstrated impressive performance on real data,

e.g., on KITTI [18]. Learning-based approaches, in con-

trast, assume a fully supervised setting in order to directly

learn shape completion on synthetic data [9, 15, 37, 39, 41,

42]. As full supervision is required, the applicability of

these approaches to real data is limited. However, learning-

based approaches offer advantages in terms of efficiency: a

forward pass of the learned network is usually sufficient. In

practice, both problems – the optimization problem of data-

driven approaches and the required supervision of learning-

based approaches – limit the applicability of state-of-the-art

shape completion methods to real data.

To tackle these problems, this work proposes an amor-

tized maximum likelihood approach for 3D shape comple-

tion. More specifically, we first learn a shape model on syn-

thetic data using a variational auto-encoder [26] (cf. Fig-

ure 2, step 1). Shape completion can then be formulated as

maximum likelihood problem – in the spirit of [13]. Instead

of maximizing the likelihood independently for distinct ob-

servations, however, we follow the idea of amortized infer-

ence [19] and learn to predict the maximum likelihood solu-

tions directly given the observations. Towards this goal, we

train a new encoder which embeds the observations in the

same latent space using an unsupervised maximum likeli-

hood loss (cf. Figure 2, step 2). This allows us to learn

3D shape completion in challenging real-world situations,

e.g., on KITTI. Using signed distance functions to repre-

sent shapes, we are able to obtain sub-voxel accuracy while

applying regular 3D convolutional neural networks to voxel

grids of limited resolution, yielding a highly efficient in-

ference method. For experimental evaluation, we introduce

two novel, synthetic shape completion benchmarks based

on ShapeNet and ModelNet. On KITTI, we further compare

our approach to the work of Engelmann et al. [13] – the only

related work which addresses shape completion on KITTI.

Our experiments demonstrate that we obtain shape recon-

structions which rival data-driven techniques while signifi-

cantly reducing inference time. Our code and datasets will

be made publicly available1.

This paper is structured as follows: we discuss re-

lated work in Section 2. In Section 3 we describe our

amortized maximum likelihood framework for weakly-

supervised shape completion. We present experimental re-

sults in Section 4 and conclude in Section 5.

2. Related Work

Symmetry-based and Data-driven Methods: Shape

completion is usually performed on partial scans of individ-

ual objects. Following [44], classical shape completion ap-

proaches can roughly be categorized into symmetry-based

methods and data-driven methods. The former leverage ob-

served symmetry to complete shapes; representative works

include [27, 29, 34, 46, 51]. The data-driven case is more

interesting in relation to the proposed approach. In early

work, Pauly et al. [33] pose shape completion as retrieval

and alignment problem. In [3, 10, 13, 14, 21, 30, 32] shape

1https://avg.is.tuebingen.mpg.de/research projects/

3d-shape-completion.
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retrieval is avoided by learning a latent shape space. The

alignment task is then posed as an optimization problem

over the latent shape variables. Data-driven approaches are

applicable to real data assuming knowledge about the cate-

gory of shapes in order to learn the shape prior. However,

they require costly optimization at inference time. In con-

trast, we propose an approach which amortizes the infer-

ence procedure by means of a deep neural network allowing

for efficient completion of 3D shapes.

Learning-based Methods: With the recent success of

deep learning, several learning-based approaches have been

proposed [8, 15, 16, 23, 37, 39, 41, 42]. Strictly speaking,

those techniques are data-driven as well, however, shape

retrieval and fitting is avoided by learning shape comple-

tion under full supervision on synthetic datasets such as

ShapeNet [5] or ModelNet [49] – usually using deep neu-

ral networks. Some approaches [24, 39, 45] use octrees

to predict high-resolution shapes via supervision provided

at multiple scales. However, full supervision for the 3D

shape is often not available in real-world situations (e.g.,

KITTI [18]), thus existing models are primarily evaluated

on synthetic datasets. In this paper, we propose to train a

shape prior on synthetic data, but leverage unlabeled real-

world data for learning shape completion.

Amortized Inference: The notion of amortized inference

was introduced in [19] and exploited repeatedly in recent

work [38, 40, 47]. Generally, it describes the idea of learn-

ing how to infer; in our case, we learn, i.e. amortize, the

maximum likelihood inference problem by training a net-

work to directly predict maximum likelihood solutions.

3. Method

In the following, we first introduce the mathematical

formulation of the weakly-supervised 3D shape comple-

tion problem. Subsequently, we briefly discuss the con-

cept of variational auto-encoders (VAEs) [26] which we

use to learn a shape prior. Finally, we formally derive our

proposed amortized maximum likelihood (AML) approach.

The overall framework is also illustrated in Figure 2.

3.1. Problem Formulation

In a supervised setting, our task can be described

as follows: given a set of partial observations X =
{xn}Nn=1 ⊆ R

R and corresponding ground truth shapes

Y∗ = {y∗n}Nn=1 ⊆ R
R, learn a mapping xn 7→ y∗n that is

able to generalize to previously unseen observations. Here,

we assume R
R to be a suitable vector representation of ob-

servations and shapes; in practice, we resort to occupancy

grids or signed distance functions (SDFs) defined on reg-

ular grids, i.e., xn, y
∗
n ∈ R

H×W×D ≃ R
R. SDFs repre-

sent the distance of each voxel’s center to the closest point

on the surface; we use negative signs for interior voxels.

For the (partial) observations, we write xn ∈ {0, 1,⊥}R to

make missing information explicit; in particular, xn,i = ⊥
corresponds to unobserved voxels, while xn,i = 1 and

xn,i = 0 correspond to occupied and unoccupied voxels,

respectively.

On real data, e.g., KITTI [18], supervised learning is of-

ten not possible as obtaining ground truth annotations is la-

bor intensive (e.g., [31,50]). Therefore, we target a weakly-

supervised variant of the problem instead. Given observa-

tions X and a set of reference shapes Y = {ym}Mm=1 ⊆ R
R

both of the same, known object category, learn a mapping

xn 7→ ỹ(xn) such that the predicted shape ỹ(xn) matches

the unknown ground truth shape y∗n as close as possible.

Here, supervision is provided in the form of the known ob-

ject category, allowing to derive the reference shapes from

(watertight) triangular meshes; on real data, we also assume

the object locations to be given in the form of 3D bounding

boxes in order to extract the observations X .

3.2. Shape Prior

We propose to use the provided reference shapes Y to

learn a model of possible 3D shapes over the latent space

Z = R
Q with Q ≪ R. The prior model is learned us-

ing a VAE where the joint distribution p(y, z) decomposes

into p(y, z) = p(y|z)p(z) with p(z) being a unit Gaussian,

i.e., p(z) = N (z; 0, IQ) with IQ ∈ R
R×R being the iden-

tity matrix. Sampling from the model is then performed by

choosing z ∼ p(z) and subsequently sampling y ∼ p(y|z).
For training the generative model, we also need to approx-

imate the posterior q(z|y) ≈ p(z|y), i.e., the inference

model. In the framework of the variational auto-encoder,

both the so-called recognition model q(z|y) and the gener-

ative model p(y|z) – corresponding to encoder and decoder

– are represented by neural networks. In particular,

q(z|y) = N (zi;µi(y), diag(σ2
i (y))) (1)

where µ(y), σ2(y) ∈ R
Q are predicted using the en-

coder neural network and p(yi|z) is assumed to be a

Bernoulli distribution when working with occupancy grids,

i.e., p(yi|z) = Ber(yi; θi(z)) while a Gaussian distri-

bution is used when predicting SDFs, i.e., p(yi|z) =
N (yi;µi(z), σ

2). In both cases, the parameters, i.e., θi(z)
or µi(z), are predicted using the decoder neural network.

For SDFs, we neglect the variance (σ2 = 1) as it merely

scales the training objective.

In the framework of variational inference, the parameters

of the encoder and the decoder are found by maximizing

the likelihood p(y). In practice, the likelihood is often in-

tractable. Instead, the evidence lower bound is maximized,

resulting in the following loss to be minimized:

LVAE(w) = −Eq(z|y)[ln p(y|z)] + KL(q(z|y)|p(z)). (2)
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where w are the weights of the encoder and decoder. The

Kullback-Leibler divergence KL can be computed analyti-

cally; the expectation corresponds to a binary cross-entropy

error for occupancy grids or a scaled sum-of-squared error

for SDFs. The loss LVAE is minimized using stochastic gra-

dient descent (SGD). We refer to [26] for details.

3.3. Shape Inference

After learning the shape prior p(y, z) = p(y|z)p(z),
shape completion can be formulated as a maximum likeli-

hood (ML) problem over the lower-dimensional latent space

Z = R
Q. The corresponding negative log-likelihood, i.e.,

− ln p(y, z), can be written as

LML(z) = −
∑

xi 6=⊥

ln p(yi = xi|z)− ln p(z). (3)

where xi 6= ⊥ expresses that the summation ranges only

over observed voxels. As the prior p(z) is Gaussian, the

corresponding negative log-probability − ln p(z) ∝ ‖z‖22
results in a quadratic regularizer. As before, the generative

model p(y|z) decomposes over voxels. Instead of solving

Equation (3) for each observation x ∈ X individually, we

follow the idea of amortized inference [19] and train an en-

coder z(x;w) to learn ML. To this end, we keep the gen-

erative model p(y|z) fixed and train the weights w of the

encoder z(x;w) using the ML objective as loss:

LAML(w) = −
∑

xi 6=⊥

ln p(yi = xi|z)− λ ln p(z). (4)

where we added an additional parameter λ controlling the

importance of the shape prior. The exact form of the prob-

abilities p(yi = xi|z) depends on the used shape represen-

tation. In the case of occupancy grids, this term results in

a cross-entropy error (as both yi and xi are, for xi 6= ⊥,

binary). However, when using SDFs, the term is not well-

defined as p(yi|z) is modeled with a continuous Gaussian

distribution, while the observations xi are binary, i.e., it is

unclear how to define p(yi = xi|z). Alternatively, we could

derive distance values along the rays corresponding to ob-

served points (e.g., following [43]). However, as illustrated

in Figure 3, noisy rays lead to invalid observations along the

whole ray. This problem can partly be avoided when relying

on occupancy to represent the observations.

In order to still work with SDFs (to achieve sub-voxel

accuracy) we propose to define p(yi = xi|z) through a

simple transformation. In particular, as p(yi|z) is modeled

as Gaussian distribution p(yi|z) = N (yi;µi(z), σ
2) where

µi(z) is predicted using the fixed decoder (and σ2 = 1)

and xi is binary (for xi 6= ⊥), we introduce a map-

ping θi(µi(z)) transforming the predicted Gaussian distri-

bution to a Bernoulli distribution with occupancy proba-

bility θi(µi(z)), i.e., p(yi = xi|z) becomes Ber(yi =
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Figure 3: Left: Problem when Predicting SDFs. Illus-

tration of a ray (red) correctly hitting a surface (blue) caus-

ing the SDF values and occupancy values in the underly-

ing voxel grid to be correct (cf. (a)). A noisy ray, however,

causes all voxels along the ray to get invalid distances as-

signed (marked red ; cf. (b)). When using occupancy, in

contrast, only the voxels behind the surface are assigned

invalid occupancy states (marked red ); the remaining vox-

els are labeled correctly (marked green ; cf. (c)). Right:

Proposed Gaussian-to-Bernoulli Transformation. For

p(yi) := p(yi|z) = N (yi;µi(z), σ
2) (blue), we illustrate

the transformation discussed in Section 3.3, allowing to use

the binary observations xi (for xi 6= ⊥) to supervise the

SDF predictions. This is achieved, by transforming the pre-

dicted Gaussian distribution to a Bernoulli distribution with

occupancy probability θi(µi(z)) = p(yi ≤ 0) (blue area).

xi; θi(µi(z))). As we defined occupied voxels to have neg-

ative sign in the SDF, we can derive the occupancy proba-

bility θi(µi(z)) as the probability of a negative distance:

θi(µi(z)) = N (yi ≤ 0;µi(z), σ
2) (5)

=
1

2

(

1 + erf

(−µi(z)

σ
√
π

))

. (6)

Here, erf is the error function which, in practice, is approx-

imated following [1]. Equation (5) is illustrated in Figure 3

where the occupancy probability θi(µi(z)) is computed as

the area under the Gaussian bell curve for yi ≤ 0. This

per-voxel transformation can easily be implemented as non-

linearity layer and its derivative wrt. µi(z) is – by construc-

tion – a Gaussian distribution. Overall, this transformation

allows to predict SDFs while using binary observations.

4. Experimental Evaluation

In this section, we present quantitative and qualitative

experimental results. First, we derive a synthetic bench-

mark for 3D shape completion of cars based on ShapeNet

[5]. Second, we present results on KITTI [18] and com-

pare the proposed amortized maximum likelihood (AML)
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approach to the data-driven approach of [13]. We also

consider regular maximum likelihood (ML) and a fully-

supervised model (Sup; following related work [8, 23, 39,

41]) as baselines. Finally, we consider additional object

categories on ModelNet [49]. We provide complementary

details and experiments in the supplementary material.

4.1. Datasets

ShapeNet: On ShapeNet, we took 3253 car models, and

simplified them using the approach outlined in [22] to ob-

tain watertight meshes. After random translation, rotation

and scaling, we extract two sets: the reference shapes Y
and the ground truth shapes Y∗ (such that Y ∩ Y∗ = ∅). To

train the shape prior using the reference shapes Y , we de-

rive signed distance functions (SDFs) and occupancy grids

at a resolution of 24 × 54 × 24 voxels. The ground truth

shapes Y∗ are rendered to obtain the observations X . In

particular, we identify occupied voxels, i.e., xn,i = 1, by

back-projecting pixels from the rendered depth image and

perform ray tracing to identify free space, i.e., xn,i = 0 (all

other voxels are unknown, i.e., xn,i = ⊥).

In order to benchmark 3D shape completion, we con-

sider two difficulties: a “clean” – or easy – version with

depth images rendered at a resolution of 48× 64 pixels and

a “noisy” – or hard – version using a resolution of 24× 32.

On average, this results in 411 and 106 observed points (not

necessarily voxels), respectively. For the latter variant, we

additionally inject noise by (randomly) perturbing pixels or

setting them to the maximum depth value to simulate rays

(e.g., from a LiDAR sensor) passing through objects (e.g.,

due to specular or transparent surfaces). We refer to the cre-

ated datasets as SN-clean and SN-noisy and show examples

in Figure 4. Overall, we obtain 14640/14640/1950 samples

for the prior training/inference training/validation set with

roughly 1.06%/0.32% observed voxels and 7.04%/4.8%
free space voxels for SN-clean/SN-noisy. As can be seen,

SN-clean and SN-noisy include a large variety of car mod-

els and SN-noisy, in particular, captures the difficulty of real

data, e.g. from KITTI, by explicitly modeling sparsity and

noise.

KITTI: On KITTI, we extract observations using the pro-

vided ground truth 3D bounding boxes to avoid the inac-

curacies of 3D object detectors. We used KITTI’s Velo-

dyne point clouds from the 3D object detection benchmark

and the training/validation split of [6] (7140/7118 samples).

Based on the average aspect ratio of cars in the dataset, we

voxelize the points within the 3D bounding boxes into oc-

cupancy grids of size 24× 54× 24 and perform ray tracing

to obtain the observations X . We filtered the observations

to contain at least 50 observed points to avoid overly sparse

observations. On average, we obtained 0.3% observed vox-

els and 3.35% free space voxels. For the bounding boxes

in the validation set, we generated partial ground truth by

considering 10 future and 10 past frames and accumulat-

ing the corresponding 3D points according to the ground

truth bounding boxes. In Figure 4, we show examples of

the extracted observations and ground truth. Overall, the

extracted observations are very sparse and noisy and ground

truth is not available for every observation.

ModelNet: On ModelNet, we consider the object cate-

gories bathtub, dresser, monitor, nightstand, sofa and toilet.

We use a resolution of 32×32×32 (similar to [49]) and rely

purely on occupancy grids as thin structures make SDFs un-

reliable in low resolution. Reference shapes Y , ground truth

shapes Y∗ and observations X are obtained following the

procedure for SN-clean (without simplification of the mod-

els). This results in – on average – 1.04% observed voxels

and 7.24% free space voxels. Overall, we obtained a min-

imum of 700/700/150 samples for prior training/inference

training/validation per category. The large intra-category

variations contribute to the difficulty of the task on Model-

Net; we show examples in Figure 5.

4.2. Architecture and Training

We rely on a simple, shallow architecture to predict both

occupancy grids and (if applicable) SDFs in separate chan-

nels. Instead of predicting SDFs directly, we predict log-

transformed SDFs, i.e., for signed distance yi we compute

sign(yi) log(1 + |yi|). As in depth prediction [11, 12, 28],

this transformation reduces the overall range while enlarg-

ing the relative range around the boundaries. On ShapeNet,

the encoder and the decoder of the variational auto-encoder

(VAE) [26] comprise three convolutional stages includ-

ing batch normalization, ReLU activations and max pool-

ing/nearest neighbor upsampling with 33 kernels and 24, 48
and 96 channels; the resolution is reduced to 23. On Mod-

elNet, we use four stages with 24, 48, 96 and 96 channels.

When predicting occupancy probabilities we use Sigmoid

activations in the last layer of the decoder. We use stochastic

gradient descent (SGD) with momentum and weight decay

for training.

The encoder z(x;w) trained for shape inference follows

the architecture of the recognition model q(z|x) and takes

occupancy grids and (if applicable) DFs of the observa-

tions as input. The code z, however, is directly predicted.

While training the encoder z(x;w), the generative model is

kept fixed. In order to obtain well-performing models for

shape inference, we found that it is of crucial importance

that the encoder predicts high-probability codes (i.e., under

the Gaussian prior p(z)). Therefore, we experimentally set

λ = 15 on SN-clean and ModelNet, λ = 50 on SN-noisy

and λ = 10 on KITTI (cf. Equation (4)). As before, we

train the encoder using SGD with momentum and weight

decay. On SN-noisy and KITTI, we additionally weight the

per-voxel terms in Equation (4) for xi = 0 by the probabil-
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SN-clean (val) SN-noisy (val) KITTI (val)

Ham Acc [vx] Comp [vx] Ham Acc [vx] Comp [vx] Comp [m] t [s]

VAE 0.014 0.283 0.439

ML 0.04 0.733 0.845 0.059 1.145 1.331 30

Sup (on KITTI GT) 0.022 0.425 0.575 0.027 0.527 0.751 0.176 (0.174) 0.001

AML Q=5 0.041 0.752 0.877 0.061 1.203 1.39 0.091

0.001AML w/o weighted free space 0.043 0.739 0.845 0.061 1.228 1.327 0.117

AML (on KITTI GT) 0.062 1.161 1.203 0.1 (0.091)

[13] (on KITTI GT) 1.164 0.99 1.713 1.211 0.131 (0.129) 0.168*

Table 1: Quantitative Results. On SN-clean and SN-noisy, we report Hamming distance (Ham), accuracy (Acc) and

completeness (Comp) (cf. Section 4.3). Both Acc and Comp are in voxels, i.e. as multiples of the voxel edge length. On

KITTI [18], we only report Comp in meters. For all metrics, lower is better. We also report the average runtime per sample.

All results were obtained on the corresponding validation sets. * Runtimes on an Intel R© Xeon R© E5-2690 @2.6Ghz using

(multi-threaded) Ceres [2]; remaining runtimes on a NVIDIATM GeForce R© GTX TITAN using Torch [7].

ity of free space at voxel i on the training set of the shape

prior, i.e., SN-clean. We found that this reduces the impact

of noise.

4.3. Evaluation

For evaluation, we consider metrics reflecting the em-

ployed shape representations. For occupancy grids, we use

the Hamming distance (Ham) between the (thresholded)

predictions and the ground truth. For SDFs, we consider

a mesh-to-mesh distance on SN-clean and SN-noisy and a

mesh-to-point distance on KITTI. In both cases, we fol-

low [25] and consider accuracy (Acc) and completeness

(Comp). To measure accuracy, we sample roughly 10k
points on the reconstructed mesh; for each point, we then

compute the distance to the target mesh and report the av-

erage. Analogously, completeness is the distance from the

target mesh (or the ground truth points on KITTI) to the re-

constructed mesh. Note that for both Acc and Comp, lower

is better. On SN-clean and SN-noisy, we report both Acc

and Comp in voxels, i.e., in multiples of the voxel edge

length (as we do not know the absolute scale of ShapeNet’s

car models); on KITTI, we only report Comp in meters.

4.4. Baselines

We consider regular ML as well as a fully-supervised

model (Sup) as baselines. For the former, we applied SGD

on an initial code of z = 0 until the change in objective

is insignificant. As supervised baseline we train the VAE

shape prior architecture, using the very same training pro-

cedure, to directly perform 3D shape completion – i.e., to

predict completed shapes given the observations. Note that

in contrast to the proposed approach, this baseline has ac-

cess to full supervision during training (i.e., full shapes, not

only the observations). This baseline also represents related

learning-based approaches [8, 15, 23, 39, 41, 42] which are

unsuitable for a fair comparison due to our low-dimensional

bottleneck and as architectures are not trivially adjustable

to our setting (e.g., resolution and SDFs). Additionally, we

consider the data-driven method proposed in [13] which it-

eratively optimizes both the pose and the shape based on a

principal component analysis (PCA) shape prior with latent

space dimensionality Q = 52. On KITTI, we adapted the

method to only optimize the shape, as the pose is provided

through the ground truth 3D bounding boxes. On SN-clean

and SN-noisy, in contrast, we optimize both pose and shape

as [13] expects a common ground plane, which is not the

case on SN-clean or SN-noisy by construction.

4.5. Results

Our results on ShapeNet and KITTI are summarized in

Table 1 and Figure 4; results on ModelNet are presented

in Table 2 and Figure 5. For our experiments, choosing Q

is of crucial importance – large Q allows to capture details

and variation, but the latent space is more likely to contain

unreasonable shapes; small Q prevents the model from re-

constructing shapes in detail. On SN-clean, we determined

Q = 10 to be suitable; for fair comparison to [13] we also

report selected results for Q = 5. On ModelNet, in contrast,

we use Q = 25 and Q = 100 for category-specific (i.e., one

model per category) and -agnostic (i.e., one model for all

six categories) models, respectively.

4.5.1 Shape Completion on ShapeNet

On SN-clean and SN-noisy, we follow Table 1, demon-

strating that AML outperforms related work [13] and per-

forms on par with ML while significantly reducing runtime.

As reference point, we also report the reconstruction per-

formance of the VAE shape prior as lower bound on the

achievable Ham, Acc and Comp. Sup, in contrast, performs

well and represents the achievable performance under full

supervision. Interestingly, ML performs reasonably well;

on SN-clean and SN-noisy, ML exhibits less than double

the error compared to Sup while using only 8% supervi-

2Code and shape prior (without models for training) from https://

github.com/VisualComputingInstitute/ShapePriors GCPR16.
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Figure 4: Qualitative Results. On SN-clean and SN-noisy we show results for ML, [13], AML and Sup as well as ground

truth shapes. On KITTI, ground truth shapes are not available; we show results for [13], AML and Sup as well as accumulated

ground truth points (green). We present predicted shapes (meshes and occupancy grids, beige) and observations (red).

sion or less. AML demonstrates performance on par with

ML; this means that amortized inference is able to pre-

serve performance while reducing runtime significantly. On

SN-clean and SN-noisy, AML easily outperforms related

work [13], even for Q = 5. However, we note that [13]

was originally proposed for KITTI. Overall, AML demon-

strates good shape completion performance at low runtime

and without full supervision.

We also consider qualitative results in Figure 4 showing

meshes and occupancy grids for ML, [13], AML and Sup.

On SN-clean, the high number of observed points ensures

that all methods predict reasonable shapes. In the second

row, we notice that Sup is not always able to predict the

correct shape while AML and ML are and that [13] has dif-

ficulties predicting the correct size of the car. Surprisingly,

ML comes most closely to the ground truth car in row three.

We suspect that ML is able to overfit to these exotic cars

while AML is required to generalize based on the cars seen

during training. On SN-noisy, all methods have significant

difficulties predicting reasonable cars. Interestingly, we no-

tice that [13] has a bias towards larger station wagons or

cars with hatchback while AML, ML and Sup prefer to pre-

dict thinner cars. This illustrates that the shape prior takes

over more responsibility when less observations are avail-

able. Overall, we notice that SN-clean is – by construction

– considerably easier than SN-noisy. Based on both quanti-

tative and qualitative results, we find that AML outperforms

related work [13] while being significantly faster and allow-

ing – in contrast to Sup – to be trained on unannotated real

data as we demonstrate in the next section.
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Ham

VAE AML Sup

bathtub 0.015 0.037 0.025

dresser 0.018 0.069 0.036

monitor 0.013 0.036 0.023

nightstand 0.03 0.099 0.065

sofa 0.011 0.028 0.019

toilet 0.02 0.053 0.033

all 0.016 0.065 0.035

Table 2: Quantitative Results on ModelNet. We report

Hamming distance (Ham) for both category-specific as well

as -agnostic (cf. “all”) models on ModelNet; lower is bet-

ter. Results were obtained on the validation sets.

4.5.2 Shape Completion on KITTI

On KITTI, considering Table 1, we focused on AML, Sup

and related work [13]. We note that completeness (Comp)

is reported in meters. Sup as well as the method by En-

gelmann et al. [13] come close to an average of 10cm,

while only AML is able to actually reduce Comp to 9.1cm.

We also report results for AML, Sup and [13] applied to

KITTI’s ground truth, i.e., using the ground truth points as

input. In this case, performance slightly increases, but AML

still outperforms Sup showing that Sup is not able to gener-

alize well. As the ground truth is noisy, however, the per-

formance differences are not significant enough. Therefore,

runtime and the level of supervision gain importance. Re-

garding the former, AML exhibits significantly lower run-

time compared to [13]; regarding the latter, AML requires

considerably less supervision compared to Sup. Overall,

this shows the advantage of being able to amortize, i.e.,

learn, shape completion under weak supervision.

Finally, we consider the qualitative results on KITTI as

presented in Figure 4. As full ground truth shapes are not

available, reasoning about qualitative performance is diffi-

cult. For example, AML and [13] make similar predictions

for the first sample. For the second and third one, however,

the predictions differ significantly. Here, we argue that [13]

has difficulties predicting reasonably sized cars while AML

is not able to recover details such as wheels. We also notice,

that Sup is clearly biased towards very thin cars not match-

ing the observed points. Overall, we find it difficult to judge

shape completion on KITTI – which motivated the creation

of SN-clean and SN-noisy; both [13] and AML are able to

predict reasonable shapes.

4.5.3 Shape Completion on ModelNet

On ModelNet, we compare AML and Sup against the VAE

shape prior (note that [13] is not applicable), considering

both category-specific and -agnostic models, see Table 2.

As on SN-clean, AML is able to achieve reasonable perfor-

mance compared to Sup while using 9% or less supervision.

AML Sup GT AML Sup GT

Figure 5: Qualitative Results on ModelNet. We present

results for AML (category-agnostic, cf. “all” in Table 2) and

Sup. We show shapes (occupancy grids, beige) and obser-

vations (red).

Additionally, Figure 5 shows that AML is able to distin-

guish object categories reasonably well without access to

category information during training (in contrast to Sup);

more results are discussed in the supplementary material.

5. Conclusion

In this paper, we presented a weakly-supervised,

learning-based approach to 3D shape completion. After us-

ing a variational auto-encoder (VAE) [26] to learn a shape

prior on synthetic data, we formulated shape completion as

maximum likelihood (ML) problem. We fixed the learned

generative model, i.e. the VAE’s decoder, and trained a new,

deterministic encoder to amortize, i.e. learn, the ML prob-

lem. This encoder can be trained in an unsupervised fash-

ion. Compared to related data-driven approaches, the pro-

posed amortized maximum likelihood (AML) approach of-

fers fast inference and, in contrast to related learning-based

approaches, does not require full supervision.

On newly created, synthetic 3D shape completion bench-

marks derived from ShapeNet [5] and ModelNet [49], we

demonstrated that AML outperforms a state-of-the-art data-

driven method [13] (while significantly reducing runtime)

and generalizes across object categories. Motivated by re-

lated learning-based approaches, we also compared our ap-

proach to a fully-supervised baseline. We showed that AML

is able to compete with the fully-supervised model both

quantitatively and qualitatively while using 9% or less su-

pervision. On real data from KITTI [18], both AML and

[13] predict reasonable shapes. However, AML demon-

strates significantly lower runtime, and runtime is indepen-

dent of the observed points. Additionally, AML allows to

learn from KITTI’s unlabeled data and, thus, outperforms

the fully-supervised baseline which is not able to generalize

well. Overall, our experiments demonstrate the benefits of

the proposed AML approach: reduced runtime compared to

data-driven approaches and training on unlabeled, real data

compared to learning-based approaches.

Acknowledgements: We thank Francis Engelmann for
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