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Abstract

Surveillance videos are able to capture a variety of real-

istic anomalies. In this paper, we propose to learn anoma-

lies by exploiting both normal and anomalous videos. To

avoid annotating the anomalous segments or clips in train-

ing videos, which is very time consuming, we propose to

learn anomaly through the deep multiple instance ranking

framework by leveraging weakly labeled training videos,

i.e. the training labels (anomalous or normal) are at video-

level instead of clip-level. In our approach, we consider

normal and anomalous videos as bags and video segments

as instances in multiple instance learning (MIL), and auto-

matically learn a deep anomaly ranking model that predicts

high anomaly scores for anomalous video segments. Fur-

thermore, we introduce sparsity and temporal smoothness

constraints in the ranking loss function to better localize

anomaly during training.

We also introduce a new large-scale first of its kind

dataset of 128 hours of videos. It consists of 1900 long and

untrimmed real-world surveillance videos, with 13 realistic

anomalies such as fighting, road accident, burglary, rob-

bery, etc. as well as normal activities. This dataset can be

used for two tasks. First, general anomaly detection consid-

ering all anomalies in one group and all normal activities in

another group. Second, for recognizing each of 13 anoma-

lous activities. Our experimental results show that our MIL

method for anomaly detection achieves significant improve-

ment on anomaly detection performance as compared to

the state-of-the-art approaches. We provide the results of

several recent deep learning baselines on anomalous activ-

ity recognition. The low recognition performance of these

baselines reveals that our dataset is very challenging and

opens more opportunities for future work. The dataset is

available at: http://crcv.ucf.edu/projects/real-world/

1. Introduction

Surveillance cameras are increasingly being used in pub-

lic places e.g. streets, intersections, banks, shopping malls,

etc. to increase public safety. However, the monitoring ca-

pability of law enforcement agencies has not kept pace. The

result is that there is a glaring deficiency in the utilization of

surveillance cameras and an unworkable ratio of cameras to

human monitors. One critical task in video surveillance is

detecting anomalous events such as traffic accidents, crimes

or illegal activities. Generally, anomalous events rarely oc-

cur as compared to normal activities. Therefore, to allevi-

ate the waste of labor and time, developing intelligent com-

puter vision algorithms for automatic video anomaly detec-

tion is a pressing need. The goal of a practical anomaly

detection system is to timely signal an activity that deviates

normal patterns and identify the time window of the occur-

ring anomaly. Therefore, anomaly detection can be consid-

ered as coarse level video understanding, which filters out

anomalies from normal patterns. Once an anomaly is de-

tected, it can further be categorized into one of the specific

activities using classification techniques.

A small step towards addressing anomaly detection is to

develop algorithms to detect a specific anomalous event, for

example violence detector [30] and traffic accident detector

[23, 35]. However, it is obvious that such solutions cannot

be generalized to detect other anomalous events, therefore

they render a limited use in practice.

Real-world anomalous events are complicated and di-

verse. It is difficult to list all of the possible anomalous

events. Therefore, it is desirable that the anomaly detec-

tion algorithm does not rely on any prior information about

the events. In other words, anomaly detection should be

done with minimum supervision. Sparse-coding based ap-

proaches [28, 42] are considered as representative meth-

ods that achieve state-of-the-art anomaly detection results.

These methods assume that only a small initial portion of a

video contains normal events, and therefore the initial por-

tion is used to build the normal event dictionary. Then, the

main idea for anomaly detection is that anomalous events

are not accurately reconstructable from the normal event

dictionary. However, since the environment captured by
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surveillance cameras can change drastically over the time

(e.g. at different times of a day), these approaches produce

high false alarm rates for different normal behaviors.

Motivation and contributions. Although the above-

mentioned approaches are appealing, they are based on

the assumption that any pattern that deviates from the

learned normal patterns would be considered as an anomaly.

However, this assumption may not hold true because it is

very difficult or impossible to define a normal event which

takes all possible normal patterns/behaviors into account

[9]. More importantly, the boundary between normal and

anomalous behaviors is often ambiguous. In addition, un-

der realistic conditions, the same behavior could be a nor-

mal or an anomalous behavior under different conditions.

In this paper, we propose an anomaly detection algorithm

using weakly labeled training videos. That is we only know

the video-level labels, i.e. a video is normal or contains

anomaly somewhere, but we do not know where. This is

intriguing because we can easily annotate a large number of

videos by only assigning video-level labels. To formulate a

weakly-supervised learning approach, we resort to multiple

instance learning (MIL) [12, 4]. Specifically, we propose to

learn anomaly through a deep MIL framework by treating

normal and anomalous surveillance videos as bags and short

segments/clips of each video as instances in a bag. Based on

training videos, we automatically learn an anomaly ranking

model that predicts high anomaly scores for anomalous seg-

ments in a video. During testing, a long-untrimmed video is

divided into segments and fed into our deep network which

assigns anomaly score for each video segment such that an

anomaly can be detected. In summary, this paper makes the

following contributions.

• We propose a MIL solution to anomaly detection by

leveraging only weakly labeled training videos. We pro-

pose a MIL ranking loss with sparsity and smoothness con-

straints for a deep learning network to learn anomaly scores

for video segments.

• We introduce a large-scale video anomaly detection

dataset consisting of 1900 real-world surveillance videos of

13 different anomalous events and normal activities cap-

tured by surveillance cameras. It is by far the largest

dataset with more than 25 times videos than existing largest

anomaly dataset and has a total of 128 hours of videos.

• Experimental results on our new dataset show that our

proposed method achieves superior performance as com-

pared to the state-of-the-art anomaly detection approaches.

• Our dataset also serves a challenging benchmark for

activity recognition on untrimmed videos, due to the com-

plexity of activities and large intra-class variations. We pro-

vide results of baseline methods, C3D [37] and TCNN [21],

on recognizing 13 different anomalous activities.

2. Related Work

Anomaly detection. Anomaly detection is one of the

most challenging and long standing problems in computer

vision [40, 39, 7, 10, 5, 20, 43, 27, 26, 28, 42, 18, 26]. For

video surveillance applications, there are several attempts

to detect violence or aggression [15, 25, 11, 30] in videos.

Datta et al. proposed to detect human violence by exploit-

ing motion and limbs orientation of people. Kooij et al. [25]

employed video and audio data to detect aggressive actions

in surveillance videos. Gao et al. proposed violent flow de-

scriptors to detect violence in crowd videos. More recently,

Mohammadi et al. [30] proposed a new behavior heuristic

based approach to classify violent and non-violent videos.

Beyond violent and non-violent patterns discrimination,

authors in [39, 7] proposed to use tracking to model the nor-

mal motion of people and detect deviation from that normal

motion as an anomaly. Due to difficulties in obtaining re-

liable tracks, several approaches avoid tracking and learn

global motion patterns through histogram-based methods

[10], topic modeling [20], motion patterns [32], social force

models [29], mixtures of dynamic textures model [27], Hid-

den Markov Model (HMM) on local spatio-temporal vol-

umes [26], and context-driven method [43]. Given the train-

ing videos of normal behaviors, these approaches learn dis-

tributions of normal motion patterns and detect low proba-

ble patterns as anomalies.

Following the success of sparse representation and dic-

tionary learning approaches in several computer vision

problems, researchers in [28, 42] used sparse representation

to learn the dictionary of normal behaviors. During testing,

the patterns which have large reconstruction errors are con-

sidered as anomalous behaviors. Due to successful demon-

stration of deep learning for image classification, several ap-

proaches have been proposed for video action classification

[24, 37]. However, obtaining annotations for training is dif-

ficult and laborious, specifically for videos.

Recently, [18, 40] used deep learning based autoen-

coders to learn the model of normal behaviors and em-

ployed reconstruction loss to detect anomalies. Our ap-

proach not only considers normal behaviors but also anoma-

lous behaviors for anomaly detection, using only weakly la-

beled training data.

Ranking. Learning to rank is an active research area

in machine learning. These approaches mainly focused on

improving relative scores of the items instead of individ-

ual scores. Joachims et al. [22] presented rank-SVM to

improve retrieval quality of search engines. Bergeron et

al. [8] proposed an algorithm for solving multiple instance

ranking problems using successive linear programming and

demonstrated its application in hydrogen abstraction prob-

lem in computational chemistry. Recently, deep ranking

networks have been used in several computer vision appli-

cations and have shown state-of-the-art performances. They
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have been used for feature learning [38], highlight detection

[41], Graphics Interchange Format (GIF) generation [17],

face detection and verification [33], person re-identification

[13], place recognition [6], metric learning and image re-

trieval [16]. All deep ranking methods require a vast amount

of annotations of positive and negative samples.

In contrast to the existing methods, we formulate

anomaly detection as a regression problem (we call it re-

gression since we map feature vector to an anomaly score

(0-1)) in the ranking framework by utilizing normal and

anomalous data. To alleviate the difficulty of obtaining pre-

cise segment-level labels (i.e. temporal annotations of the

anomalous parts in videos) for training, we leverage multi-

ple instance learning which relies on weakly labeled data

(i.e. video-level labels – normal or abnormal, which are

much easier to obtain than temporal annotations) to learn

the anomaly model and detect video segment level anomaly

during testing.

3. Proposed Anomaly Detection Method

The proposed approach (summarized in Figure 1) begins

with dividing surveillance videos into a fixed number of

segments during training. These segments make instances

in a bag. Using both positive (anomalous) and negative

(normal) bags, we train the anomaly detection model using

the proposed deep MIL ranking loss.

3.1. Multiple Instance Learning

In standard supervised classification problems using sup-

port vector machine, the labels of all positive and negative

examples are available and the classifier is learned using the

following optimization function:

min
w

1

k

k∑

i=1

1©
︷ ︸︸ ︷

max(0, 1− yi(w.φ(x)− b)) +
1

2
‖w‖2 , (1)

where 1© is the hinge loss, yi represents the label of each

example, φ(x) denotes feature representation of an image

patch or a video segment, b is a bias, k is the total number

of training examples and w is the classifier to be learned. To

learn a robust classifier, accurate annotations of positive and

negative examples are needed. In the context of supervised

anomaly detection, a classifier needs temporal annotations

of each segment in videos. However, obtaining temporal

annotations for videos is time consuming and laborious.

MIL relaxes the assumption of having these accurate

temporal annotations. In MIL, precise temporal locations

of anomalous events in videos are unknown. Instead, only

video-level labels indicating the presence of an anomaly in

the whole video is needed. A video containing anomalies

is labeled as positive and a video without any anomaly is

labeled as negative. Then, we represent a positive video as

a positive bag Ba, where different temporal segments make

individual instances in the bag, (p1, p2, . . . , pm), where m

is the number of instances in the bag. We assume that at

least one of these instances contains the anomaly. Sim-

ilarly, the negative video is denoted by a negative bag,

Bn, where temporal segments in this bag form negative

instances (n1, n2, . . . , nm). In the negative bag, none of

the instances contain an anomaly. Since the exact informa-

tion (i.e. instance-level label) of the positive instances is un-

known, one can optimize the objective function with respect

to the maximum scored instance in each bag [4]:

min
w

1

z

z∑

j=1

max(0, 1−YBj
(max
i∈Bj

(w.φ(xi))−b))+
1

2
‖w‖2 , (2)

where YBj
denotes bag-level label, z is the total number of

bags, and all the other variables are the same as in Eq. 1.

3.2. Deep MIL Ranking Model

Anomalous behavior is difficult to define accurately [9],

since it is quite subjective and can vary largely from per-

son to person. Further, it is not obvious how to assign 1/0

labels to anomalies. Moreover, due to the unavailability of

sufficient examples of anomaly, anomaly detection is usu-

ally treated as low likelihood pattern detection instead of

classification problem [10, 5, 20, 26, 28, 42, 18, 26].

In our proposed approach, we pose anomaly detection

as a regression problem. We want the anomalous video

segments to have higher anomaly scores than the normal

segments. The straightforward approach would be to use a

ranking loss which encourages high scores for anomalous

video segments as compared to normal segments, such as:

f(Va) > f(Vn), (3)

where Va and Vn represent anomalous and normal video

segments, f(Va) and f(Vn) represent the corresponding

predicted anomaly scores ranging from 0 to 1, respec-

tively. The above ranking function should work well if the

segment-level annotations are known during training.

However, in the absence of video segment level annota-

tions, it is not possible to use Eq. 3. Instead, we propose the

following multiple instance ranking objective function:

max
i∈Ba

f(Vi

a
) > max

i∈Bn

f(Vi

n
), (4)

where max is taken over all video segments in each bag. In-

stead of enforcing ranking on every instance of the bag, we

enforce ranking only on the two instances having the high-

est anomaly score respectively in the positive and negative

bags. The segment corresponding to the highest anomaly

score in the positive bag is most likely to be the true positive

instance (anomalous segment). The segment corresponding

to the highest anomaly score in the negative bag is the one

looks most similar to an anomalous segment but actually is
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Figure 1. The flow diagram of the proposed anomaly detection approach. Given the positive (containing anomaly somewhere) and negative

(containing no anomaly) videos, we divide each of them into multiple temporal video segments. Then, each video is represented as a

bag and each temporal segment represents an instance in the bag. After extracting C3D features [37] for video segments, we train a fully

connected neural network by utilizing a novel ranking loss function which computes the ranking loss between the highest scored instances

(shown in red) in the positive bag and the negative bag.

a normal instance. This negative instance is considered as a

hard instance which may generate a false alarm in anomaly

detection. By using Eq. 4, we want to push the positive in-

stances and negative instances far apart in terms of anomaly

score. Our ranking loss in the hinge-loss formulation is

therefore given as follows:

l(Ba,Bn) = max(0, 1−max
i∈Ba

f(Vi

a
) + max

i∈Bn

f(Vi

n
)). (5)

One limitation of the above loss is that it ignores the under-

lying temporal structure of the anomalous video. First, in

real-world scenarios, anomaly often occurs only for a short

time. In this case, the scores of the instances (segments)

in the anomalous bag should be sparse, indicating only a

few segments may contain the anomaly. Second, since the

video is a sequence of segments, the anomaly score should

vary smoothly between video segments. Therefore, we en-

force temporal smoothness between anomaly scores of tem-

porally adjacent video segments by minimizing the differ-

ence of scores for adjacent video segments. By incorporat-

ing the sparsity and smoothness constraints on the instance

scores, the loss function becomes

l(Ba,Bn) = max(0, 1−max
i∈Ba

f(Vi

a
) + max

i∈Bn

f(Vi

n
))

+λ1

1©
︷ ︸︸ ︷

(n−1)
∑

i

(f(Vi

a
)− f(Vi+1

a
))2 + λ2

2©
︷ ︸︸ ︷
n∑

i

f(Vi

a
), (6)

where 1© indicates the temporal smoothness term and 2©
represents the sparsity term. In this MIL ranking loss, the

error is back-propagated from the maximum scored video

segments in both positive and negative bags. By training on

a large number of positive and negative bags, we expect that

the network will learn a generalized model to predict high

scores for anomalous segments in positive bags (see Figure

8). Finally, our complete objective function is given by

L(W) = l(Ba,Bn) + λ3 ‖W‖
F
, (7)

where W represents model weights.

Bags Formations. We divide each video into the equal

number of non-overlapping temporal segments and use

these video segments as bag instances. Given each video

segment, we extract the 3D convolution features [37]. We

use this feature representation due to its computational ef-

ficiency and the evident capability of capturing appearance

and motion dynamics in video action recognition.

4. Dataset

4.1. Previous datasets

We briefly review the existing video anomaly detection

datasets in this section. The UMN dataset [2] consists of

five different staged videos, where people walk around and

after some time start running in different directions. The

anomaly is characterized by only running action. UCSD

Ped1 and Ped2 datasets [27] contain 70 and 28 surveillance

videos, respectively. Those videos are captured at only one

location. The anomalies in the videos are simple and do not

reflect realistic anomalies in video surveillance, e.g. people

walking across a walkway, non pedestrian entities (skater,

biker and wheelchair) in the walkways. Avenue dataset [28]

consists of 37 videos. Although it contains more anoma-

lies, they are staged and captured at one location. Similar to

[27], videos in this dataset are short and some of the anoma-

lies are unrealistic (e.g. throwing paper). Subway Exit and

Subway Entrance datasets [3] contain one long surveil-

lance video each. The two videos capture simple anoma-

lies such as walking in the wrong direction and skipping

payment. BOSS [1] dataset is collected from a surveillance

camera mounted in a train. It contains anomalies such as ha-

rassment, person with a disease, panic situation, as well as
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normal videos. All anomalies are performed by actors. Ab-

normal Crowd [31] introduced a crowd anomaly dataset

which contains 31 videos with crowded scenes only. Over-

all, the previous datasets for video anomaly detection are

small in terms of the number of videos or the length of the

video. Variations in abnormalities are also limited. In addi-

tion, some anomalies are not realistic.

4.2. Our dataset

Due to the limitations of previous datasets, we construct

a new large-scale dataset to evaluate our method. It consists

of long untrimmed surveillance videos which cover 13 real-

world anomalies, including Abuse, Arrest, Arson, Assault,

Accident, Burglary, Explosion, Fighting, Robbery, Shoot-

ing, Stealing, Shoplifting, and Vandalism. These anomalies

are selected because they have a significant impact on pub-

lic safety. We compare our dataset with previous anomaly

detection datasets in Table 1.

Video collection. To ensure the quality of our dataset,

we train ten annotators (having different levels of computer

vision expertise) to collect the dataset. We search videos

on YouTube and LiveLeak 1 using text search queries (with

slight variations e.g. “car crash”, “road accident”) of each

anomaly. In order to retrieve as many videos as possible,

we also use text queries in different languages (e.g. French,

Russian, Chinese, etc.) for each anomaly, thanks to Google

translator. We remove videos which fall into any of the fol-

lowing conditions: manually edited, prank videos, not cap-

tured by CCTV cameras, taking from news, captured using

a hand-held camera, and containing compilation. We also

discard videos in which the anomaly is not clear. With the

above video pruning constraints, 950 unedited real-world

surveillance videos with clear anomalies are collected. Us-

ing the same constraints, 950 normal videos are gathered,

leading to a total of 1900 videos in our dataset. In Fig-

ure 2, we show four frames of an example video from each

anomaly.

Annotation. For our anomaly detection method, only

video-level labels are required for training. However, in or-

der to evaluate its performance on testing videos, we need

to know the temporal annotations, i.e. the start and ending

frames of the anomalous event in each testing anomalous

video. To this end, we assign the same videos to multi-

ple annotators to label the temporal extent of each anomaly.

The final temporal annotations are obtained by averaging

annotations of different annotators. The complete dataset is

finalized after intense efforts of several months.

Training and testing sets. We divide our dataset into

two parts: the training set consisting of 800 normal and 810

anomalous videos (details shown in Table 2) and the testing

set including the remaining 150 normal and 140 anomalous

1https://www.youtube.com/ , https://www.liveleak.com/

videos. Both training and testing sets contain all 13 anoma-

lies at various temporal locations in the videos. Further-

more, some of the videos have multiple anomalies. The dis-

tribution of the training videos in terms of length (in minute)

is shown in Figures 3. The number of frames and percent-

age of anomaly in each testing video are presented in Fig-

ures 4 and 5, respectively.

5. Experiments

5.1. Implementation Details

We extract visual features from the fully connected (FC)

layer FC6 of the C3D network [37]. Before computing fea-

tures, we re-size each video frame to 240 × 320 pixels and

fix the frame rate to 30 fps. We compute C3D features for

every 16-frame video clip followed by l2 normalization. To

obtain features for a video segment, we take the average of

all 16-frame clip features within that segment. We input

these features (4096D) to a 3-layer FC neural network. The

first FC layer has 512 units followed by 32 units and 1 unit

FC layers. 60% dropout regularization [34] is used between

FC layers. We use ReLU [19] activation and Sigmoid acti-

vation for the first and the last FC layers respectively, and

employ Adagrad [14] optimizer with the initial learning rate

of 0.001. The parameters of sparsity and smoothness con-

straints in the MIL ranking loss are set to λ1=λ2 = 8×10−5

and λ3 = 0.01 for the best performance.

We divide each video into 32 non-overlapping segments

and consider each video segment as an instance of the bag.

The number of segments (32) is empirically set. We also

experimented with multi-scale overlapping temporal seg-

ments but it does not affect detection accuracy. We ran-

domly select 30 positive and 30 negative bags as a mini-

batch. We compute gradients by reverse mode automatic

differentiation on computation graph using Theano [36].

Then we compute loss as shown in Eq. 6 and Eq. 7 and

back-propagate the loss for the whole batch.

Evaluation Metric. Following previous works on

anomaly detection [27], we use frame based receiver op-

erating characteristic (ROC) curve and corresponding area

under the curve (AUC) to evaluate the performance of our

method. We do not use equal error rate (EER) [27], as it

does not measure anomaly correctly, specifically if only a

small portion of a long video contains anomalous behavior.

5.2. Comparison with the State­of­the­art

We compare our method with two state-of-the-art ap-

proaches for anomaly detection. Lu et al. [28] proposed

dictionary based approach to learn the normal behaviors

and used reconstruction errors to detect anomalies. Follow-

ing their code, we extract 7000 cuboids from each of the

normal training video and compute gradient based features

in each volume. After reducing the feature dimension us-
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# of videos Average # of frames Dataset length Example anomalies

UCSD Ped1 [27] 70 201 5 min Bikers, small carts, walking across walkways

UCSD Ped2 [27] 28 163 5 min Bikers, small carts, walking across walkways

Subway Entrance [3] 1 121,749 1.5 hours Wrong direction, No payment

Subwa Exit [3] 1 64,901 1.5 hours Wrong direction, No payment

Avenue [28] 37 839 30 min Run, throw, new object

UMN [2] 5 1290 5 min Run

BOSS [1] 12 4052 27 min Harass, disease, panic

Abnormal Crowd [31] 31 1408 24 min Panic, fight, congestion, obstacle, neutral

Ours 1900 7247 128 hours Abuse, arrest, arson, assault, accident, burglary, fighting, robbery

Table 1. A comparison of anomaly datasets. Our dataset contains larger number of longer surveillance videos with more realistic anomalies.
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Figure 2. Examples of different anomalies in our dataset.
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Table 2. Total number of videos of each anomaly in our dataset.
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Normal videos (59 to 208) do not contain any anomaly.

to measure anomaly. We keep the model training setting of

this method similar to our proposed approach, i.e. 32 video

segments in each bag with features computed using C3D. In

addition, we also use a binary SVM classifier as a baseline

method. Specifically, we treat all anomalous videos as one

class and normal videos as another class. C3D features are

computed for each video, and a binary classifier is trained

with linear kernel. For testing, this classifier provides the
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