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Abstract

In this paper, we propose a novel approach for traffic

accident anticipation through (i) Adaptive Loss for Early

Anticipation (AdaLEA) and (ii) a large-scale self-annotated

incident database for anticipation. The proposed AdaLEA

allows a model to gradually learn an earlier anticipation

as training progresses. The loss function adaptively assigns

penalty weights depending on how early the model can an-

ticipate a traffic accident at each epoch. Additionally, we

construct a Near-miss Incident DataBase for anticipation.

This database contains an enormous number of traffic near-

miss incident videos and annotations for detail evaluation

of two tasks, risk anticipation and risk-factor anticipation.

In our experimental results, we found our proposal achieved

the highest scores for risk anticipation (+6.6% better on

mean average precision (mAP) and 2.36 sec earlier than

previous work on the average time-to-collision (ATTC)) and

risk-factor anticipation (+4.3% better on mAP and 0.70 sec

earlier than previous work on ATTC).

1. Introduction

Recently, progress in advanced driver assistance systems

(ADASs), including self-driving cars, has been on the rise

due to contributions from such fields as computer science,

robotics, and traffic science. Among these advanced tech-

niques, advanced computer vision algorithms are especially

important for implementation in ADASs. In self-driving

cars, the primary objective must be to produce “a car that

carries humans to their destination safely”, and one vital

technology field for achieving this target, three-dimensional

(3D) environment sensing, has seen significant improve-

ments recently. For example, laser sensors such as light

detection and ranging (LiDAR) and visual simultaneous lo-

calization and mapping (vSLAM) are among the most ac-

tive topics in the race for practical self-driving cars capable

of transporting human passengers. Also, two-dimensional

∗indicates equal contribution

Figure 1. Our proposed Adaptive Loss for Early Anticipation

(AdaLEA), EL (conventional work), and LEA (also ours). Our

AdaLEA allows a model to anticipate incidents/accidents earlier

as training progresses by referring to the ability of its anticipation.

We achieved a traffic risk-factor anticipation with 3.65 seconds

average time-to-collision (ATTC), versus 2.99 seconds for a con-

ventional EL on NIDB.

(2D) image processing is one of the key to achieve safe

driving and has addressed traffic tasks, including pedestrian

(object) detection, semantic segmentation and situational

awareness.

For a trail of safe driving, Geiger et al. have col-

lected the KITTI benchmark to evaluate several self-driving

car tasks [9], problems related to semantic segmentation,

and two- and three-dimensional (2D/3D) object detection.

However, conventional databases represented by this lack

traffic accident or near-miss incident (accident/incident)

cases, even though the target of a traffic safety system is
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to avoid dangers. The database of accident/incident videos

is necessary to highly understand a traffic danger situation,

therefore we constructed a novel database that contains a

large-number of near-miss traffic incidents with detailed an-

notations for anticipation.

In addition to database construction, this study explores

how to anticipate traffic accident/incident cases. We con-

tend that the key to avoiding accidents/incidents is earlier

anticipation in the framework. Herein, we propose a traf-

fic accident anticipation model (see Figure 1) that operates

through an adaptive penalty weighted value for early antici-

pation, in contrast to conventional anticipation learning pro-

cedures with a static one. As the result of our contributions,

we found that our approach achieved risk-factor anticipa-

tion with 62.1% mean average precision (mAP) and 3.65

sec average time to collision (ATTC), which is +4.3% more

accurate and 0.73 sec earlier than conventional work. Note

that we define risk-factor as a object that cause a accident

(e.g., cyclist, pedestrian and vehicle).

In summary, our contributions are as follows:

Technical contribution: We propose our Adaptive Loss

for Early Anticipation (AdaLEA) method, which allows a

model to gradually learn an earlier anticipation as training

progresses, inspired by Curriculum Learning[2]. By refer-

ring to the ATTC during each training epoch, penalty weight

adaptively changes. Moreover, in our base model, we assign

a quasi-recurrent neural network (QRNN) [3] that enables

stable output from temporal convolution on consecutive se-

quential data such as videos, by replacing the long-short

term memory (LSTM) [17] used conventionally.

Database contribution: We have annotated a novel

traffic Near-miss Incident DataBase (NIDB) that contains

a large-number of near-miss traffic incidents to (i) raise

awareness of the problem of risk-factor anticipation, and (ii)

improve feature representation in anticipation.

2. Related works

Since this paper addresses topics such as self-driving

cars and temporal anticipation, it is relevant to a large num-

ber of areas. However, we limited our focus to closely re-

lated and representative topics that are relevant to our work:

Anticipation in videos: Anticipation in videos is a very

challenging issue in the field of computer vision because a

future event must be anticipated from information up to the

present and it’s often ambiguous. There is little promising

work in video-based risk anticipation. Therefore, herein we

touch on work related to our traffic accident anticipation

method such as early event detection and anticipation.

Early event detection is the task that a model should de-

tect the event before it is completed. The representative

work on this topic was conducted by Ryoo [20], who in-

troduced a probabilistic model for early event detection.

In the context of traffic situation, Kataoka et al. defined

transitional action [13] and constructed pedestrian-specified

database [12] for short-term action prediction. Then, Aliak-

barian et al. proposed an early event detection method that

uses a spatial attention mechanism [1]. Event anticipation is

the problem to anticipate the event before it occurs. For ex-

ample, Koppula et al. [15] propose the anticipation method

using CRF with information of human poses and object

coordinates, and Vondrick et al.[22] train CNN to extract

feature for action anticipation in self-supervised manner.

Accident anticipation belongs to event anticipation, since

accident/incident must be anticipated before occurrence to

avoid them. In the area of risk anticipation, a number of

other sophisticated algorithms have recently been proposed.

For example, Chan et al. introduced the concept of dy-

namic soft-attention (DSA) involving an LSTM to antici-

pate traffic accidents [4], and Zeng et al. have improved

target-focused risk anticipation by introducing Imaging fu-

ture mechanism, which predict future location of the tar-

get [24]. In these two works of risk anticipation, Exponen-

tial Loss (EL) proposed by Jain et al. [11], which changes

the penalty weight in accordance with the difficulty at each

frame, is utilized for training a model. However this loss

function does not encourage earlier anticipation since this

always gives higher weights only frames close to the acci-

dent.

Since our philosophy aims at avoiding events in advance,

we must execute an anticipation as early as possible. In this

paper, we try to accomplish this via our new loss function

AdaLEA. Moreover, we also employ QRNN [3] in lieu of

more frequently used LSTM [17]. In the experimental sec-

tion, we show the effectiveness of them, in comparison with

above mentioned algorithms [11, 4, 24].

Traffic database: Several practical databases for traf-

fic safety have been proposed in the past decade. In the

pedestrian database, Dollar et al. released a large-scale and

realistic Caltech pedestrian dataset [5, 6] that has proved

to be beneficial for improving the local descriptors, classi-

fiers, and models. Note that detailed analysis, such as oc-

clusion rates, data statistics, and burden comparisons, are

areas of extensive study in the pedestrian detection field. In

2012, the KITTI benchmark was applied to set meaning-

ful vision problems for self-driving cars [9]. These include

problems in optical flow, semantic labeling, visual odom-

etry, stereo vision, 2D/3D object detection, and temporal

tracking. Thanks to the sophisticated approaches now avail-

able, such as fully convolutional networks (FCN) [16] and

region-based convolutional neural networks (R-CNN) [10],

there has been improved performance of solving these prob-

lems using the KITTI benchmark. Another interesting re-

cent impact is the Toronto City dataset [23], which uses a

huge amount of data obtained via various sensors for large-

scale city reconstruction. The use of different sensor types

provides a variety of perspectives that can be applied to
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Figure 2. At first training epoch, EL (blue), LEA (green) and AdaLEA (yellow) assign equal penalty weights and weights of EL are static

at all training epochs. According to training progress, a penalty weight of our second-best LEA are linearly shifted to promote early

anticipation and our AdaLEA flexibly changes penalty weights depending on the validated ATTC (Average Trame-to-Collision) at each

previous epoch.

comprehensive auto navigation matters. However, these

representative databases contain few scenes that present ac-

cidents/incidents in which pedestrians, cyclists, or other ve-

hicles must be avoided before mishaps occur.

Dashcam Accident Dataset (DAD) [4] contains acciden-

tal events on the collected data. However, it is not large

enough (there are only 102-order accident videos, which are

5 seconds each) to optimize a high-level model, and many

of accidents in DAD are caused between others (e.g., other

motorcycle-other vehicle), not own vehicle and other that

should be avoided by own vehicle. Thus, there is an urgent

need for a collection of large-scale incident scenes with an-

notations to ensure that a self-driving car can learn how to

safely navigate dangerous situations. In this paper, we con-

structed a novel database that contains a large-number of

near-miss traffic incidents with detailed annotations, espe-

cially for risk anticipation task that is the one of the key

problem to the implementation of self-driving car.

3. Our Approach

The overview of our system is shown in Figure 1. The

system extracts global and local feature from each frame,

executes temporal analysis on them and output risk rate at

each frame that represents probability that an accident will

occur in the future. To the model we introduce QRNN,

which enables a model to achieve stable anticipation with

temporal convolution on consecutive features. For train-

ing the model, we use our novel loss function, Adaptive

Loss for Early Anticipation (AdaLEA). In this section, we

explain AdaLEA, which is the primary contribution of this

study, and introduction of QRNN instead of LSTM for tem-

poral analysis in anticipation tasks. The details of global

and local feature are in section 5.

3.1. Loss function

To avoid danger in advance, traffic accident anticipa-

tion needs both accuracy and earliness. Figure 2 shows the

overview of three different loss functions. Our strategy is to

adaptively modify the weight value depending on how early

the model can anticipate a traffic accident at each learning

epoch. The flexible operation of our AdaLEA allows us to

provide an earlier anticipation than other approaches with

conventional Exponential Loss (EL) [11] and our second-

best Loss for Early Anticipation (LEA).

In a loss function for anticipation, uniformed weighting

is susceptible to unstable learning since the difficulty to an-

ticipate varies over the time. To resolve the problem, we

design our losses based on EL [11]. The training module

with EL changes the penalty weight in accordance with the

difficulty at each frame in order to stabilize an anticipation

learning. However EL does not encourage early anticipa-

tion at all since the function always gives a higher weights

only close to the accident (see blue in Figure 2), therefore

we introduce a mechanism for early anticipation. The losses

we propose are divided into positive (a video including a

traffic accident) and negative (no accident, a normal driv-

ing scene) samples. While the loss for the negative sample

is standard cross-entropy, a weighting value in the positive

sample is gradually increased when a video frame is closer

to an accident frame like EL. Moreover, we utilize the idea

of Curriculum Learning [2] which ranges from easy to dif-

ficult samples in training time and improves generalization

of a model. In anticipation, an easy sample is a frame close

to an accident time (e.g., a few frames from an annotated

accident/incident time) and a difficult sample is one farther

away (e.g., over 5 seconds from an accident time), that is to

say early anticipation. According to this, for smooth opti-

mization, our losses allow a model to gradually anticipate

earlier as training progress. The LEA is shown as below:
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Loss for Early Anticipation

for positive :

L
p
LEA({rt}) =

∑T

t=1
−αlog(rt) (1)

α = exp(−max(0, d− λ(e− 1))) (2)

for negative :

Ln
LEA({rt}) =

∑T

t=1
−log(1− rt) (3)

where rt indicates risk rate in range [0, 1] at video time t,

T is starting frame of annotated accident/incident, and d =
T − t which means the frames from current frame (t) to ac-

cident/incident (T ). Moreover, e represents a current learn-

ing epoch, and λ is a hyper-parameter. The penalty weights

of anticipation at early time t is weak in an early learning

stage, but increases according to the learning progress. Fig-

ure 3(a) shows LEA in a different learning epoch. Note that

at the beginning of training (e = 1) or if λ = 0, the LEA is

equal to the EL [11].

LEA is designed based on the premise that according to

training progress the model can anticipate an accident ear-

lier linearly, however indeed this premise is not always right

due to various learning situation. Therefore, we further pro-

pose AdaLEA that provides adaptive penalty value, depend-

ing on the anticipation time, by referring to ATTC (see sec-

tion 5.1), that represents how early a model anticipates in

average. AdaLEA is given as below:

Adaptive Loss for Early Anticipation

for positive :

L
p
AdaLEA({rt}) =

∑T

t=1
−αlog(rt) (4)

α = exp(−max(0, d− F · Φ(e− 1)− γ)) (5)

for negative :

Ln
AdaLEA({rt}) =

∑T

t=1
−log(1− rt) (6)

where Φ(·) is a function which represents an ATTC at a

training epoch, F is the frame rate of videos, and γ is a

hyper-parameter. In short, the loss is adaptively penalized

depending on the ability of early anticipation in order to

promote the training process. Figure 3(b) shows examples

of penalty weights at three learning epochs. Here, it can be

that the AdaLEA makes an anticipating system earlier than

in the previous epoch at all training times.

3.2. Quasi­recurrent neural networks (QRNN)

To analyze continuous sequential data like videos,

motion-information that can be obtained considering the re-

lationship between adjacent times is important. Although

LSTM is still used for standard temporal analysis in risk an-

ticipation [4, 24, 1], they cannot always account for direct

relationships between adjacent frames. Therefore, in lieu of

LSTM, we selected QRNN [3] that includes temporal con-

volution in order to identify motion-information from direct

relationship between adjacent frames.

On natural language processing tasks such as sentiment

classification and machine translation, QRNN keeps level

of accuracy comparable to LSTM with significant improve-

ment of computational speed. On the other hand, to the best

of our knowledge, there is no method that applies QRNN to

tasks using consecutive sequential data such as videos. In

this case, as mentioned in the beginning of this section, we

can expect QRNN to provide not only faster processing but

better accuracy than LSTM because of its temporal convo-

lution. Finally, our system outputs risk rate rt in range [0, 1]
though a fully connected layer followed by a sigmoid func-

tion at every frame.

4. Near-miss Incident DataBase (NIDB) for an-

ticipation

We have constructed NIDB for traffic accident antic-

ipation based on the original traffic database [14]. We

have annotated near-miss incident duration and the bound-

ing boxes of risk-factors in addition to the original traffic

database especially for the detail evaluation of anticipation.

Overall, the original database contains over 6.2K videos

and 1.3M frames, many of which show incident scenes.

The videos were captured using vehicle-mounted driving

recorders. The videos are divided into four classes, in-

cluding {cyclists, pedestrians, vehicles} as well as a back-

ground (negative) class. Moreover, the near-miss incident

duration and bounding boxes of risk-factors are annotated

in the large-scale video database. After these annotations

are terminated, all elements including near-miss incidents,

their durations, and bounding boxes are validated by extra

annotators. The detailed database construction is described

below:

4.1. Two tasks for traffic accident anticipation

Traffic risk anticipation: This task is following by con-

ventional studies such as Chan et al. [4]. Given a video,

an anticipation system outputs the probability of a future

accident (risk rate) rt in range [0, 1] at each frame t. We de-

cide the presence of a future accident based on whether rt
exceeds the defined threshold q at any frame until the last.

Additionally, we define the time-to-collision (TTC) as the

period between the time when rt exceeds q and when an

accident occurs. The goal of this task is to make a correct

anticipation of the potential of an accident occurrence in as

long a TTC as possible.

Traffic risk-factor anticipation: Our NIDB for antic-

ipation provides an additional task, traffic risk anticipation

for each risk-factor. In this task, an anticipation system must

anticipate what will cause the accident (i.e., what should be

3524



(a) Penalty weights in EL and LEA (b) Penalty weights with our AdaLEA

Figure 3. Detailed progresses of penalty weights in EL, LEA and AdaLEA in case that videos contain 100 frames including acci-

dent/incident at the last: (a) Penalty weights of LEA are linearly shifted depending on epoch and factor of proportionality λ. Penalty

weights of EL(blue line) are static at all training epoch and equal to LEA at the epoch 1. (b) To promote an earlier anticipation, penalty

weights of AdaLEA are adaptively changed depending on a validated ATTC (from Φ(·), solid red lines) at each previous epoch and hyper

parameter γ. Note that dashed red lines indicate the just time when penalty weights saturate to 1.

Figure 4. Video annotation with bounding boxes and duration of

traffic near-miss incidents.

payed attention to) in addition to the presence of a accident.

We use the same procedure for each risk-factor in order to

evaluate the correctness of anticipation and TTC. If a model

is trained on this task, it can anticipate multiple accidents

caused by different risk-factors or no accidents, therefore

the model outputs risk rate in range [0, 1] for each factor.

The goal of this task is to produce correct anticipations of

the potential accidents caused by each risk factor with the

longest TTCs possible.

4.2. Video annotation for anticipation

We added two more important annotations to be used

when executing a traffic accident anticipation, namely near-

miss incident duration and the bounding boxes of candi-

dates of risk-factors (Figure 4). The duration is annotated

based on the traffic near-miss incident definition. Anno-

tators place starting and ending times on each video that

indicate when they consider a near-miss incident to have

occurred and finished, respectively. The bounding boxes

are first processed by an accurate object detection algo-

rithm [18] trained on Pascal VOC 2007 dataset [8] and we

select and modify bounding boxes and their categories of

detected objects. Note that the categories are limited to

{cyclists, pedestrians, vehicles}. In other elements such as

video collection and cross-check, we followed the original

traffic database.

Finally, we had collected 4,594 near-miss incidents and

1,650 background videos consisting 100 frames including

accident/incident at the last. In the experiment, we ran-

domly split this database into training and testing, where

4,995 training videos (3,675 positive and 1,320 negative)

and 1,249 testing clips (919 positive and 330 negative).

5. Evaluation

In this section, we evaluate our proposals on a conven-

tional database [4] and our NIDB for anticipaition.

5.1. Settings

Database. We use two databases for traffic accident an-

ticipation.

Dashcam Accident Dataset (DAD) [4] contains diverse

accidents captured across six cities in Taiwan with dashcam

mounted on vehicles. The database consists of 596 posi-

tive videos that include accident scenes covering the last 10

frames and 1,137 negative videos without accidents. Videos

in the database are separated into 1,266 training videos (446

positives, 820 negatives) and 467 testing videos (150 posi-

tives and 317 negatives).

NIDB is our proposed database. The detailed proper-

ties are discussed in section 4. Moreover, for extraction

of global feature we introduce a pre-trained model on our

NIDB in addition to the ImageNet [19]/Places365 [25] pre-

trained models in section 5.2. We use the NIDB to evaluate

the traffic risk anticipation, and risk-factor anticipation.
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Units Pretrain Acc. Prec. Rec. F-score

4096 IN+NIDB 50.45 66.37 50.55 51.58

4096 P+NIDB 56.00 66.71 56.00 56.82

64 P+NIDB 45.54 58.56 45.55 46.54

128 P+NIDB 51.81 63.30 51.82 53.44

256 P+NIDB 54.36 64.79 54.36 55.62

512 P+NIDB 55.90 67.20 55.91 56.90

1024 P+NIDB 58.54 68.65 58.55 59.86

2048 P+NIDB 56.36 67.59 56.36 57.02

4096 P+NIDB 56.00 66.71 56.00 56.82

Table 1. Comparison of representative pre-trained models and ad-

ditional NIDB training (IN: ImageNet, P: Places365)

Implementation details and evaluation metrics. We

use deep activation features (DeCAF) [7] from VG-

GNet [21] for both local and global features in a traffic

scene. In the global feature, we directly extract a DeCAF

from a full-image. For feature extractor, we employ Im-

ageNet pretrained model and our NIDB-pretrain described

in the next subsection. In the local feature, we use a con-

ventional dynamic soft-attention (DSA) [4], which is the

object-specified attention mechanism, in addition to the De-

CAF from regions of objects in a traffic scene using Ima-

geNet pretrained model. Finally, we concatenate these two

features and input to QRNN or LSTM.

We detect risk-factors such as cyclists, pedestrians, and

vehicles by using Faster R-CNN [18]. We train the model

on Pascal VOC 2007 dataset [8] and fine-tune the detector

on each database. For the other two hyper-parameters, we

experimentally set λ = 3, γ = 5.

In accident anticipation, both accuracy and earliness are

required. We employ the mAP and ATTC by following the

previous work [4]. For each threshold q, we can compute

precision, recall and TTC. Note that we can compute TTC

only for the true positives. By changing the threshold q, we

can collect many triplets of them and plot the precision v.s.

recall and TTC v.s. recall curves. Given these curves, by

taking average across different recall, we can compute the

mAP and ATTC.

5.2. Exploration

Exploration of AdaLEA. Figure 5 compare our

AdaLEA with conventional EL and our second-best LEA

on risk-factor anticipation task of NIDB. To ensure a fair

evaluation, all parameters and models used were the same

and only the loss function was changed. Although the per-

formance rate with mAP was comparable in EL, LEA and

AdaLEA (see the lower of Figure 5), our AdaLEA achieved

earlier traffic accident anticipation than other loss functions

(see the upper of Figure 5). The differences between our

LEA/AdaLEA and EL were linked to gradually changing

weighting values at each epoch. Note that in early stage

of training, ATTC is high while the mAP is low, and this

means that a right evaluation of ATTC is possible after get-

ting a certain mAP (e.g., after around 20 epochs in Fig-

ure 5). Ultimately, we determined that the AdaLEA is the

most advanced approach since the function gives an adap-

tive penalty depending on the ability of early anticipation.

Exploration of NIDB-pretrain. Next, we com-

pared the representative pre-trained models (ImageNet and

Places365) with NIDB-pretrain using various fully con-

nected units to find the optimal model for global feature

extractor. NIDB-pretrain is the global feature extractor pre-

trained on per-frame risk-factors {cyclist, pedestrian, vehi-

cle} and background classification task (not anticipation),

in addition to classification task on Places or ImageNet for

traffic scene-specilized feature. For comparison, we extract

global feature per-frame from the last layer of each NIDB-

pretrain with various number of units and train SVM to

classify risk-factors and background on test split of NIDB.

Note that for training NIDB-pretrain, we use only train split

of NIDB. Table 1 shows the result and we find that an

Places365+NIDB extracts the best global feature for near-

miss incident classification. Finally, we find that the 1,024-

dim setting performed the best rate on the NIDB. Hereafter

we will employ Places365+NIDB with 1,024-dim as NIDB-

pretrain, and conventional pretrain model on ImageNet [19]

with 4,096-dim as else standard for global feature extractor.

Note that we use conventional pretrain feature on ImageNet

for local feature.

5.3. Comparison with state­of­the­art approaches

Here, we simply enumerate various base models (DSA,

LSTM, QRNN), loss functions (EL, LEA, AdaLEA), and

representation with pre-trained database (NIDB-pretrain).

In the base models, we employed the above-mentioned

DSA and standard LSTM. Here, the agent-centric risk as-

sessment (ACRA; Zeng17 in Table 2) is used to predict the

future coordinates of a target [24], in addition to the EL and

LSTM. Note that this method can be applied to the situation

that a target which can suffer the danger, namely ’agent’ is

designated and showed up in video frames, therefore we do

not compare this method on NIDB, where ’agent’ is always

the own vehicle and not showed up. One more conven-

tional work is Chan16 [4] which is constructed by {DSA,

LSTM, EL}. With these methods, we could update our

anticipation model and compare it with state-of-the-art ap-

proaches [4, 24], simultaneously.

The quantitative results of traffic accident anticipation on

the DAD and NIDB are shown in Table 2 and Table 3, re-

spectively, and risk-factor anticipation is shown in Table 4.

In conclusion, we found that our proposed configuration

{DSA, QRNN, AdaLEA, NIDB-pretrain} achieved the best

performance in terms of mAP (53.2@DAD, 99.1@NIDB)

and ATTC (3.44@DAD, 4.81@NIDB). In a comparison

3526



Chan16 Zeng17 Chan16 QRNN Ours1 Ours2 Ours3

[4] [24] +AdaLEA +EL LEA AdaLEA +NIDB

DSA ✓ – ✓ ✓ ✓ ✓ ✓

LSTM ✓ ✓ ✓

QRNN ✓ ✓ ✓ ✓

EL ✓ ✓ ✓

LEA ✓ ✓

AdaLEA ✓ ✓

NIDB ✓

mAP[%] 48.1 51.4 49.2 51.7 52.1 52.3 53.2

ATTC[s] 1.34 3.01 2.80 3.02 3.22 3.43 3.44

Table 2. Results of risk anticipation on DAD: NIDB in the table

means NIDB-pretrain for global feature. The result of conven-

tional methods are cited from [24].

Chan16 Chan16 QRNN Ours1 Ours2 Ours3

[4] +AdaLEA +EL LEA AdaLEA +NIDB

DSA ✓ ✓ ✓ ✓ ✓ ✓

LSTM ✓ ✓

QRNN ✓ ✓ ✓ ✓

EL ✓ ✓

LEA ✓ ✓

Ada-LEA ✓ ✓

NIDB ✓

mAP[%] 92.5 94.4 94.2 96.2 96.3 99.1

ATTC[s] 2.45 4.62 2.85 4.67 4.72 4.81

Table 3. Results of risk anticipation on NIDB: NIDB in the

table means NIDB-pretrain for global feature.

Figure 5. ATTC v.s. epoch (upper) and mAP

v.s. epoch (lower) curves.

Chan16 [4] Chan16 QRNN Ours1 Ours2

+AdaLEA +EL LEA AdaLEA

DSA ✓ ✓ ✓ ✓ ✓

LSTM ✓ ✓

QRNN ✓ ✓ ✓

EL ✓ ✓

LEA ✓

Ada-LEA ✓ ✓

mAP[%] bicycle 57.3 57.7 60.0 62.8 56.8

pedestrian 43.1 43.9 43.6 44.7 47.9

vehicle 73.2 75.9 79.9 78.5 81.4

Average 57.8 59.2 61.2 62.0 62.1

ATTC[s] bicycle 2.94 3.38 3.51 3.22 3.65

pedestrian 3.15 3.36 3.34 3.23 3.56

vehicle 2.71 2.96 2.12 3.99 3.75

Average 2.95 3.23 2.99 3.48 3.65
Table 4. Results of risk-factor anticipation on NIDB: we used NIDB-pretrain model to extract

global feature in all methods.

with the (best) conventional work, the results show our

proposal is +1.8@DAD, +6.6@NIDB better with mAP,

and +0.43@DAD, +2.36@NIDB earlier with ATTC. In the

ATTC on both databases, we can see an especially remark-

able value. Since the DAD contains the 4.5-second videos,

the value 3.01 seconds with Zeng17 seems to be saturated.

However, we improved ATTC to 3.44 seconds with our

AdaLEA. In the NIDB, our proposed configuration signifi-

cantly improved from 92.5 [mAP] and 2.45 [ATTC] to 99.1

[mAP] and 4.81 [ATTC]. Although the values of both mAP

and ATTC on the DAD tend to be lower, we believe that this

is simply due to the data configuration. The first data config-

uration is positive data-size. The number of positives in the

NIDB is 7.7 times bigger than the DAD (4,594@NIDB vs

596@DAD). These characteristics enable accidental scenes

to be learned effectively. The second is an accident/incident

scene configuration. While most of the videos in the NIDB

include a simple near-miss incident between own vehicle

and another risk-factor such as a cyclist or pedestrian, many

videos in the DAD contain more complecated accidents be-

tween other risk-factors, without any danger to own vehicle.

Giving a careful consideration, a near-miss is apprecia-

bly related to a situation (e.g., cross road, rainy) so the

model can partially solve this problem (see Table 3), how-

ever, to avoid accidents/incidents in advance, merely antic-

ipating the presence of them is insufficient and more de-

tailed information must be obtained in advance (e.g., what

should be paid attention to). Therefore, we further provide

a more difficult task, risk-factor anticipation on the NIDB.

Our method achieves 62.1 [mAP] and 3.65 [ATTC] which

are +4.3 better with mAP and +0.70 earlier with ATTC than

Chan et al. [4]. We replace the loss function from EL to

AdaLEA in Chan16+AdaLEA, after which we obtained bet-

ter performance with mAP (+1.4) and ATTC (+0.28) in Ta-

ble 4. Otherwise, in comparison to high mAP on risk an-

ticipation, the mAP on risk-factor anticipation tend to be

considerably lower, which implies that the model on risk

anticipation focuses on the dangerous situation, almost not
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Figure 6. Visual comparison among EL, LEA (our second-best) and AdaLEA (ours) on DAD: Each of image sequences and three bottom

graphs shows the example of traffic risk anticipation when we set 0.8 as the threshold. Yellow bounding boxes indicate risk-factors of each

video.

a target to be payed attention to as above mentioned.

Moreover, in addition to AdaLEA and NIDB-pretrain,

the QRNN on behalf of LSTM in Chan’s method highly

improves mAP and ATTC on both databases. This suggests

that QRNN can focus on the direct relationship between

frames (e.g., motion feature) and there is a possibiliy that

QRNN is more suitable for analysis on consecutive sequen-

tial data, such as videos.

Figure 6 shows the visual comparison with EL, LEA and

AdaLEA. Our proposed AdaLEA enabled a system to ex-

ecute the earliest traffic accident anticipation. Our system

anticipated when a car coming in the wrong direction ap-

pears at distance (the upper example) and when own vehicle

is about to ignore the red signal (the lower example).

6. Conclusion

We presented a novel approach for traffic accident an-

ticipation with our Adaptive Loss for Early Anticipation

(AdaLEA) and self-annotated Near-miss Incident DataBase

(NIDB) for anticipation. The AdaLEA allows a model to

gradually learn an earlier anticipation as the training pro-

gresses. In our design, the loss adaptively assigns penalty

weights depending on how early a model can anticipate a

traffic accident at each training epoch, inspired by Curricu-

lum Learning. In the NIDB, we provide new task for risk-

factor anticipation. The NIDB also provides a better feature

representation as NIDB-pretrain. With AdaLEA, NIDB-

pretrain, and Quasi-RNN, our proposal achieved the best

level of traffic accident anticipation performance in terms

of mAP and ATTC. In a comparison with the conventional

work, our proposal is +1.8@DAD, +6.6@NIDB better with

mAP, and +0.43@DAD, +2.36@NIDB earlier with ATTC

on risk anticipation. As for risk-factor anticipation in the

NIDB, our proposed configuration was found to have im-

proved from 57.8 [mAP] and 2.95 [ATTC] with the conven-

tional work, to 62.1 (+4.3) [mAP] and 3.65 (+0.70) [ATTC].
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