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Abstract

We seek to predict the 6 degree-of-freedom (6DoF) pose of

a query photograph with respect to a large indoor 3D map.

The contributions of this work are three-fold. First, we

develop a new large-scale visual localization method tar-

geted for indoor environments. The method proceeds along

three steps: (i) efficient retrieval of candidate poses that en-

sures scalability to large-scale environments, (ii) pose es-

timation using dense matching rather than local features

to deal with textureless indoor scenes, and (iii) pose ver-

ification by virtual view synthesis to cope with significant

changes in viewpoint, scene layout, and occluders. Sec-

ond, we collect a new dataset with reference 6DoF poses

for large-scale indoor localization. Query photographs are

captured by mobile phones at a different time than the refer-

ence 3D map, thus presenting a realistic indoor localization

scenario. Third, we demonstrate that our method signifi-

cantly outperforms current state-of-the-art indoor localiza-

tion approaches on this new challenging data.

1. Introduction

Autonomous navigation inside buildings is a key ability of

robotic intelligent systems [24, 39]. Successful navigation

requires both to localize a robot and to determine a path to

its goal. One approach to solving the localization problem

is to build a 3D map of the building and then use a camera1

to estimate the current position and orientation of the robot

(Figure 1). Imagine also the benefit of an intelligent indoor

navigation system that helps you find your way, for exam-
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1While RGBD sensors could also be used indoors, they are often too

energy-consuming for mobile scenarios or have only a short-range to scan

close-by objects (faces). Thus, purely RGB-based localization approaches

are also relevant in indoor scenes. Obviously, indoor scenes are GPS-

denied environments.

Database of RGBD images

Query image

Large-scale 

indoor 3D maps

?

6DoF camera pose

Figure 1. Large-scale indoor visual localization. Given a

database of geometrically-registered RGBD images, we predict

the 6DoF camera pose of a query RGB image by retrieving can-

didate images, estimating candicate camera poses, and selecting

the best matching camera pose. To address inherent difficulties in

indoor visual localization, we introduce the “InLoc” approach that

performs a sequence of progressively stricter verification steps.

ple, at Chicago airport, Tokyo Metropolitan station or the

CVPR conference center. Besides intelligent systems, the

visual localization problem is also highly relevant for any

type of Mixed Reality application, including Augmented

Reality [16, 44, 73].

Due to the availability of datasets, e.g., obtained from

Flickr [38] or captured from autonomous vehicles [19, 43],

large-scale localization in urban environments has been an

active field of research [6, 9, 14, 15, 19, 20, 27, 29, 34, 38, 44,

53–57, 65, 67, 68, 76, 80, 81]. In contrast, indoor localiza-

tion [11, 12, 39, 58, 59, 64, 70, 75] has received less atten-
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tion in the last years. At the same time, indoor localiza-

tion is, in many ways, a harder problem than urban local-

ization: 1) Due to the short distance to the scene geometry,

even small changes in viewpoint lead to large changes in

image appearance. For the same reason, ocluders such as

humans or chairs often have a stronger impact compared to

urban scenes. Thus, indoor localization approaches have to

handle significantly larger changes in appearance between

a query and reference images. 2) Large parts of indoor

scenes are textureless and textured areas are typically rather

small. As a result, feature matches are often clustered in

small regions of the images, resulting in unstable pose es-

timates [29]. 3) To make matters worse, buildings are of-

ten highly symmetric with many repetitive elements, both

on large (similar corridors, rooms, etc.) and small (similar

chairs, tables, doors etc.) scale. While structural ambigui-

ties also cause problems in urban environments, they often

only occur in larger scenes [9, 54, 68]. 4) The appearance

of indoor scenes changes considerably over the course of

a day due to the complex illumination conditions (indirect

light through windows and active illumination from lamps).

5) Indoor scenes are often highly dynamic over time as fur-

niture and personal effects are moved through the environ-

ment. In contrast, the overall appearance of building fa-

cades does not change too much over time.

This paper addresses these difficulties inherent to indoor

visual localization by proposing a new localization method.

Our approach starts with an image retrieval step, using a

compact image representation [6] that scales to large scenes.

Given a shortlist of potentially relevant database images, we

apply two progressively more discriminative geometric ver-

ification steps: (i) We use dense matching of CNN descrip-

tors that capture spatial configurations of higher-level struc-

tures (rather than individual local features) to obtain the cor-

respondences required for camera pose estimation. (ii) We

then apply a novel pose verification step based on virtual

view synthesis that can accurately verify whether the query

image depicts the same place by dense pixel-level matching,

again not relying on sparse local features.

Historically, the datasets used to evaluate indoor vi-

sual localization were restricted to small, often room-scale,

scenes. Driven by the interest in semantic scene under-

standing [10,23,79] and enabled by scalable reconstruction

techniques [28, 47, 48], large-scale indoor datasets cover-

ing multiple rooms or even whole buildings are becoming

available [10,17,23,64,75,77–79]. However, most of these

datasets focus on reconstruction [77,78] and semantic scene

understanding [10, 17, 23, 79] and are not suitable for local-

ization. To address this issue, we create a new dataset for

indoor localization that, in contrast to other existing indoor

localization datasets [10, 26, 64], has two important proper-

ties. First, the dataset is large-scale, capturing two univer-

sity buildings. Second, the query images are acquired using

a smartphone at a time months apart from the date of capture

of the reference 3D model. As a result, the query images

and the reference 3D model often contain large changes in

scene appearance due to the different layout of furniture,

occluders (people), and illumination, representing a realis-

tic and challenging indoor localization scenario.

Contributions. Our contributions are three-fold. First, we

develop a novel visual localization approach suitable for

large-scale indoor environments. The key novelty of our

approach lies in carefully introducing dense feature extrac-

tion and matching in a sequence of progressively stricter

verification steps. To the best of our knowledge, the present

work is the first to clearly demonstrate the benefit of dense

data association for indoor localization. Second, we create

a new dataset suitably designed for large-scale indoor local-

ization that contains large variation in appearance between

queries and the 3D database due to large viewpoint changes,

moving furniture, occluders or changing illumination. The

query images are taken at a different time from the refer-

ence database, using a handheld device, and at different mo-

ments of the day, to capture enough variability, bridging the

gap to realistic usage scenarios. The code and data are pub-

licly available on the project page [1]. Third, the proposed

method shows a solid improvement over existing state-of-

the-art results, showing an absolute improvement of 17–

20% in the percent of correctly localized queries within a

0.25 – 0.5 m error, which is of high importance for indoor

localization.

2. Related work

We next review previous work on visual localization.

Image retrieval based localization. Visual localization in

large-scale urban environments is often approached as an

image retrieval problem. The location of a given query

image is predicted by transferring the geotag of the most

similar image retrieved from a geotagged database [6, 9,

18, 35, 54, 67, 68]. This approach scales to entire cities

thanks to compact image descriptors and efficient index-

ing techniques [7, 8, 22, 31, 33, 49, 63, 71] and can be fur-

ther improved by spatial re-ranking [51], informative fea-

ture selection [21, 22] or feature weighting [27, 32, 54, 68].

Most of the above methods are based on image representa-

tions using sparsely sampled local invariant features. While

these representations have been very successful, outdoor

image-based localization has recently also been approached

using densely sampled local descriptors [67] or (densely

extracted) descriptors based on convolutional neural net-

works [6, 35, 40, 76]. However, the main shortcoming of all

the above methods is that they output only an approximate

location of the query, not an exact 6DoF pose.

Visual localization using 3D maps. Another approach is

to directly obtain 6DoF camera pose with respect to a pre-
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built 3D map. The map is usually composed of a 3D point

cloud constructed via Structure-from-Motion (SfM) [2]

where each 3D point is associated with one or more local

feature descriptors. The query pose is then obtained by fea-

ture matching and solving a Perspective-n-Point problem

(PnP) [14,15,20,29,34,38,53,55]. Alternatively, pose esti-

mation can be formulated as a learning problem, where the

goal is to train a regressor from the input RGB(D) space to

camera pose parameters [11, 34, 59, 74]. While promising,

scaling these methods to large-scale datasets is still an open

challenge.

Indoor 3D maps. Indoor scene datasets [50, 52, 62, 69]

have been introduced for tasks such scene recognition, clas-

sification, and object retrieval. With the increased avail-

ability of laser range scanners and time-of-flight (ToF) sen-

sors, several datasets include depth data besides RGB im-

ages [5, 10, 23, 26, 36, 60, 79] and some of these datasets

also provide reference camera poses registered into the 3D

point cloud [10, 26, 79], though their focus is not on local-

ization. Datasets focused specifically on indoor localiza-

tion [59, 64, 70] have so far captured fairly small spaces

such as a single room (or a single floor at largest) and

have been constructed from densely-captured sequences of

RGBD images. More recent datasets [17,77] provide larger

scale (multi-floor) indoor 3D maps containing RGBD im-

ages registered to a global floor map. However, they are

designed for object retrieval, 3D reconstruction, or train-

ing deep-learning architectures. Most importantly, they do

not contain query images taken from viewpoints far from

database images, which are necessary for evaluating visual

localization.

To address the shortcomings of the above datasets for

large-scale indoor visual localization, we introduce a new

dataset that includes query images captured at a different

time from the database, taken from a wide range of view-

points, with a considerably larger 3D database distributed

across multiple floors of multiple buildings. Furthermore,

our dataset contains various difficult situations for visual

localization, e.g., textureless and highly symmetric office

scenes, repetitive tiles, and repetitive objects that confuse

the existing visual localization methods designed for out-

door scenes. The newly collected dataset is described next.

3. The InLoc dataset for visual localization

Our dataset is composed of a database of RGBD images ge-

ometrically registered to the floor maps augmented with a

separate set of RGB query images taken by hand-held de-

vices to make it suitable for the task of indoor localization

(Figure 2). The provided query images are annotated with

manually verified ground-truth 6DoF camera poses (refer-

ence poses) in the global coordinate system of the 3D map.

Database. The base indoor RGBD dataset [77] consists of

Number Image size [pixel] FoV [degree]

Query 356 4,032×3,024 65.57

Database 9,972 1,600×1,200 60

Table 1. Statistics of the InLoc dataset.

Figure 2. Example images from InLoc dataset. (Top) Database

images. (Bottom) Query images. The selected images show

the challenges encountered in indoor environments: even small

changes in viewpoint lead to large differences in appearance; large

textureless surfaces (e.g. walls); self-repetitive structures (e.g. cor-

ridors); significant variation throughout the day due to different

illumination sources (e.g., active vs. indirect illumination).

277 RGBD panoramic images obtained from scanning two

buildings at the Washington University in St. Louis with a

Faro 3D scanner. Each RGBD panorama has about 40M

3D points in color. The base images are divided into five

scenes: DUC1, DUC2, CSE3, CSE4, and CSE5, represent-

ing five floors of the mentioned buildings, and are geomet-

rically registered to a known floor plan [77]. The scenes are

scanned sparsely on purpose, to cover a larger area with a

small number of scans to reduce the required manual work,

as well as due to the long operating times of the high-end

scanner used. The area per scan varies between 23.5 and

185.8 m2. This inherently leads to critical view changes

between query and database images when compared with

other existing datasets [64, 70, 75]2.

For creating an image database suitable for indoor vi-

sual localization evaluation, a set of perspective images is

generated by following the best practices from outdoor vi-

sual localization [19, 67, 80]. We obtain 36 perspective

RGBD images from each panorama by extracting stan-

dard perspective views (60◦ FoV) with a sampling stride

of 30◦ in yaw and ±30◦ in pitch directions, resulting in

10K perspective images in total (Table 1). Our database

contains significant challenges, such as repetitive patterns

(stairs, pillars), frequently appearing building structures

(doors, windows), furniture changing position, people mov-

ing across the scene, and textureless and highly symmetric

areas (walls, floors, corridors, classrooms, open spaces).

Query images. We captured 356 photos using a smart-

phone camera (iPhone 7), distributed only across two floors,

DUC1 and DUC2. The other three floors in the database

are not represented in the query images, and play the role

2 For example, in the database of [64], the scans are distributed on one

single floor, and the area per each database image is less than 45 m
2.
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Figure 3. Examples of verified query poses. We evaluated the

quality of the reference camera poses both visually and quantita-

tively, as described in section 3. Red dots are the database 3D

points projected onto a query image using its estimated pose.

of confusers at search time, contributing to the building-

scale localization scenario. Note that these query photos

are taken at different times of the day, to capture the variety

of occluders and layouts (e.g., people, furniture) as well as

illumination changes.

Reference pose generation. For all query photos, we esti-

mate 6DoF reference camera poses w.r.t. the 3D map. Each

query camera reference pose is computed as follows:

(i) Selection of the visually most similar database images.

For each query, we manually select one panorama location

which is visually most similar to the query image using the

perspective images generated from the panorama.

(ii) Automatic matching of query images to selected

database images. We match the query and perspective im-

ages by using affine covariant features [45] and nearest-

neighbor search followed by Lowe’s ratio test [42].

(iii) Computing the query camera pose and visually veri-

fying the reprojection. All the panoramas (and perspec-

tive images) are already registered to the floor plan and

have pixel-wise depth information. Therefore, we compute

query pose via P3P-RANSAC [25], followed by bundle ad-

justment [3], using correspondences between query image

points and scene 3D points obtained by feature matching.

We evaluate the obtained poses visually by inspecting the

reprojection of edges detected in the corresponding RGB

panorama into the query image (see examples in figure 3).

(iv) Manual matching of difficult queries to selected

database images. Pose estimation from automatic matches

often gives inaccurate poses for difficult queries which are,

e.g., far from any database image. Hence, for queries with

significant misalignment in reprojected edges, we manually

annotate 5 to 20 correspondences between image pixels and

3D points and apply step (iii) on the manual matches.

(v) Quantitative and visual inspection. For all estimated

poses, we measure the median reprojection error, computed

as the distance of the reprojected 3D database point to the

nearest edge pixel detected in the query image, after remov-

ing correspondences with gross errors (with distance over

20 pixels) due to, e.g., occlusions. For query images that

have under 5 pixels median reprojection error, we manually

inspect the reprojected edges in the query image and finally

accept 329 reference poses out of the 356 query images.

4. Indoor visual localization with dense match-

ing and view synthesis

We propose a new method for large-scale indoor visual lo-

calization. We address the three main challenges of indoor

environments:

(1) Lack of sparse local features. Indoor environments

are full of large textureless areas, e.g., walls, ceilings, floors

and windows, where sparse feature extraction methods de-

tect very few features. To overcome this problem, we use

multi-scale dense CNN features for both image description

and feature matching. Our features are generic enough to be

pre-trained beforehand on (outdoor) scenes, avoiding costly

re-training, e.g., as in [11, 34, 74], of the localization ma-

chine for each particular environment.

(2) Large image changes. Indoor environments are clut-

tered with movable objects, e.g., furniture and people, and

3D structures, e.g., pillars add concave bays, causing se-

vere occlusions when viewed from a close distance. The

most similar images obtained by retrieval may therefore be

visually very different from a query image. To overcome

this problem, we rely on dense feature matches to collect as

much positive evidence as possible. We employ image de-

scriptors extracted from a convolutional neural network that

can match higher-level structures of the scene rather than

relying on matching individual local features. In detail, our

pose estimation step performs coarse-to-fine dense feature

matching, followed by geometric verification and estima-

tion of the camera pose using P3P-RANSAC.

(3) Self-similarity. Indoor environments are often very

self-similar, e.g., due to many symmetric and repetitive el-

ements on a large and small scale (corridors, rooms, tiles,

windows, chairs, doors, etc.). Existing matching strate-

gies count the positive evidence, i.e., how much of the im-

age (or how many inliers) have been matched, to decide

whether two images match. This is, however, problematic

as large textureless areas can be matched well, hence pro-

viding strong (incorrect) positive evidence. To overcome

this problem, we propose to count also the negative evi-

dence, i.e., what portion of the image does not match, to

decide whether two views are taken from the same location.

To achieve this, we perform explicit pose estimate verifi-

cation based on view synthesis. In detail, we compare the

query image with a virtual view of the 3D model rendered

from the estimated camera pose of the query. This novel

approach takes advantage of the high quality of the RGBD

image database and incorporates both the positive and nega-

tive evidence by counting matching and non-matching pix-

els across the entire query image. As shown by our exper-

iments, this approach is orthogonal to the choice of local
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descriptors. The proposed verification by view synthesis is

consistently showing a significant improvement regardless

of the choice of features used for estimating the pose.

The pipeline of InLoc has the following three steps.

Given a query image, (1) we obtain a set of candidate im-

ages by finding the N best matching images from the ref-

erence image database registered to the map. (2) For these

N retrieved candidate images, we compute the query poses

using the associated 3D information that is stored together

with the database images. (3) Finally, we re-rank the com-

puted camera poses based on verification by view synthesis.

The three steps are detailed next.

4.1. Candidate pose retrieval

As demonstrated by existing work [6, 35, 67], aggregating

feature descriptors computed densely on a regular grid mit-

igates issues such as a lack of repeatability of local features

detected on textureless scenes, large-illumination changes,

and a lack of discriminability of image description, domi-

nated by features from repetitive structures (burstiness). As

already mentioned in section 1, these problems are also oc-

curring in large-scale indoor localization, which motivates

our choice of using an image descriptor based on dense fea-

ture aggregation. Both query and database images are de-

scribed by NetVLAD [6] (but other variants could also be

used), normalized L2 distances of the descriptors are com-

puted, and the poses of the N best matching images from

the database are chosen as candidate poses. In section 5, we

compare our approach with the state-of-the-art image de-

scriptors based on local feature detection and show benefits

of our approach for indoor localization.

4.2. Pose estimation using dense matching

A severe problem in indoor localization is that standard ge-

ometric verification based on local feature detection [51,54]

does not work on textureless or self-repetitive scenes, such

as corridors, where robots (and also humans) often get

lost. Motivated by the improvements in candidate pose

retrieval with dense feature aggregation (Section 4.1), we

use features densely extracted on a regular grid for verify-

ing and re-ranking the candidate images by feature match-

ing and pose estimation. A possible approach would be to

match DenseSIFT [41] followed by RANSAC-based ver-

ification. Instead of tailoring DenseSIFT description pa-

rameters (patch sizes, strides, scales) to match across im-

ages with significant viewpoint changes, we use an image

representation extracted by a convolutional neural network

(VGG-16 [61]) as a set of multi-scale features extracted on

a regular grid that describes more higher-level information

with a larger receptive field (patch size).

We first find geometrically consistent sets of correspon-

dences using the coarser conv5 layer containing high-level

information. Then we refine the correspondence by search-

ing for additional matches on the conv3 layer. Examples in

figure 4 demonstrate that our dense CNN matching (4th col-

umn) obtains better matches in indoor environments when

compared to matching standard local features (3rd column),

even for less-textured areas. Notice that dense-feature ex-

traction and description requires no additional computation

at query time as the intermediate convolutional layers are al-

ready computed when extracting the NetVLAD descriptors

as described in section 4.1. As will also be demonstrated in

section 5, memory requirements and computational speed

of feature matching can be addressed by binarizing the con-

volutional features without loss in matching performance.

As perspective images in our database have depth values,

and hence associated 3D points, the query camera pose can

be estimated by finding pixel-to-pixel correspondences be-

tween the query and the matching database image followed

by P3P-RANSAC [25].

4.3. Pose verification with view synthesis

We propose here to collect both positive and negative ev-

idence to determine what is and is not matched3. This

is achieved by harnessing the power of the high-quality

RGBD image database that provides a dense and accurate

3D structure of the indoor environment. This structure is

used to render a virtual view that shows how the scene

would look like from the estimated query pose. The ren-

dered image enables us to count, in a pixel-wise manner,

both positive and negative evidence by counting which re-

gions are and are not consistent between the query image

and the underlying 3D structure. To gain invariance to

illumination changes and small misalignments, we evalu-

ate image similarity by comparing local patch descriptors

(DenseRootSIFT [7, 41]) at corresponding pixel locations.

The final similarity is computed as the median of descriptor

distances across the entire image while ignoring areas with

missing 3D structure.

5. Experiments

We first describe the experimental setup for evaluating

visual localization performance using our dataset (Sec-

tion 5.1). The proposed method, termed “InLoc”, is com-

pared with state-of-the-art methods (Section 5.2) and we

show the benefits of each component in detail (Section 5.3).

5.1. Implementation details

In the candidate pose retrieval step, we retrieve 100 can-

didate database images using NetVLAD. We use the im-

plementation provided by the authors and the pre-trained

Pitts30K [6] VGG-16 [61] model to generate 4, 096-

dimensional NetVLAD descriptor vectors.

3The impact of negative evidence in feature aggregation is demon-

strated in [30].
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