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Abstract

Identifying small size images or small objects is a noto-

riously challenging problem, as discriminative representa-

tions are difficult to learn from the limited information con-

tained in them with poor-quality appearance and unclear

object structure. Existing research works usually increase

the resolution of low-resolution image in the pixel space in

order to provide better visual quality for human viewing.

However, the improved performance of such methods is usu-

ally limited or even trivial in the case of very small image

size (we will show it in this paper explicitly).

In this paper, different from image super-resolution (IS-

R), we propose a novel super-resolution technique called

feature super-resolution (FSR), which aims at enhancing

the discriminatory power of small size image in order to

provide high recognition precision for machine. To achieve

this goal, we propose a new Feature Super-Resolution Gen-

erative Adversarial Network (FSR-GAN) model that trans-

forms the raw poor features of small size images to highly

discriminative ones by performing super-resolution in the

feature space. Our FSR-GAN consists of two subnetwork-

s: a feature generator network G and a feature discrim-

inator network D. By training the G and the D networks

in an alternative manner, we encourage the G network to

discover the latent distribution correlations between small

size and large size images and then use G to improve the

representations of small images. Extensive experiment re-

sults on Oxford5K, Paris, Holidays, and Flick100k datasets

demonstrate that the proposed FSR approach can effective-

ly enhance the discriminatory ability of features. Even when

the resolution of query images is reduced greatly, e.g., 1/64

original size, the query feature enhanced by our FSR ap-

proach achieves surprisingly high retrieval performance at

different image resolutions and increases the retrieval pre-

cision by 25% compared to the raw query feature.

∗This work was supported by NSFC (Grant No.: 61522202;

61772137).
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Figure 1. Feature super-resolution (FSR) versus image super-

resolution (ISR). (a) We propose a novel super-resolution tech-

nique called feature super-resolution (FSR), which aims at enhanc-

ing the discriminatory power of a given representation (extract-

ed from low-resolution images or small objects) in order to pro-

viding high recognition precision for machine. (b) Image super-

resolution as a popular technique aims at increasing the resolution

of a given image in order to providing better visual quality for hu-

man viewing.

1. Introduction

The powerful deep learning framework makes numer-

ous great classification models presented, such as VGG16

[18], GoogLeNet [19], ResNet [7], SeNet [8], etc. These

models achieve an amazing recognition accuracy on Ima-

genet dataset [2], even better than human beings do. Actu-

ally, they indeed work well on large size images with good-

quality appearance and rich object structure. However, they

usually fail to identify very small size images since discrim-

inative representations are difficult to learn from their low-

resolution and noise representation. Small size images or

objects are very common in many real-world scenarios such

as small pedestrians in surveillance video, small faces in the

crowd, traffic signs, small objects, etc. Small size image

recognition is much more challenging than normal image

recognition and there are rare good solutions so far.

Current research works such as image super-resolution

(ISR) focus on increasing the resolution of a given image.

Its most common application is to provide better visual

quality after resizing a digital image for human viewing,
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Figure 2. We explore the impact of different low-resolutions on deep representations, which is evaluated on Oxford5K [14] dataset. The

Sh and Sw denote the height and width down-sampling ratios, respectively. We set Sh equals Sw. (a) decreasing image size seriously

impacts the deep representation. When the down-sample scale is smaller than 1/20, the feature distance between low-resolution images

and high-resolution ones is greater than the distance of similar images. (b) image retrieval results of searching Oxford5K dataset. (c)

large-scale image retrieval results of searching Oxford5K plus Flick100k. (b) and (c) show that with the decrease of the resolution of query

images, the retrieval precision is decreased rapidly.

as shown in Fig. 1(b). In recent years, numerous image

super-resolution approaches have been proposed to restore

high frequency information in order to generate high quali-

ty images with rich details, and have achieved great success

[21, 3, 10, 11, 12, 5, 20]. This process is referred to pixel-

space field enhancement in the literature. Those ISR based

approaches are able to recover the object details in small

size image and can improve the identification accuracy in

some extent. In the experiment, we will compare ISR based

approaches with our FSR algorithm and demonstrate their

limitations. Intuitively, as shown in Fig. 1, if we perform

super-resolution for machine recognition instead of human

viewing, the paradigm should change accordingly. There-

fore, for machine recognition, we propose feature super-

resolution for improving the discriminative ability of fea-

tures, as illustrated in Fig. 1(a).

In order to practically explore the necessity and feasibil-

ity of feature super-resolution, we conduct several experi-

ments to understand the impact of low-resolution image on

deep representations. For these experiments, we evaluate

the effect of down-scaling operation on the deep represen-

tations extracted by using the popular VGG16 model [18]

on Oxford5K dataset [14]. The Oxford5K dataset contains

5,063 images and 55 query images. For convenience, the

deep representations mentioned below refers to the neural

activations in the 36th layer of VGGnet model [18] if there

is no special notification.

Firstly, we summarize the experimental results of mean

Euclidean distance between the deep features extracted

from high-resolution images and their corresponding low-

resolution ones. The low-resolution images are obtained

by performing uniform down-sampling operation with d-

ifferent scaling ratios. Figure. 2(a) shows the change of

deep feature with the decrease of image resolution. From

Fig. 2(a) we observe that with the decrease of image res-

olution, the difference between the deep features extract-

ed from low-resolution images and high-resolution ones

is growing wider. This result implies that decreasing im-

age resolution is capable of impacting deep representation,

though the powerful VGG16 model [18] is carefully trained

on the large-scale Imagenet dataset [2] and adds some use-

ful training tricks.

Furthermore, we conduct image retrieval experimen-

t to understand how low-resolution images affect match-

ing/retrieval accuracy when using deep features. We sum-

marize the experimental results of the mean average preci-

sion (mAP) as a function of the down-scaling ratio in Fig.

2(b) and Fig. 2(c). The results demonstrate that with the

decrease of the resolution of the image, the retrieval preci-

sion is decreased rapidly. This phenomenon is reasonable

because the low-resolution image has lost many detail in-

formation, which results in failing to extract discriminative

features even using the powerful very deep convolutional

neural network.

From Fig. 2(a) to Fig. 2(c) we have known that the

low-resolution images not only impact the extracted deep

features, but also seriously decrease the matching/retrieval

accuracy. To find a solution to the problem, we conduct the

third experiment to further understand the relationship be-

tween the deep features extracted from different resolution

images. Specifically, we calculate the variance of Euclidean

distance for the same down-scaling ratio. Table 1 sum-

marizes the experiment result, which reports that the vari-

ances of Euclidean distance across different down-scaling

ratios are very small. This result means that the extracted

deep features are changed regularly with down-scaling ra-

tios, i.e., the change of deep features mainly depends on the

amount of information lost instead of specific image con-

tent. This key observation provides an important basis for

our FSR approach to solve the problem mentioned above.

Based on the key observation mentioned above, we pro-

pose a novel Feature Super-Resolution Generative Adver-
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Table 1. Variances of Euclidean distance across different down-scaling ratios. We conduct this experiment to further understand the

relationship between the deep features extracted from different resolution images. The result reports that the extracted deep features are

changed regularly with down-scaling ratios.

Down-scaling ratio 1/4 1/9 1/16 1/25 1/36 1/49 1/64 Average

Variance of Euclidean distance 0.0070 0.0103 0.0107 0.0101 0.0091 0.0078 0.0068 0.0088

sarial Network (FSR-GAN) model to enhance the discrim-

inatory ability of the representation of small size images,

achieving similar attributes as images with clear appearance

and thus more discriminative for better identification. Our

FSR-GAN consists of two subnetworks: a feature generator

network G and a feature discriminator network D. The G

is a simple convolution neural network which maps the raw

poor representations of small size images to highly discrim-

inative ones by discovering the latent distribution correla-

tions between small size and large size images, achieving

“super-resolution” on the feature space. The D estimates the

probability that a representation comes from the real data or

the fake data generated by G. It actually provides guidance

for updating G. Note that different from traditional Genera-

tive Adversarial Network (GAN), our proposed FSR-GAN

includes a new focal loss tailored for scale-invariant feature

enhancement.

In this paper, we propose the FSR concept using the

framework of GAN to form a local loss function for rep-

resentation enhancement. The main contributions of this

work are:

• Based on the key observation, we propose a novel con-

cept of feature super-resolution that is different from

the image super resolution. This technique is expect-

ed to make a breakthrough in the challenging task of

identifying small size images or objects.

• We are the first to successfully introduce the FSR

concept into the GAN framework, called FSR- GAN,

achieving large improvement comparing with existing

approaches.

• We introduce a new focal loss for generative network,

making it put more effort into hard examples with large

downscales and preventing it from being affected by

easy examples with small downscales, thus the optimal

solution can be obtained.

• Several successful applications explicitly show that

our FSR-GAN is far superior to the comparison ap-

proaches.

2. Related Work

2.1. Image Super­Resolution

Image super-resolution (ISR) approaches aim to esti-

mate a high-resolution image from low-resolution images.

Recently, convolutional neural network (CNN) based ISR

methods have shown excellent performance. In Wang et al.
[21] the authors propose to combine the merits of deep C-

NN and sparse coding for ISR, because they observe that

domain expertise represented by the sparse coding model

is still valuable and can be effectively implemented with

a LISTA network [21]. Dong et al. [3] propose to train

an end-to-end deep fully convolutional network with three

layers for ISR. This work enables the network to learn the

upscaling filters directly, which is helpful in increasing the

performance in terms of speed and accuracy. Following this

strategy, numerous works have proposed more deep and

complex networks for improving the performance of ISR

[10, 11, 12, 5, 20].

2.2. Generative Adversarial Network

Goodfellow et al. [6] propose an interesting framework

named generative adversarial network (GAN) for generat-

ing plausible-looking images. The GAN framework con-

sists of two models: a generative model G and a discrimi-

native model D. The model G captures the data distribution.

The model D estimates the probability that a sample came

from the training data rather than G. There two models will

be trained simultaneously for estimating generative model.

Unfortunately, the preliminary GAN is not stable in train-

ing [6]. To improve it, Arjovsky et al. [1] propose Wasser-

stein GAN (WGAN) by modifying loss function and net-

work design. Our approach benefits from WGAN. GAN has

been used in variety of applications such as image super-

resolution [12], unsupervised representation learning [16],

image super-resolution [12], text to image synthesis [17],

dialogue generation [13], machine translation [23], etc.

3. Our Proposed FSR-GAN

3.1. Overview

In FSR, the aim is to estimate a highly discriminative

feature FSR from a low-resolution input image ILR. Cor-

respondingly, we use FHR to denote the high-resolution

image. ILR is obtained by performing down-sampling op-

eration with different downscaling factors. Figure. 3 shows

the architecture of our proposed FSR-GAN. It consists three

blocks, i.e., general feature extraction model, feature gener-

ative network, and feature discriminative network. The first

block is to extract good representations for input images of

ILR and IHR. Note that this block can be a traditional fea-

ture extraction model or a powerful deep neural network.

In this work, we employ the trained VGG16 model [18] as
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Figure 3. Overview of our FSR-GAN for implementing the proposed FSR approach. It consists three blocks, i.e., general feature extraction

model, feature generative network, and feature discriminative network. The first block is to extract good representations for input images

of ILR and I
HR. After extracting representations, the feature generative network G transforms the raw poor features FLR of input low-

resolution images to highly discriminative ones, called super representations FSR. Finally, the feature discriminative network serves as a

supervisor to distinguish the currently generated super representations FSR for the small size images and the original representations FHR

from the large size images.

the feature extraction model to represent input images. We

use FLR and FHR to denote the extracted representations

of ILR and IHR, respectively. It can formally be written as:

FLR = F (ILR) (1)

FHR = F (IHR) (2)

where F denotes the general feature extraction model. Ob-

viously, FLR and FHR are different in the discrimination

ability.

After extracting representations, the feature generative

network G transforms the raw poor features FLR of input

low-resolution images to highly discriminative ones, called

super representations FSR. It is defined as:

FSR = G(FLR) (3)

Then, the feature discriminative network serves as a su-

pervisor to distinguish the currently generated super repre-

sentations FSR for the small size images and the original

representations FHR from the large size images. Our ulti-

mate goal is to train a generative network G that learns to

transfer the poor representations of low-resolution images

to super representations similar to those of high-resolution

images. To achieve it, we propose a focal loss for training G

network by considering the distribution of down sampling

scales and the imbalance of examples, which is significantly

different from the generative network of preliminary GAN

[6, 1]. The focal loss function is described in more detail in

Section 3.2.

3.2. Focal Loss Function

Goodfellow et al. [6] propose a great and interesting

idea to generate examples by unsupervised learning the in-

put data distribution. By training the G and D networks in

an adversarial way, the network G can successfully learn

the distribution of input data.

The loss functions of the generative network and the dis-

criminative network can formally be written as:

L(G) = Ex∼Pg
[1− logD(x)] (4)

L(D) = −Ex∼Pr
[logD(x)]− Ex∼Pg

[1− logD(x)] (5)

The problem of preliminary GAN [6] is that the better

the classifier, the more serious the generator gradient dis-

appears. This problem easily results in unsatisfied training

result. In order to improve the stability of GAN training, Ar-

jovsky et al. [1] propose WGAN by modifying loss func-

tion and network design. The loss functions of the genera-

tive network and the discriminative network are defined as

follows:

L(G) = −Ex∼Pg
[D(x)] (6)

L(D) = Ex∼Pg
[D(x)]− Ex∼Pr

[D(x)] (7)

These two functions can guide the training process of G

and D networks. The smaller the loss function, the smaller

the Wasserstein distance between the real distribution and

the generative distribution, i.e., the better the GAN training.

Naively, we can use WGAN to implement our proposed

idea of representation enhancement. However, in the exper-

iment, we find that directly using WGAN can not enhance

the imputed poor representation. The possible reason is that

the constraints on the generative network are too loose. Ac-

tually, some works demonstrate that by adding a stronger

constraint to the generative network, it can help guide G to

converge better. Therefore, we add a mean squared error

(MSE) term to the Eq. (6). The Eq. (6) can be rewritten as:

L(G) = −Ex∼Pg
[D(x)] +

1

m

m∑

i=1

(||FSR

i − FHR

i ||2) (8)
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Figure 4. Demonstration of the distance between the enhanced representations and the original ones from large size images using different

loss functions on Oxford5K [14], Paris [9], and INRIA Holidays [9] datasets. The Sh and Sw denote the height and width down-sampling

ratios, respectively. We set Sh equals Sw. The results consistently show that by incorporating the focal loss in GAN can improve the

performance of feature super-resolution. When the parameter r of focal loss in Eq. (9) equals to 2, we obtain the best results.

where m represents the number of examples.

At this point, Eq. (8) does not take into account the im-

balance of examples with different down sampling scales.

Inspired by the work [14] using focal cross entropy loss for

dense object detection, we propose a new focal loss for rep-

resentation enhancement. By incorporating the focal loss in

Eq. (8), which can be rewritten as:

L(G) = −Ex∼Pg
[D(x)] +

1

m

m∑

i=1

(||FSR

i − FHR

i ||2)
r

(9)

where r denotes the weight of focal loss. The larger the

value of r, the greater the weight of hard examples.

Figure. 4 shows the enhanced results using different loss

functions on three datasets. “CNN-Baseline” denotes that

only the feature generative network is used, i.e., the fea-

ture discriminative network is not used. Besides, it employs

the standard MSE as loss function. “GAN-MSE-focal-2”

means that the parameter r in Eq. (9) equals to 2. To

demonstrate the performance of different loss functions, we

calculate the distance between the enhanced representation-

s produced by G network and the original ones from large

size images. From Fig. 4 we observe, the GAN plus MSE

loss function in Eq. (8) obtains the worst performance, even

worse than “CNN-Baseline”. However, by incorporating

the focal loss in GAN, the performance is significantly im-

proved, even better than “CNN-Baseline”. When the pa-

rameter r of focal loss in Eq. (9) equals to 2, we obtain the

best results. Finally, in the experiment, we employ Eq.(7)

and Eq.(9) as loss functions for our discriminative network

and generative network, respectively.

3.3. Implementation Details

Architecture of feature generative network: The fea-

ture generative network aims to generate super representa-

Table 2. Architecture of feature generative network
type kernel size stride channel output size

convolution 8× 8 1 4 64× 64× 4

convolution 5× 5 2 8 32× 32× 8

convolution 5× 5 1 16 32× 32× 16

convolution 5× 5 2 32 16× 16× 32

convolution 5× 5 1 64 16× 16× 64

convolution 5× 5 2 128 8× 8× 128

dropout(70%) 1× 64× 128

linear 1× 4096

Table 3. Architecture of feature discriminative network
type kernel size stride channel output size

convolution 5× 5 2 8 32× 32× 8

convolution 5× 5 2 16 16× 16× 16

convolution 3× 3 2 32 8× 8× 32

convolution 3× 3 1 64 8× 8× 64

linear 1

tions for small size images to improve identification accura-

cy. To achieve this goal, we design the generator as a deep

CNN learning network. As shown in Table 2, our feature

generative network is a normal convolutional neural net-

work, which consists of 6 convolutional layers, 1 dropout

layer, and 1 fully connected layer. The first layer has 8× 8
kernel, 4 channels, and 1 stride. Note that we employ a

large kernel in the first convolution layer in order to fully

exploit the latent information in the input representations.

All layers employ Leaky ReLU activation function [22].

Architecture of feature discriminative network: The

feature discriminative network is to differentiate between

the generated super representation for small size image and

the original one from the real large size image. To achieve

this purpose, we design a simple deep CNN network. As

shown in Table 3, our feature generative network is a convo-

lutional neural network, which consists of 4 convolutional

layers and 1 fully connected layer. All these layers employ

Leaky ReLU activation function [22] except for the final

layer. Following Arjovsky et al. [1], the final layer is a ful-
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Figure 5. Comparison of Euclidean distance on three datasets: Oxford5K [14], Paris [9], and INRIA Holidays [9]. Here, the Euclidean

distance measures the difference between the enhanced representations produced by different approaches and the highly discriminative

ones from high-resolution images. This satisfying results prove that the idea of representation enhancement is feasible, which is a good

news for small size images or objects identification researchers.

ly connected layer with no activation function and outputs a

value for predicting real or fake.

Parameter Settings: The loss functions of Eq.(7) and

Eq.(9) are optimized using Adam algorithm with an ini-

tial learning rate of 0.0008. The parameter r of focal loss

in Eq. (9) is set to 2. Typically, our FSR-GAN takes

6 epochs for training, and is capable of producing high-

discriminative features. We implement our model using the

tensorflow framework. We train the network using an N-

vidia GPU Quadro M4000 on subsets of Oxford5K, Holi-

days, and Paris datasets.

4. Experimental Results

In this section, we evaluate the enhancing ability of our

FSR-GAN when trained on the subsets of Oxford5K [14],

Paris [9], and Holidays [9] datasets. The new ISR meth-

ods including SRCNN [4] and VDSR [10] are compared

with our approach. We choose these two ISR approaches to

compare because they report excellent performance in many

datasets. We use Sh and Sw to denote the height and width

down-sampling ratios, respectively. We set Sh equals Sw,

e.g., Sh = Sw = 1/2. Note that we only have results of this

method in 1/4, 1/9, and 1/16 down-sampling ratios. There-

fore, In the following experiments, we show the results of

SRCNN method at these three ratios.

4.1. Experimental Setup

For our experiments we evaluate the effect of using FSR

on the following datasets: Oxford5K [14], Paris [9], INRIA

Holidays [9], and Flickr 100k [14]. These datasets cover a

wide variety of scene types, which is helpful to comprehen-

sively evaluate the performance of the proposed algorithm.

Oxford5K dataset [14]: consists of 5,062 high-

resolution (1024 × 768) images and 55 query images (11

landmarks). This dataset is collected by searching Flickr.

Holidays dataset [9]: is a set of images which mainly

contains holidays photos. This dataset contains 1,491 im-

ages, 500 queries, and 991 corresponding relevant images.

It includes a very large variety of scene types.

Paris dataset [9]: consists of 6,412 images collected

from Flickr by searching for particular Paris landmarks.

Similar to Oxford5K, it contains 55 query images. Each

query corresponds to a landmark in Paris.

Flickr 100k dataset [14]: consists of 100,071 im-

ages collected from Flickr by searching for popular Flickr

tags [14]. This dataset is used as a distractor dataset.

In our experiments, the officially provided train/test split

is used for experiments. For Oxford5K dataset [14], 4,500

images are randomly selected for training and 562 images

for evaluating. For Holidays dataset, we use the provided

500 queries to form the test set, and the rest as training set.

For Paris dataset [9], we randomly sample 612 images to

form the test query set, and use the rest as training set.

4.2. The Effectiveness of Super Representations by
FSR­GAN

We calculate the Euclidean distance between the en-

hanced representations generated by mentioned approaches

and the ones from large size images, for example, the Eu-

clidean distance between the enhanced representations by

our approach and the ones from large size images are de-

noted as FSR-GAN in Fig. 5. The Euclidean distances of

similar images and non-similar images in original dataset

are also demonstrated in Fig. 5.

We find that the proposed FSR-GAN approach can sig-

nificantly reduce the gap between the representation of low-

resolution images and high-resolution ones. This implies

that the enhanced representations are more close to the high

discriminative features extracted from high-resolution im-

ages. The discriminative ability of representation is largely

enhanced by our FSR-GAN approach. Further, we observe

that even the image resolution has been down-scaled to 1/64

original size, we still achieve about 0.62 distance, which is

much smaller than the distance of similar images. The ISR
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Figure 6. Comparison of image retrieval performance on three datasets: Oxford5K [14], Paris [9], and INRIA Holidays [9].

approaches such as SRCNN [4] and VDSR [10] try to in-

crease the discriminative ability of representation from low-

resolution images by applying enhancement in pixel space.

These approaches only obtain good performance at relative-

ly large size image, e.g., 1/4 scale, but it fails at other small

size image, e.g., 1/16, 1/25, 1/36, etc.

5. Applications

The surprising results on three widely used datasets

[14, 9] in Section 4 have shown the effectiveness of FSR-

GAN. Here, we show that the enhanced representations

learned by our FSR-GAN approach also perform well in

image retrieval applications. The focus in this section is

to show the retrieval performance of extending FSR-GAN

approach to retrieval application. Specifically, we employ

three applications to evaluate FSR-GAN performance: (i)

Content Based Image Retrieval, (ii) Large-Scale Image Re-

trieval, (iii) Low Bit-Rate Mobile Visual Search. The goal

is to measure the quality of enhanced features when we use

them as query to search images in a database. Actually,

these applications can further verify the potentiality and ro-

bustness of our FSR-GAN.

5.1. Experimental Setup

In the experiment, we use three benchmark datasets in-

cluding Oxford5K [14], Paris [9], and INRIA Holidays [9]

mentioned in Section 4.1. We compare it with the raw fea-

tures from low-resolution images. For evaluation criterion,

we use the mean Average Precision (mAP) metric as a func-

tion of down-scaling ratio, and the mAP as a function of

query bits for evaluating low bit-rate retrieval performance.

The mAP score is a common used measure, which sum-

marizes rankings from multiple queries by averaging mean-

precisions.

5.2. Content based Image Retrieval

In this section, we use content-based image retrieval to

evaluate the retrieval performance of our FSR-GAN ap-

proach, looking at the retrieval precision as well as the

down-scaling ratio. Specifically, the resolution of query

images in Oxford5K [14], Holidays, and Paris [15] are

first reduced to different low-resolutions by using uniform

down-sample method. Then, these low-resolution queries

are upsampled to 224 × 224 using bicubic interpolation

method in order to satisfy the input size of VGG16. Fi-

nally, we extract deep features (36th layer in VGG16) from

these upsampled images.

Figure. 6 demonstrates mAP as a function of the down-

sample ratio for Oxford5K [14], Holidays [9], and Paris [9]

datasets, respectively. From Fig. 6, we observe that

our FSR-GAN outperforms “Raw representation” and ISR

methods by large margins in most cases. The “Raw repre-

sentation” denotes the bicubic interpolation approach. Sur-

prisingly, even when the query images have been down-

sampled to 1/64 original size, our FSR approach stil-

l achieves considerable retrieval accuracy and significant-

ly outperforms Raw representation. Interestingly, we find

that although the resolution of query images is drastical-

ly changed, the retrieval performance of FSR-GAN is rela-

tively stable. For Holidays dataset in Fig. 6, the strange phe-

nomenon is that the retrieval accuracy increases slowly with

the decrease of resolution. This phenomenon is caused by

the characteristic of Holidays dataset. In Holidays dataset,

the number of images associated with each query is small

(about 4 images), which easily results in the fluctuation of

retrieval accuracy. Overall, the results well imply that our

FSR-GAN is capable of enhancing the discriminatory pow-

er of features extracted from low-resolution images.

5.3. Large­Scale Image Retrieval

In order to evaluate the robustness of FSR-GAN ap-

proach, we conduct large-scale image retrieval experimen-

t by mixing Flick100k dataset [14] as distractor with Ox-

ford5K, Holidays, and Paris datasets. We summarize the

experimental results on these three datasets in Fig. 7. From

this figure we observe that our approach significantly out-

performs Raw representation and ISR methods. At the sim-

ilar down-sample ratio, our approach is capable of provid-

ing higher retrieval precision than raw feature. Moreover,

our FSR-GAN still shows stable retrieval performance even
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Figure 7. Comparison of large-scale image retrieval performance on three datasets: Oxford5K [14], Paris [9], and INRIA Holidays [9] plus

Flick100k dataset as distractors.
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Figure 8. Demonstration of low bit-rate image retrieval performance on Oxford5K [14], Paris [9], and INRIA Holidays [9] datasets. Our

FSR-GAN approach shows surprising potential performance at low query bit.

when the resolution of original queries changes dramatical-

ly. Interestingly, we still observe that the retrieval accuracy

increases slowly with the decrease of resolution at Holidays

dataset. This phenomenon is caused by the characteristic

of Holidays dataset as mentioned in Section 5.2. The ex-

perimental result well demonstrates the significant improve-

ment achieved by our approach. We believe this is a signif-

icant progress in low bit-rate large-scale image retrieval.

5.4. Low Bit­Rate Mobile Visual Search

Camera equipped mobile devices, such as mobile phones

are becoming ubiquitous platforms for deployment of visual

search and augmented reality applications. With relatively

slow wireless links, the response time of the retrieval system

critically depends on how much information must be trans-

ferred. Therefore, reducing the upstream query data is an

essential requirement for typical client-server visual search

architectures. We can extend the FSR-GAN approach to

the application of low bit-rate image retrieval. The user-

end only requires down-sampling the query image to a s-

mall size. The cloud-end firstly exploits our FSR-GAN ap-

proach to recover the discriminatory ability for the uploaded

small size image. Then, it uses the enhanced representation

to search database and returns retrieval results to the user-

end. Thus, the user-end only performs a surprisingly sim-

ple operation of down-sampling to reduce the bits of query,

and can enjoy low latency and high precision mobile-visual-

search (i.e., has better user experience).

To demonstrate this goal, we have done more experi-

ments to verify it. Fig. 8 shows the mAP as a function

of query bits on three retrieval datasets. Note that in or-

der to eliminate the influence of image coding, all resized

query images are saved in PNG format. From Fig. 8 we ob-

serve that our FSR-GAN approach demonstrates surprising

potential performance at low query bit.

6. Conclusion

We have presented a novel feature super-resolution tech-

nique for improving the discriminatory power of represen-

tations extracted from low-resolution images. By analyzing

the impact of down-scaling operation on the deep features,

we have two key conclusions. One is that low-resolution

images not only impact the extracted deep features, but al-

so seriously decrease the retrieval accuracy. The other is

that deep features extracted from low-resolution images are

changed regularly with down-scaling ratios, which inspires

us to develop a feature super-resolution model to learn the

mapping relationship between low-discriminative features

and high-discriminative features. Extensive experiment re-

sults suggest that our proposed FSR-GAN approach is not

only an effective solution for enhancing features, but also

shows its great potential in many applications.
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