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Abstract

Deep neural networks (DNNs) trained on large-scale
datasets have exhibited significant performance in im-
age classification. Many large-scale datasets are col-
lected from websites, however they tend to contain in-
accurate labels that are termed as noisy labels. Train-
ing on such noisy labeled datasets causes performance
degradation because DNNs easily overfit to noisy labels.
To overcome this problem, we propose a joint optimiza-
tion framework of learning DNN parameters and esti-
mating true labels. Our framework can correct labels
during training by alternating update of network pa-
rameters and labels. We conduct experiments on the
noisy CIFAR-10 datasets and the Clothing1M dataset.
The results indicate that our approach significantly out-
performs other state-of-the-art methods.

1. Introduction

DNNs trained on large-scale datasets have achieved
impressive results on many classification problems.
Generally, accurate labels are necessary to effectively
train DNNs. However, many datasets are constructed
by crawling images and labels from websites and often
contain incorrect noisy labels (e.g., YFCC100M [17],
Clothing1M [21]). This study addresses the following
question: how can we effectively train DNNs on noisy
labeled datasets without manually cleaning the data?

The prominent issue in training DNNs on noisy la-
beled datasets is that DNNs can learn or memorize,
any training dataset, and this implies that DNNs are
subject to total overfitting on noisy data.

To address this problem, commonly used regulariza-
tion techniques including dropout and early stopping
are helpful. However, these methods do not guarantee
optimization because they prevent the networks from
reducing the training loss. Another method involves
using prior knowledge, such as the confusion matrix
between clean and noisy labels, which typically cannot
be used in real settings.

Figure 1. The concept of our joint optimization framework.
Noisy labels are reassigned to the probability output by
CNNs. Network parameters and labels are alternatively
updated for each epoch.

Consequently, we need a new framework of opti-
mization. In this study, we propose an optimization
framework for learning on a noisy labeled dataset. We
propose optimizing the labels themselves as opposed
to treating the noisy labels as fixed. The joint opti-
mization of network parameters and the noisy labels
corrects inaccurate labels and simultaneously improves
the performance of the classifier. Fig. 1 shows the con-
cept of our proposal. The main contributions are as
follows.

1. We propose a joint optimization framework for
learning on noisy labeled datasets. Our optimiza-
tion problem has two optimization network param-
eters and class labels that are optimized by an al-
ternating strategy.

2. We observe that a DNN trained on noisy labeled
datasets does not memorize noisy labels and main-
tains high performance for clean data under a high
learning rate. This reinforces the findings of Arpit
et al. [1] that suggest that DNNs first learns simple
patterns and subsequently memorize noisy data.

3. We evaluate the performance on synthetic and
real noisy datasets. We demonstrate state-of-the-
art performance on the noisy CIFAR-10 dataset
and a comparable performance on the Clothing1M
dataset [21].
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2. Related Works

2.1. Generalization abilities of DNNs

Recently, generalization and memorization abilities
of neural networks have attracted increasing attention.
Specifically, we focus on the ability of learning labels.
Zhang et al. showed that DNNs can learn any train-
ing dataset even if the training labels are completely
random [22]. This leads to two problems. First, the
performance of a DNN decreases when it is trained on
a noisy dataset and completely learns noisy labels. Sec-
ond, it is difficult to learn which label is noisy given the
perfect learning ability. To the best of our knowledge,
most studies on deep learning with respect to noisy
labels do not focus on the aforementioned problems
that are caused by the memorization ability of DNNs.
This study involves addressing these two problems to
improve the classification accuracy by preventing com-
pletely learning for noisy labels.

2.2. Learning on noisy labeled datasets

We briefly review existing studies on learning on
noisy labeled datasets.

Regularization: Regularization is an efficient method
to deal with the issue of DNNs easily fitting noisy
labels, as described in Section 2.1. Arpit et al.
showed the performances of DNNs trained on noisy la-
beled datasets with several regularizations [1] includ-
ing weight decay, dropout, and adversarial training [6].
Zhang et al. used a mixup [23] involving the utiliza-
tion of a linear combination of images and labels for
training.

These techniques improve performance on clean la-
bels. However, these methods do not explicitly deal
with noisy labels, and therefore long-time training
leads to performance degradation as follows: the per-
formance of the last epoch is generally worse than that
of the best epoch [23]. Furthermore, it is not possible
to use the training loss on the noisy labeled dataset as
a measure of performance on clean labels. Therefore,
training-loss based early stopping does not work well.

Noise transition matrix: Let l and lGT be the noisy
and true labels. We define the noise transition matrix
T by tij = p(l = j|lGT = i). Then, we can use T to
modify the cross entropy loss as follows:

L(θ, Y, X) = −
1

n

n
∑

i=1

log
(

yT
i Ts(θ,xi)

)

. (1)

This formulation was used in many studies [16, 11, 14].
In deep learning, some studies presuppose the ground-
truth noise transition matrix T [14, 19] and achieve

the state-of-the-art performance in the noisy CIFAR-
10 dataset. Other studies estimate T from noisy data.
Specifically, T is modeled by a fully connected layer
and is trained in an end-to-end manner [16, 11]. How-
ever, these methods do not carefully focus on the mem-
orization ability of DNNs. Patrini et al. proposed an
estimation method for T [14]; however, its performance
is slightly worse than that obtained with the true T .

Robust loss function: A few studies achieve noise-
robust classification by using a noise-tolerant loss func-
tions, such as ramp loss [3] and unhinged loss [20]. For
further details please refer to [5]. In deep learning,
Ghosh et al. used mean square error and mean abso-
lute error [4] for noise-tolerant loss functions. It should
be noted that they do not consider the problem that
DNNs can learn arbitrary labels.

Other approaches using deep learning: Reed et
al. used a bootstrapping scheme to handle noisy la-
bels [15]. Our method is similar to this study. Xiao et
al. constructed a noise model with multiple noise types
and trained two networks: an image classifier and a
noise type classifier [21]. It should be noted that this
method requires a low amount of accurately labeled
datasets.

2.3. Self-training and pseudo-labeling

Pseudo-labeling [24, 7, 13] is a type of self-training
that is generally used in semi-supervised learning with
few labeled data and many unlabeled data. In this
technique, pseudo-labels are initially assigned to unla-
beled data by predictions of a model trained on a clean
dataset. Subsequently, the algorithm repeats retrain-
ing the model on both labeled and unlabeled data and
updating pseudo-labels.

In semi-supervised learning, we know which data is
labeled or not and only need to assign pseudo-labels to
only unlabeled data. However, with respect to learn-
ing on noisy labeled data, it is necessary to treat all
data equally because we do not know which data is
noisy. Reed et al. proposed a self-training scheme [15]
for training a DNN on noisy labeled data. Their ap-
proach is similar to that proposed in this study. How-
ever, they use original noisy labels for learning until
the end of training, and thus the performance is de-
graded by the remaining effects of noisy labels for a
high noise rate [15, 11]. Conversely, we completely re-
place all labels by pseudo-labels and use the same for
training.

3. Notation and Problem Statements

In this study, column vectors and matrices are de-
noted in bold (e.g. x) and capitals (e.g. X), respec-
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tively. Specifically, 1 is a vector of all-ones. We define
hard-label spaces H = {y : y ∈ {0, 1}c,1⊤y = 1} and
soft-label spaces S = {y : y ∈ [0, 1]c,1⊤y = 1}.

In supervised c-class classification problem setting,
we have a set of n training images X = [x1, . . . ,xn]
with ground-truth labels Y GT = [yGT

1 , . . . ,yGT
n ] =

R
c×n, where yGT

i ∈ H is a one-hot vector represen-
tation of the true class label. The objective function is
an empirical risk, such as the cross entropy, as follows:

L = −
1

n

n
∑

i=1

c
∑

j=1

yGT
ij log sj(θ,xi), (2)

where θ denotes the set of network parameters and s

denotes the output of the final layer, namely c-class
softmax layer, of the network.

If a clean training dataset is present, then the net-
work parameters θ are learned by optimizing Eq. (2)
by using a gradient descent method. However, in this
study, we consider the classification problem with noisy
labels as follows: Let yi be the noisy label, and only
the noisy training label set Y = [y1, · · · ,yn] is given.
The task involves training CNNs to predict true labels.
In the next section, we describe the proposed method
for training on noisy labels.

4. Classification with Label Optimization

In this section, we present our proposed training
method with noisy labels. Generally, with respect to
supervised learning on clean labels, the optimization
problem is formulated as follows:

min
θ

L(θ|X, Y ), (3)

where L denotes a loss function such as the cross en-
tropy loss Eq. (2). Eq. (3) works well on clean labels.
However, if we train the network by Eq. (3) on noisy
labels, its performance decreases.

As we will describe in Section 5.3, we experimentally
found that a high learning rate suppresses the memo-
rization ability of a DNN and prevents it from com-
pletely fitting to labels. Thus, we assume that a net-
work trained with a high learning rate will have more
difficulty fitting to noisy labels. In other words, the
loss Eq. (3) is high for noisy labels and low for clean
labels. Given this assumption, we obtain clean labels
by updating labels in the direction to decrease Eq. (3).
Therefore, we formulate the problem as the joint opti-
mization of network parameters and labels as follows:

min
θ,Y
L(θ, Y |X). (4)

The concept of our proposal is shown in Fig. 1.

Algorithm 1 Alternating Optimization

for t← 1 to num_epochs do

update θ(t+1) by SGD on L(θ(t), Y (t)|X)
update Y (t+1) by Eq. (8) (hard-label)

or Eq. (9) (soft-label)
end for

Our proposed loss function L(θ, Y |X) is constructed
by three terms as follows:

L(θ, Y |X) = Lc(θ, Y |X)+αLp(θ|X)+βLe(θ|X), (5)

where Lc(θ, Y |X), Lp(θ|X), Le(θ|X) denote the clas-
sification loss and two regularization losses, respec-
tively, and α and β denote hyper parameters. In this
study, we use the Kullback-Leibler (KL)-divergence for
Lc(θ, Y |X) as follows:

Lc(θ, Y |X) =
1

n

n
∑

i=1

DKL(yi||s(θ,xi)), (6)

DKL(yi||s(θ,xi)) =

c
∑

j=1

yij log

(

yij

sj

(θ,xi)

)

. (7)

In the following subsections, we first describe an alter-
nating optimization method to solve this problem, and
we then describe the definition of Lp, Le.

4.1. Alternating Optimization

In our proposed learning framework, network pa-
rameters θ and class labels Y are alternatively updated
as shown in Algorithm 1. We will describe the update
rules of θ and Y .

Updating θ with fixed Y : All terms in the opti-
mization problem Eq. (5) are sub-differentiable with
respect to θ. Therefore, we update θ by the stochastic
gradient descent (SGD) on the loss function Eq. (5).

Updating Y with fixed θ: In contrast to other meth-
ods, we update and optimize the labels that we perform
the training on. With respect to updating Y , it is only
necessary to consider the classification loss Lc(θ, Y |X)
from Eq. (5) with fixed θ. The optimization problem
Eq. (6) on Y is separated for each yi.

As a method of optimizing labels, two methods can
be considered: the hard-label method and the soft-label
method. In the case of the hard-label method, Y ∈ H
is updated as follows:

yij =







1 if j = argmax
j′

sj′(θ,xi)

0 otherwise
. (8)

In the case of the soft-label method, the KL-divergence
from s(θ,xi) to yi is minimized when yi = s, and thus
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the update rule for Y ∈ S is as follows:

yi = s(θ,xi). (9)

As we will describe in Section 5.4, we experimen-
tally determined that the performance of the soft-label
method exceeded that of the hard-label method. Thus,
we applied soft-labels to all experiments if not other-
wise specified.

4.2. Regularization Terms

We describe definitions and roles of two regulariza-
tion losses of Lp(θ|X) and Le(θ|X).

Regularization loss Lp: The regularization loss
Lp(θ|X) is required to prevent the assignment of all
labels to a single class: In the case of minimizing only
Eq. (6), we obtain a trivial global optimal solution with
a network that always predicts constant one-hot ŷ ∈ H
and each label yi = ŷ for any image xi. To overcome
this problem, we introduce a prior probability distribu-
tion p, which is a distribution of classes among all train-
ing data. If the prior distribution of classes is known,
then the updated labels should follow the same. There-
fore, we introduce the KL-divergence from s̄(θ, X) to
p as a cost function as follows:

Lp =
c

∑

j=1

pj log
pj

s̄j(θ, X)
(10)

This approach follows [10]. The mean probability
s̄(θ, X) in the training data is approximated by per-
forming a calculation for each mini-batch B as Eq. (11).

s̄(θ, X) =
1

n

n
∑

i=1

s(θ,xi) ≈
1

|B|

∑

x∈B

s(θ,x) (11)

This approximation cannot treat a large number of
classes and extreme imbalanced classes, however it
works well in the experiments on the noisy CIFAR-10
dataset and the Clothing1M dataset.

Regularization loss Le: The term Le is required for
the training loss when we use the soft-label. We con-
sider the case of Eq. (5) with α = β = 0. In this
case, when Y is updated by Eq. (9), both θ and Y are
stuck in local optima and the learning process does not
proceed. To overcome this problem, we introduce an
entropy term to concentrate the probability distribu-
tion of each soft-label to a single class as follows:

Le = −
1

n

n
∑

i=1

c
∑

j=1

sj(θ,xi) log sj(θ,xi). (12)

4.3. Additional Details

Our method has two steps for training on noisy la-
bels. In the first step, we obtain clean labels by up-
dating labels as described in Section 4.1. In the second
step, we initialize the network parameters and train
the network by usual supervised learning with the la-
bels obtained in the first step.

5. Experiments

5.1. Datasets

CIFAR-10: We use the CIFAR-10 dataset [12]
and retain 10% of the training data for validation.
Subsequently, we define three types of the train-
ing data, namely Symmetric Noise CIFAR-10 (SN-
CIFAR), Asymmetric Noise CIFAR-10 (AN-CIFAR),
and Pseudo Label CIFAR-10 (PL-CIFAR).

In SN-CIFAR, we inject the symmetric label noise.
Symmetric label noise is as follows:

yi =

{

yGT
i with the probability of 1− r

random one-hot vector with the probability of r
.

(13)
In AN-CIFAR, we inject the asymmetric label noise.

The asymmetric label noise is discussed in [14]. The
rationale involves mimicking a part of the structure of
real mistakes for similar classes: TRUCK → AUTO-
MOBILE, BIRD → AIRPLANE, DEER → HORSE,
CAT ↔ DOG. Transitions are parameterized by r ∈
[0, 1] such that the probabilities of ground-truth and
inaccurate class correspond to 1−r and r, respectively.

In PL-CIFAR, pseudo labels are assigned to unla-
beled training data. Pseudo labels are generated by
applying k-means++ [2] to features that are outputs of
pool5 layer of ResNet-50 [8] pre-trained on ImageNet.
This setting is motivated by transfer learning. The
overall accuracy of the pseudo labels is 62.50%.

Clothing1M: We use the Clothing1M dataset [21] to
examine the performance of our method in a real set-
ting. The Clothing1M dataset contains 1 million im-
ages of clothing obtained from several online shopping
websites that are classified into the following 14 classes:
T-shirt, Shirt, Knitwear, Chiffon, Sweater, Hoodie,
Windbreaker, Jacket, Down Coat, Suit, Shawl, Dress,
Vest, and Underwear. The labels are generated by
using surrounding texts of the images that are pro-
vided by the sellers, and therefore contain many er-
rors. In [21], it is reported that the overall accuracy
of the noisy labels is 61.54%, and some pairs of classes
are often confused with each other (e.g., Knitwear and
Sweater). The Clothing1M dataset also contains 50k,
14k and 10k of clean data for training, validation, and
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testing, respectively although we do not use the 50k

clean training data.

5.2. Implementation

We implemented all the models with the deep learn-
ing framework Chainer v2.1.0 [18].

CIFAR-10: Training on SN-CIFAR, AN-CIFAR and
PL-CIFAR, we used the network based on PreAct
ResNet-32 [9] as detailed in the supplementary ma-
terial. With respect to preprocessing, we performed
mean subtraction and data augmentation by horizon-
tal random flip and 32×32 random crops after padding
with 4 pixels on each side. We used SGD with a mo-
mentum of 0.9, a weight decay of 10−4, and batch size
of 128.

In the first step of our method, we trained the net-
work for 200 epochs and began updating labels from
the 70th epoch. We determined the values of a learning
rate and the hyper parameters (α, β in Eq. (5)) for SN-
CIFAR, AN-CIFAR, and PL-CIFAR respectively based
on the validation accuracy. The details are described in
each experimental section. As we will describe in Sec-
tion 5.4, soft-labels performed better than hard-labels,
and thus we applied soft-labels to all the experiments
in Section 5.5, Section 5.6, and Section 5.7. In this
case, the prior distribution p is uniform distribution
because each class has the same number of images in
the CIFAR-10 dataset. While updating the noisy label
yi by the probability s, we used the average output
probability of the network of the past 10 epochs as
s. We experimentally determined that this averaging
technique is useful in preventing inaccurate updates
since it has a similar effect to ensemble.

In the second step of our method, we trained the
network for 120 epochs on the labels obtained in the
first step. We began training with a learning rate of
0.2 and divided it by 10 after 40 and 80 epochs. We
used only Lc for the training loss in this step.

Clothing1M: Training on the Clothing1M dataset, we
used ResNet-50 pre-trained on ImageNet to align ex-
perimental condition with [14]. For preprocessing, we
resized the images to 256× 256, performed mean sub-
traction, and cropped the middle 224 × 224. We used
SGD with a momentum of 0.9, a weight decay of 10−3,
and batch size of 32.

In the first step of our method, we trained the net-
work for 10 epochs and began updating labels from
the 1st epoch. We used a learning rate of 8 × 10−4,
and used 2.4 for α and 0.8 for β. While updating the
noisy label yi by the probability s, we used the aver-
age output probability of the network of all the past
epochs as s. We applied soft-labels to the experiment
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Figure 2. The test accuracy curve with different learning
rates. The test accuracy gradually decreases when the
learning rate is low (lr=0.02). Conversely, the test accu-
racy remains high at the end of training when the learning
rate is high (lr=0.2).
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Figure 3. The training loss curve with different noise rates.
At the end of training with a low learning rate, the value of
the training loss is close to 0 even if the error rate is 0.9. In
contrast, in the early phase of training with a high learning
rate, an increase in the noise rate increases the training loss.

in Section 5.8.
In the second step of our method, we trained the

network for 10 epochs on the labels obtained in the
first step. We began training with a learning rate of
5× 10−4 and divided it by 10 after 5 epochs.

5.3. Generalization and Memorization

To examine the effect of the learning rate (lr) and the
noise rate (r) on the training loss and the test accuracy,
we trained the network on SN-CIFAR with only the
cross entropy loss.

Fig. 2 shows the test accuracy curve with different
learning rates. We trained the network for 120 epochs
with a learning rates of 0.2 or 0.02. In the case of
the low learning rate (lr=0.02), the test accuracy was
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Figure 4. Comparison between the soft-label and the hard-
label methods, showing the recovery accuracy. The soft-
label method achieves faster convergence than the hard-
label methods, and performs the best recovery accuracy.

high at the early phase of training and then gradually
decreased because the network fitted the noisy labels.
This is the same result reported in [1]. Conversely, in
the case of the high learning rate (lr=0.2), the network
exhibited high test accuracies during training. This
means that a high learning rate prevents the network
from memorizing and fitting the noisy labels.

Fig. 3 shows how the manner in which training loss
declines during training. We trained the network for
600 epochs. We commenced training with a learning
rate of 0.2 and divided it by 10 after 200 and 400
epochs. At the end of training, our model fit the noisy
labels even if the noise rate was high (for e.g., r = 0.9).
However, with respect to training with a high learning
rate, the training loss clearly increases when the noise
rate increases. This indicates that it is possible to opti-
mize the labels towards lowering the training loss when
the learning rate is high.

5.4. Hard-Label vs. Soft-Label

To prove the effectiveness of the soft-label, we
trained the network on SN-CIFAR (noise rate r = 0.7)
for 1500 epochs by using the first step of our method.
We compare the hard-label methods and the soft-label
method. For the hard-labels methods, we update top
50, 500, 5000, or all labels whose current labels are
most different from the predicted classes to the pre-
dicted hard-labels every epoch. For the soft-label
method, we update all labels to the predicted soft-
labels every epoch. In Fig. 4, we show the recovery
accuracy, which is defined as the accuracy of the re-
assigned labels, in the first step of our method. The
soft-label method achieves faster convergence and bet-
ter recovery accuracy than any hard-label methods.

Subsequently, by using the second step of our
method, we performed training on the labels obtained

in the first step. In the hard-label methods, updating
500 labels every epoch is optimal and the test accu-
racy is 85.7%. Conversely, the test accuracy of the
soft-label method is 86.0%. It shows that though the
recovery accuracy of the soft-label method obtained in
the first step is 86.0%, which is approximately equal to
85.9% of the hard-label method (updating 500 labels
every epoch), the test accuracy is improved by 0.3%.
The reason why the soft-label method performed bet-
ter is considered as that soft-labels contain the prob-
abilities of each class in themselves. Soft-labels reflect
confidences of the trained network unlike hard-labels,
which are assigned by ignoring confidences. Our results
indicate that confidences are important in the case of
training on noisy labels.

5.5. Experiment on SN-CIFAR

To evaluate the performance of our method on syn-
thesized noisy labels, we trained the network on SN-
CIFAR (the noise rate r = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9) by
using our method. In the first step of our method, we
used the optimal learning rate, α and β for each noise
rate based on the validation accuracy as detailed in
the supplementary material. As a comparison, we also
trained on initial noisy labels in the same manner as
the second step of our method.

The results are reported in Table 1. As shown in
Table 1, best denotes the scores of the epoch where
the validation accuracy is optimal, and last denotes the
scores at the end of training. The recovery accuracy for
our method is defined as the accuracy of the reassigned
labels. Conversely, other methods do not reassign the
noisy labels, and thus the recovery accuracy is reported
as the prediction accuracy on the ground-truth labels
of the noisy training data.

Our method achieves overall better test accuracy
and recovery accuracy on SN-CIFAR. When training
was performed on initial noisy labels, the test accuracy
decreases after approximately the 40th epoch (when we
divided the learning rate by 10). This indicates that
lowering the learning rate assists the network in fit-
ting the noisy labels as described in Section 5.3. Con-
versely, when we trained on the labels optimized by
our method, the test accuracy was high until the end
of training. This is the important effects of our joint
optimization.

5.6. Experiment on AN-CIFAR

To evaluate the performance of our method in the
settings in [14], we trained the network on AN-CIFAR
(the noise rate r = 0.1, 0.2, 0.3, 0.4, 0.5) by using our
method. In the first step of our method, we used a
learning rate of 0.03 and used 0.8 for α and 0.4 for β,
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Table 1. Test and recovery accuracy of different baselines on the CIFAR-10 dataset with symmetric noise. We report the
average score of 5 trials.

# method Test Accuracy (%) Recovery Accuracy (%)
noise rate (%) 0 10 30 50 70 90 0 10 30 50 70 90

1 Cross Entropy Loss best 93.5 91.0 88.4 85.0 78.4 41.1 100.0 96.4 92.7 88.2 80.1 41.4
last 93.4 87.0 72.2 55.3 36.6 20.4 100.0 91.1 74.6 57.6 39.6 21.7

2 Our Method best 93.4 92.7 91.4 89.6 85.9 58.0 100.0 97.9 95.1 91.7 86.3 58.2
last 93.6 92.9 91.5 89.8 86.0 58.3 99.9 98.1 95.1 91.8 86.4 58.3

Table 2. Test and recovery accuracy of different baselines on the CIFAR-10 dataset with asymmetric noise. We report the
average score of 5 trials. #2, #3 are the results by our implementation.

# method Test Accuracy (%) Recovery Accuracy (%)
noise rate (%) 10 20 30 40 50 10 20 30 40 50

1 Cross Entropy Loss best 91.8 90.8 90.0 87.1 77.3 97.2 95.8 94.3 91.0 80.5
last 89.8 85.4 81.0 75.7 70.5 95.0 90.2 85.3 80.2 75.2

2 Forward [14] best 92.4 91.4 91.0 90.3 83.8 97.7 96.7 95.9 94.7 88.0
last 91.7 89.7 88.0 86.4 80.9 97.9 95.8 93.6 91.5 85.5

3 CNN-CRF [19] best 92.0 91.5 90.7 89.5 84.0 97.4 96.5 95.3 93.7 88.1
last 90.3 86.6 83.6 79.7 76.4 95.1 90.5 86.4 82.1 78.7

4 Our Method best 93.2 92.7 92.4 91.5 84.6 98.3 97.2 96.3 95.2 88.3

last 93.2 92.8 92.4 91.7 84.7 98.1 97.1 96.3 95.2 88.1

respectively for all the noise rates. As a comparison,
we also performed training on initial noisy labels in the
same manner as the second step of our method with the
cross entropy loss or the forward corrected loss [14].

The results of our experiments are shown in Ta-
ble 2. The forward corrected loss [14] and the CNN-
CRF model [19] require the ground-truth noise transi-
tion matrix. Conversely, we need only the prior distri-
bution p, and thus our condition is more general than
that of [14, 19].

Our method achieves significantly better test accu-
racy and recovery accuracy on AN-CIFAR. However,
only when the noise rate is 50%, there is no significant
improvement in accuracy when compared with other
noise rates. Since we generated label noise to exchange
CAT and DOG classes, it is impossible to accurately
determine the class for CAT and DOG when the noise
rate is 50%.

In a manner similar to Section 5.5, when training
is performed on initial noisy labels, the test accuracy
decreases due to the network fitting noisy labels with a
low learning rate. This trend is also observed if we use
the forward corrected loss [14], while the test accuracy
does not decrease and remains high in our method.

5.7. Experiment on PL-CIFAR

To evaluate the performance of our method in the
settings of transfer learning, we trained the network
on PL-CIFAR by using our method. In the first step
of our method, we used a learning rate of 0.04 and
used 1.2 for α and 0.8 for β. As a comparison, we also
trained on initial pseudo-labels in the same manner as
the second step of our method.

Fig. 5 shows the test accuracy curve with different
labels, and Fig. 6 shows the decline in the training loss
during training. In both figures, we show the results
of training on SN-CIFAR (the noise rate r = 0.3, 0.5)
because the noise rate of the pseudo labels is between
0.3 and 0.5. Additionally, we show the results of train-
ing on the ground-truth labels because the training loss
curve of training on optimized labels is near the curve
for the same.

Although the number of inaccurate labels in the
pseudo labels exceeds that of the symmetric noise la-
bels (r = 0.3), the value of the training loss of the
pseudo labels is lower than that of the symmetric noise
labels. This fact seems to conflict with extant knowl-
edge that states that “the training loss increases when
the noise rate increases”, as described in Section 5.3.
However, we can explain the reason of this conflict
as follows: the difference in the training loss depends
on the noise rate as well as the type of the noise.
The pseudo labels are generated from the outputs of
ResNet-50 pre-trained on ImageNet, and thus they are
already considered as “the optimized labels” by the
network. Thus, the pseudo labels were not updated
adequately. The test accuracy of training on the la-
bels recovered from the noisy labels is worse than that
of training on the ground-truth labels, and this indi-
cates that the optimized labels do not necessarily de-
note optimal labels. This is a limitation of the proposed
method.

5.8. Experiment on the Clothing1M dataset

Finally, we trained the network on the Clothing1M
dataset [21] by using our method to evaluate the per-
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Figure 5. The test accuracy curve with different labels. The
test accuracy on the pseudo labels is lower than that on
the symmetric noise labels even if the number of inaccurate
labels is lower. This trend remains if the labels are updated.

formance of our method in a real setting. As a compar-
ison, we also trained on initial noisy labels in the same
manner as the second step of our method. The results
of our experiments are shown in Table 3. Additionally,
we also show the scores (#1, #2) reported in [14].

In #2, Patrini et al. exploited the curated labels of
50k clean data and their noisy versions in 1M noisy
data to obtain the ground-truth noise transition ma-
trix, which is not often used in real-world settings.
Conversely, we only used the distribution of the noisy
labels, which can be always used, for the prior distri-
bution p, and therefore our condition is more general
than #2. Nevertheless, our method achieves better test
accuracy than #2 on the Clothing1M dataset.

In Fig. 7, Fig. 8, we show the examples of the images
whose labels were reassigned to classes different from
the original ones by our method. Additionally, we show
the probability of the class that the label is reassigned
to. When the probability is high, the label seems to be
updated correctly. Conversely, when the probability
is low, the label seems to be updated incorrectly. As
opposed to the hard-labels, the soft-labels contain the
probabilities of each class in themselves, and thus the
network can consider the incorrectly updated labels as
not important. Specifically, this effect contributes to
improving the test accuracy.

6. Conclusion

We proposed a joint optimization framework for
learning on noisy labeled datasets, which alternatively
updates network parameters and class labels. The per-
formance of the framework is guaranteed by our find-
ing that training under a high learning rate prevents
the network from memorizing noisy labels. We showed
that our framework performed remarkably well on the
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Figure 6. The training loss curve with different labels. The
training loss on the pseudo labels is lower than that on
the symmetric noise labels even if the number of inaccurate
labels is higher. Each of the training losses on the labels
updated from different noisy labels follows the training loss
on the ground-truth labels. This implies that the updated
labels are completely optimized for the network.

Table 3. Test accuracy of different baselines on the Cloth-
ing1M dataset. #1 and #2 are quoted from [14], and #3
is the reproduced result by our reimplementation.

# method accuracy

1 Cross Entropy Loss 68.94
2 Forward [14] 69.84
3 Cross Entropy Loss best 69.15

(reproduced) last 66.76
4 Our Method best 72.16

last 72.23

Figure 7. The images with the top-2 and the bottom-2 prob-
abilities of T-shirt whose labels are reassigned from Hoodie
to T-shirt.

Figure 8. The images with the top-2 and the bottom-2 prob-
abilities of Hoodie whose labels are reassigned from T-shirt
to Hoodie.

noisy CIFAR-10 dataset and the Clothing1M dataset,
outperforming the state-of-the-art methods [14, 19].
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