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Abstract

Suitable shape representations as well as their temporal

evolution, termed trajectories, often lie to non-linear mani-

folds. This puts an additional constraint (i.e., non-linearity)

in using conventional machine learning techniques for the

purpose of classification, event detection, prediction, etc.

This paper accommodates the well-known Sparse Coding

and Dictionary Learning to the Kendall’s shape space and

illustrates effective coding of 3D skeletal sequences for ac-

tion recognition. Grounding on the Riemannian geometry of

the shape space, an intrinsic sparse coding and dictionary

learning formulation is proposed for static skeletal shapes

to overcome the inherent non-linearity of the manifold. As

a main result, initial trajectories give rise to sparse code

functions with suitable computational properties, including

sparsity and vector space representation. To achieve ac-

tion recognition, two different classification schemes were

adopted. A bi-directional LSTM is directly performed on

sparse code functions, while a linear SVM is applied after

representing sparse code functions using Fourier temporal

pyramid. Experiments conducted on three publicly avail-

able datasets show the superiority of the proposed approach

compared to existing Riemannian representations and its

competitiveness with respect to other recently-proposed ap-

proaches. When the benefits of invariance are maintained

from the Kendall’s shape representation, our approach not

only overcomes the problem of non-linearity but also yields

to discriminative sparse code functions.

1. Introduction

The availability of cost-effective and real-time human

body skeletal data estimation solutions [33] has pushed re-

searchers to study their shape as well as their temporal evo-

lution. In particular, the problem of action recognition from

3D skeletons has received a particular attention with the

availability of several datasets and end-users applications

as gaming, Human Machine Interaction, and physical per-

formance assessment, to cite a few. However, human ac-

tions observed from visual sensors are often subject to view

variations. Considering this problem, an efficient way for

analyzing 3D skeleton motions takes into account view-

invariance properties, giving rise to shape representations

often lying to non-linear shape spaces [2, 3, 25]. For in-

stance, Kendall [25] defines the shape as the geometric in-

formation that remains when location, scale, and rotational

effects are filtered out from an object. Accordingly, we rep-

resent 3D skeletons as points in the Kendall’s shape space,

considering skeletal sequences as trajectories [2]. However,

inferencing such a shape representation remains a challeng-

ing problem due to the non-linearity of the manifold of in-

terest. For example, the use of standard data coding (e.g.,

sparse coding, PCA, etc.) and machine learning techniques

(e.g., dictionary learning, SVM, deep learning, etc.) is not

straightforward. The problem is even more acute with the

introduction of the temporal dimension, i.e., analyzing tra-

jectories in Kendall’s shape space. In the literature, two

alternatives have been proposed to overcome these prob-

lems for different Riemannian manifolds – they are either

Extrinsic [17, 20, 23, 27] or Intrinsic [4, 5, 21, 22]. When

the first family is based on the embedding into high dimen-

sional Hilbert spaces, the second maps points on the man-

ifold to a fixed tangent space attached to the manifold at a

reference point. In the second family, the main issue is that

distortions are introduced when points are not close to the

reference point [1, 2, 35]. In this work, we propose an in-

trinsic solution to overcome the problem of non-linearity of

the Kendall’s shape space while avoiding mapping points to

a fixed tangent space at a reference point.

Motivated by the success of sparse representations in

several recognition tasks [6, 11, 17, 21], we propose to

represent human actions using an intrinsic formulation of

sparse coding and dictionary learning of skeletal shapes in

the Kendall’s shape space. Specifically, a 3D skeletal shape

is coded on its attached tangent space where the dictionary

of shapes is mapped. Hence, for each trajectory, this rep-

resentation gives rise to a function of sparse codes lying in

Euclidean space. By doing so, we handle the problem of

non-linearity of the manifold without mapping points to a
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reference tangent space. Furthermore, we propose to learn

a dictionary grounding on the Riemannian geometry of the

Kendall’s shape space, with a novel initialization step al-

lowing an automatic inference on the number of atoms. In

the context of action recognition, our approach brings two

main advantages: (1) Sparse coding of skeletal shapes is

performed with respect to a Riemannian dictionary. Hence,

the resulting sparse code functions are expected to be more

discriminative than the data themselves [21]; (2) Using se-

quences of sparse codes as discriminative features allows us

to perform classification in vector space, avoiding the more

difficult task of classification on the manifold. The contri-

butions of this work are: 1) A novel human actions rep-

resentation based on an intrinsic sparse coding of skeletal

shape trajectories on the Kendall’s shape space. This allows

to map skeletal trajectories from a non-linear space to sparse

time-series in Euclidean space. 2) The dictionary of shapes

is learned with respect to the geometry of the manifold and

is preceded by a novel initialization step based on Bayesian

clustering of shapes and principal geodesic analysis, to au-

tomatically infer on the number of atoms. 3) Classification

of the sparse time-series using two different classification

schemes. Experiments are conducted on three commonly-

used datasets to show the competitiveness of the proposed

approach in the context of 3D action recognition.

The rest of the paper is organized as follows. In sec-

tion 2, we briefly review existing solutions of sparse coding

and dictionary learning in non-linear manifolds, in addition

to recent achievements in 3D action recognition using skele-

tal data, with a particular focus on Riemannian approaches.

Section 3 introduces the sparse coding and dictionary learn-

ing method with a review of the geometric properties of the

Kendall’s shape space. In section 4, we describe the adopted

temporal modeling and classification pipelines. Experimen-

tal results and discussions are reported in section 5, and sec-

tion 6 concludes the paper.

2. Prior Work

In this section, we firstly focus on the extension of sparse

coding and dictionary learning (SCDL) to non-linear Rie-

mannian manifolds. Then, we briefly review some recent

works in action recognition using 3D skeletal data.

2.1. SCDL on Riemannian manifolds

Sparse representations have proved to be successful in

various computer vision tasks [11] which explains the sig-

nificant interest in the last decade [6, 17, 21]. Based on a

learned dictionary, each data point can be represented as a

linear combination of a few dictionary elements (atoms),

so that a squared Euclidean loss is minimized. This as-

sumes that the data points as well as the dictionary atoms

are defined in vector space (to allow speaking on linear

combination). However, most suitable image features of-

ten lie to non-linear manifolds [30]. Thus, to sparsely

code these data while exploiting the invariance properties

of Riemannian manifolds, the classical problem of SCDL

needs to be extended to its non-linear counterpart. Previous

works addressed this problem [6, 16, 17, 18, 21, 27, 46].

For instance, a straightforward solution was proposed in

[16, 43] by embedding the manifolds of interest into Eu-

clidean space via a fixed tangent space at a reference point.

However, this solution does not take advantage of the en-

tire Riemannian structure as in this tangent space, only dis-

tances to the reference point are equal to true geodesic dis-

tances. To overcome this problem, Ho et al. [21] proposed a

general framework for SCDL in Riemannian manifolds by

working on the tangent bundle. Here, each point is coded on

its attached tangent space into which the atoms are mapped.

By doing so, only distances to the tangent point are needed.

Their proposed dictionary learning method includes an iter-

ative update of the atoms using a gradient descent approach

along geodesics. This general solution essentially relies on

mappings to tangent spaces using the logarithm map op-

erator. Although it is well defined for several manifolds,

analytic formulation of the logarithm map is not available

or difficult to compute for others. Therefore, some studies

[17, 18, 20, 27] proposed to embed the Riemannian man-

ifold into a Reproducing Kernel Hilbert Space (RKHS).

These are Euclidean spaces where linear SCDL becomes

possible. Recently, Harandi et al. [17] proposed to map the

Grassmann manifolds into the space of symmetric matrices

to overcome the latter problem and preserve several prop-

erties of the Grassmann structure. They also proposed ker-

nelized versions of the SCDL algorithms to handle the non-

linearity of the data, similarly proposed in [19] for Symmet-

ric Positive Definite matrices.

2.2. Action recognition from 3D skeletal sequences

Several recent approaches include the use of temporal

state-space model to classify action sequences without any

manifold assumptions on the data representation. Consider-

ing a human action as transitions between body poses over

time, G. Hernando et al. [13] proposed a forest-based classi-

fier called transition forests to discriminate both static pose

information and temporal transitions between pairs of two

independent frames. Another work [40] modeled a human

action as a set of semantic parts called motionlets obtained

by tracking then segmenting the trajectory of each joint. By

combining the motionlets and their spatio-temporal correla-

tions, they proposed an undirected complete labeled graph

to represent a video, and a subgraph-pattern graph kernel

to measure the similarity between graphs, then to classify

videos. More recently, two kernel-based tensor representa-

tions named sequence compatibility kernel (SCK) and dy-

namics compatibility kernel (DCK) were introduced in [26].

These can capture the higher-order relationships between
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the joints. The first captures the spatio-temporal compat-

ibility of joints between two sequences, while the second

models a sequence dynamics as the spatio-temporal co-

occurrences of the joints. Tensors are then formed from

these kernels to train SVM. On the other hand, recurrent

neural networks (RNNs) have showed promising perfor-

mance when applied to 3D action recognition. For instance,

HBRNN-L [10] applied bidirectional RNNs hierarchically

by dividing a skeleton into five parts of neighboring joints.

Then, each is separately fed into a bidirectional RNN before

fusing their outputs to form the upper-body and the lower-

body. Similarly, these latter were fed into different RNNs

and their outputs fusion form the global body representa-

tion. More recently, the spatio-temporal LSTM (ST-LSTM)

[29] extended LSTM to spatio-temporal domains. To this

end, the analysis of a 3D skeleton joint considers spatial

information from neighboring joints and temporal infor-

mation from previous frames. In addition, a tree-structure

based method allows to better describe the adjacency prop-

erties among the joints. This method is further improved by

a gating mechanism to handle noise and occlusion.

Other approaches exploited some basics of the Rieman-

nian geometry to analyze skeletal sequences. In [35], the

authors proposed to represent skeletal motions as trajecto-

ries in the Special Euclidean (Lie) group SE(3)n (respec-

tively SO(3)n). These representations are then mapped into

the correspondent Lie algebra se(3)n (respectively so(3)n)

which is a vector space, the tangent space attached to

the Lie group at the identity, where they are processed

and classified. Exploiting the same representation on Lie

Groups, Anirudh et al. [1] used the framework of Trans-

ported Square-Root Velocity Fields (TSRVF) [34] to encode

trajectories lying on Lie groups. They extended existing

coding methods such as PCA, KSVD, and Label Consis-

tent KSVD to these Riemannian trajectories. Another ap-

proach [2] proposed a different solution by extending the

Kendall’s shape theory to trajectories. Accordingly, trans-

lation, rotation, and global scaling are first filtered out from

each skeleton to quantify the shape. Then based on the

TSRVF, they defined an elastic metric to jointly align and

compare trajectories. Here, trajectories are transported to

a reference tangent space attached to the Kendall’s shape

space at a fixed point. A common major drawback of these

approaches is mapping trajectories to a reference tangent

space which may introduce distortions. Conscious of this

limitation, the authors in [36] proposed a mapping of tra-

jectories on Lie groups combining the usual logarithm map

with a rolling map that guarantees a better flattening of tra-

jectories on Lie groups. In our work, we represent the mo-

tion of skeletal shapes as trajectories in the Kendall’s shape

space, as in [2]. To overcome the problem of non-linearity

of the manifold, we propose to code trajectories using an in-

trinsic formulation of SCDL that avoids distortions caused

by tangent space approximations.

3. Coding Kendall’s skeletal shapes

We propose to adapt a general intrinsic formulation of

Riemannian SCDL to the case of Kendall’s shape space.

This allows to represent a 3D skeletal shape lying on

Kendall’s space as a sparse vector encoded with respect to

a dictionary of shapes. In what follows, we start by briefly

reviewing the geometry of the manifold of interest. Then,

we describe the SCDL framework.

3.1. Geometry of the Kendall’s shape space

A skeleton is represented using a finite number of salient

points or landmarks (points in R
3). To quantify skele-

tal shapes, Kendall [25] proposed to establish equivalences

with respect to shape invariant transformations that are

translations, rotations, and global scaling of configurations.

Let Z ∈ R
n×3 represent a skeleton, i.e., a configuration of

n landmarks in R
3. To remove the translation variability, we

follow [8] and introduce the notion of Helmert sub-matrix,

a (n − 1) × n sub-matrix of a commonly used Helmert

matrix, to perform centering of configurations. For any

Z ∈ R
n×3, the product HZ ∈ R

(n−1)×3 represents the

Euclidean coordinates of the centered configuration. Let C0
be the set of all such centered configurations of n landmarks

in R
3, i.e., C0 = {HZ ∈ R

(n−1)×3|Z ∈ R
n×3}. C0 is a

3(n − 1) dimensional vector space and can be identified

with R
3(n−1). To remove the scale variability, we define

the pre-shape space to be: C = {Z ∈ C0|‖Z‖F = 1}; C
is a unit sphere in R

3(n−1) and, thus, is (3n − 4) dimen-

sional. The tangent space at any pre-shape Z is given by:

TZ(C) = {V ∈ C0|trace(V TZ) = 0}. To remove the ro-

tation variability, for any Z ∈ C, we define an equivalence

class: Z̄ = {ZO|O ∈ SO(3)} that represents all rotations

of a configuration Z. The set of all such equivalence classes,

S = {Z̄|Z ∈ C} = C/SO(3) is called the shape space of

skeletons. The tangent space at any shape Z̄ is TZ̄(S) =
{V ∈ C0|trace(V TZ) = 0, trace(V TZU) = 0} , where

U is any 3 × 3 skew-symmetric matrix. The first condition

makes V tangent to C and the second makes V perpendicu-

lar to the rotation orbit. Together, they force V to be tangent

to the shape space S . Assuming standard Riemannian met-

ric on S , the geodesic between two points Z̄1, Z̄2 ∈ S is

defined as:

α(t) =
1

sin(θ)
(sin((1− t)θ)Z1 + sin(tθ)Z2O

∗), (1)

where θ = cos−1(〈Z,Z2O
∗〉) and O∗ is the optimal rota-

tion that aligns Z2 with Z1: O∗ = argminO∈SO(3)‖Z1 −
Z2O‖

2
F . This θ is also the geodesic distance between Z̄1

and Z̄2 in the shape space S , representing the amount of the

optimal deformation of Z̄1 into Z̄2. For t = 0, α(0) = Z̄1

and for t = 1 we have α(1) = Z̄2. Note that Kendall’s
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shape space is a complete Riemannian manifold such that

logZ̄ is defined for all Z̄ ∈ S . As a consequence, the

geodesic distance between two configurations Z̄1 and Z̄2

can be computed as dS(Z̄1, Z̄2) = ‖ logZ̄1
(Z̄2)‖Z̄1

, where

‖.‖Z̄1
denotes the norm induced by the Riemannian metric

at TZ̄1
(S). In view of the spherical structure of C, analytic

expressions of the exponential and logarithm maps are well

defined [8, 25] and can be easily adapted to S . In summary,

we have analytical expressions for computing exponential

map, logarithm map, and intrinsic mean [24] of shapes on

S . We refer the reader to [2] for definitions.

3.2. Sparse coding of skeletal shapes

In this section, we propose to adapt the Riemannian for-

mulation of sparse coding proposed in [21] to the case of

Kendall’s shape space. To this end, we start by studying the

formulation of the problem in Euclidean space.

In Euclidean space, let D = {d1, d2, ..., dN} be a set of

vectors in R
k denoting a given dictionary of N elements

or atoms, and z ∈ R
k a query data point. The problem of

sparse coding z with respect to D can be expressed as

lE(z,D) = min
w
‖z −

N
∑

i=1

[w]i di‖
2
2 + λf(w), (2)

where w ∈ R
N denotes the vector of codes comprised of

{[w]i}
N
i=1, f : RN → R is the sparsity inducing function

defined as the ℓ1 norm, and λ is the sparsity regularization

parameter. Eq. (2) seeks to optimally approximate z (by ẑ)

as a linear combination of atoms, i.e., ẑ =
∑N

i=1 [w]i di,
while tacking into account a particular sparsity constraint

on the codes, f(w) = ‖w‖1. This sparsity function has the

role of forcing z to be represented as only a small number

of atoms.

Moving to the case of Kendall’s shape space, D =
{d̄1, d̄2, ..., d̄N} is now a dictionary on S , and similarly

the query Z̄ is a point on S . Accordingly, the problem of

sparse coding involves the geodesic distance defined on S
and, thus, becomes

lS(Z̄,D) = min
w

(dS(Z̄, C(D, w))2 + λf(w)). (3)

Here, C : SN × R
N → S denotes an encoding function

that generates the approximated point ˆ̄Z on S by combin-

ing atoms with codes. Note that in the special case of Eu-

clidean space, C(D, w) would be a linear combination of

atoms. However, in the Riemannian manifold S , we have

forsaken the structure of vector space which makes the lin-

ear combination of atoms lying on S no longer applicable,

as the approximated ˆ̄Z may lie out of the manifold. An in-

teresting alternative is the intrinsic formulation of Eq. (3),

when considering that S is a complete Riemannian mani-

fold, thus, the geodesic distance dS(Z̄, d̄) = ‖ logZ̄(d̄)‖Z̄

Algorithm 1 Kendall Sparse Coding

Input: Dictionary D = {d̄i}
N
i=1, d̄i ∈ S; Z̄ ∈ S (query)

Output: Sparse codes vector w∗of the query Z̄.

1: for i = 1 to N do
2: Vi ← logZ̄(d̄i) //Projection of D into T

Z̄
(S)

3: end for

4: w∗ = argminw ‖
∑N

i=1 [w]i Vi‖
2
2 + λf(w)

(as explained in section 3.1). As a consequence, the cost

function in (3) can be written as

lS(Z̄,D) = min
w
‖

N
∑

i=1

[w]i logZ̄(d̄i)‖
2
Z̄
+ λf(w), (4)

where logZ̄ denotes the logarithm map operator that maps

each atom d̄ ∈ S to the tangent space TZ̄(S) at the point

Z̄ being coded, and ‖.‖Z̄ is the norm induced by the Rie-

mannian metric at TZ̄(S). Mathematically, this allows to

partially compensate the lack of vector space structure on

S , as illustrated in Fig. 1. To avoid the solution w = 0, we

imposed in Eq. (4) an important additional affine constraint

defined as
∑N

i=1 [w]i = 1. In algorithm 1, we provide a

summary of the SC approach on Kendall’s shape space.

Figure 1. Pictorial of the sparse coding approach on the pre-shape

space C. The approximation of x ∈ C could be viewed as a

weighted Karcher mean of the atoms of a dictionary D = {di}
N

i=1.

3.3. Dictionary Learning on Kendall’s Space

Learning a discriminative dictionary D typically yields

accurate reconstruction of training samples and produces

discriminative codes with the desired structure, e.g., spar-

sity. In this section, we propose to learn D using the geom-

etry of S . Before describing our approach, it is important to

note that the performance of D is sensitive to the number of

atoms N . To the best of our knowledge, all previous meth-

ods opted for an empiric choice of N , which tends to be

highly time consuming, especially when it comes to large

datasets. As a solution, we propose an elegant initialization

step enabling a fully automatic inference on N . Moreover,

it remarkably accelerates the convergence of the dictionary

learning algorithm, as illustrated in the right panel of Fig. 2.
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Dictionary initialization – Given m training skeletons

on S , the idea is to select N relevant atoms to initialize the

dictionary. This is done in two main steps: (1) Clustering

of skeletal shapes; (2) Generating atoms from each cluster

such that they well describe the intra-cluster variability. In

the first step, we adapted the Bayesian clustering of shapes

of curves method proposed in [45] to cluster skeletal shapes

in the Kendall’s shape space. Following [45], an inner prod-

uct matrix is calculated from the data, i.e., skeletal shapes

in our case. Then, it is modeled using a Wishart distribu-

tion. To allow for an automatic inference on the number of

clusters, prior distributions are assigned to the parameters of

the Wishart distribution. Then, posterior is sampled using

a Markov chain Monte Carlo procedure. For more details

about the clustering algorithm, we refer the reader to [45].

At this point, we suppose having h clusters on S . The next

step is to process each cluster independently to generate ini-

tial atoms.

For each cluster, an immediate atom candidate would

be the Karcher mean shape µ̄ ∈ S . However, µ̄ is not

sufficient to summarize the intra-cluster variability. Thus,

we propose to perform principal geodesic analysis (PGA),

first proposed by [12], to generate the most representative

atoms of the cluster. More specifically, we map all cluster

elements to the tangent space of the Karcher mean shape

Tµ̄(S) using logarithm map, overcoming the lack of vec-

tor structure on S . Then, we perform principal component

analysis (PCA) in this vector space. Finally, the resulting

vectors are mapped to the manifold S using exponential

map to become shapes on S and constitute initial atoms of

D. Atoms generated from all clusters are then gathered to-

gether to define the initial dictionary D. Note an important

advantage of performing PGA in each cluster and not in the

whole training set is that in a cluster, elements on S are

relatively close to each others, i.e., pairwise geodesic dis-

tances between them are relatively small. Therefore, when

mapping them to Tµ̄(S), we avoid the problematic case of

having points that are in the cut locus of µ̄.

Dictionary optimization – We present a dictionary

learning algorithm based on the sparse coding framework

described above. First, we recall the formulation of the

problem in Euclidean space. Given a finite set of training

observations {z1, z2, ..., zm} in R
k, learning Euclidean dic-

tionary is defined as to jointly minimize the coding cost over

all choices of atoms and codes according to:

lE(D) = min
D,w

m
∑

i=1

∥

∥

∥

∥

∥

∥

zi −

N
∑

j=1

[wi]jdj

∥

∥

∥

∥

∥

∥

2

2

+ λf(wi). (5)

To solve this non-convex problem, a common approach al-

ternates between the two sets of variables, D and w, such

that: (1) Minimizing over w while D is fixed is a convex

problem (i.e., sparse coding). (2) Minimizing Eq. (5) over

D while w is fixed is similarly a convex problem.

Moving to the case of Kendall’s shape space, D =
{d̄1, d̄2, ..., d̄N} is now a dictionary on S , and similarly

{Z̄1, Z̄2, ..., Z̄m} is a set of training samples on S . Sim-

ilarly to the Kendall sparse coding problem, we introduce

in Eq. (5) the geodesic distance defined on S computed as

dS(Z̄, d̄) = ‖ logZ̄(d̄)‖Z̄ . As a consequence, the problem

of dictionary learning on Kendall’s shape space is written

as

min
D,w

m
∑

i=1

∥

∥

∥

∥

∥

∥

N
∑

j=1

[wi]j logZ̄i
d̄j

∥

∥

∥

∥

∥

∥

2

Z̄i

+ λf(wi), (6)

with the important affine constraint
∑N

j=1 [w]j = 1. Sim-

ilar to the Euclidean case, the optimization problem can be

solved by iteratively performing sparse coding while fixing

D, and optimizing D while fixing the sparse codes. In Al-

gorithm 2, we provide a summary of the dictionary learning

approach on Kendall’s shape space.

Algorithm 2 Kendall Dictionary Learning.

Input: Training set Z = {Z̄i}
m
i=1, where Z̄i ∈ S;

nIter: number of iterations

Output: Kendall dictionary D = { ¯dj}
N

j=1, d̄j ∈ S
1: Dictionary initialization (Clustering - PGA)

2: for k = 1 to nIter do

3: Sparse Coding using Algorithm 1 while D is fixed,

{w∗
i }

m
i=1 are the output sparse codes.

4: Updating atoms using line-search algorithm to solve

Eq. (6) while {w∗
i }

m
i=1 are fixed.

5: end for

4. Temporal modeling and classification

Let {Z̄1, Z̄2, ..., Z̄L} be a sequence of skeletons repre-

senting a trajectory on S . As described in section 3.2,

we code each skeleton Z̄i into a sparse vector of codes

wi ∈ R
N with respect to a dictionaryD (D is given a partic-

ular structure described later on in this section). As a con-

sequence, each trajectory is mapped to an N -dimensional

function of sparse codes and the problem of classifying tra-

jectories on S is turned to classifying N -dimensional sparse

codes functions in Euclidean space, where any traditional

operation on Euclidean time-series (e.g., standard machine

learning techniques) could be directly applied. Several

methods in the literature tend to process and classify time

series [1, 2, 35, 36]. In our work, we adopt two different

classification schemes to perform action classification: (1)

A pipeline of dynamic time warping (DTW), Fourier tem-

poral pyramid (FTP), and one-vs-all linear SVM, as in [35].

Thus, we handle rate variability, temporal misalignment and

noise, and classify final features, respectively. We refer to

[35] for details; (2) Long short-term memory (LSTM) [7],
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which is a variant of recurrent neural networks (RNN) that

brings the advantage of learning long-term temporal depen-

dencies. Moreover, we explored the use of bidirectional

LSTM (Bi-LSTM), an extension of the traditional LSTM

that presents each sequence backwards and forwards to two

separate recurrent networks, providing context both from

the future and past, respectively [14].

Dictionary structure – In the context of classification,

one may exploit the important information of data labels

to construct more discriminative feature vectors. To this

end, we propose to build class-specific dictionaries, simi-

larly to [15]. Formally, let S be a set of labeled sequences

on S belonging to q different classes {c1, c2, ..., cq}, we aim

to build q class-specific dictionaries {D1, D2, ..., Dq} in S
such that each Dj is learned using skeletons belonging to

training sequences from the corresponding class cj . In this

scenario, coding a query skeletal shape Z̄ ∈ S is done with

respect to each Dj,1≤j≤q , independently. As a result, q vec-

tors of codes are obtained. These vectors are then concate-

nated to form a global feature vector W . As discussed in

section 5, this yields to more discriminative feature vectors

for classification.

5. Experiments

In this section, we evaluate the proposed skeletal repre-

sentation using three benchmark datasets presenting differ-

ent challenges: Florence3D-Action [32], UTKinect-Action

[42], and MSR-Action 3D [28]. The obtained recognition

accuracies are discussed in section 5.2 with respect to Rie-

mannian approaches, other recent approaches that used 3D

skeletal data, and to a kernel-based SCDL approach that we

implemented. Additional experiments were conducted to

evaluate the main properties of our proposed approach.

Florence3D-Action [32] dataset consists of 9 actions

performed by 10 subjects. Each subject performed every

action two or three times for a total of 215 action sequences.

The 3D locations of 15 joints collected using the Kinect sen-

sor are provided. The challenges of this dataset consist of

the similarity between some actions and also the high intra-

class variations as same action can be performed using left

or right hand.

UTKinect-Action [42] dataset consists of 10 actions

performed twice by 10 different subjects for a total of 199

action sequences. The 3D locations of 20 different joints

captured with a stationary Kinect sensor are provided. The

main challenge of this dataset is the variations in the view

point.

MSR-Action 3D [28] dataset consists of 20 actions per-

formed by 10 different subjects. Each subject performed

every action two or three times for a total of 557 sequences.

The 3D locations of 20 different joints captured with a depth

sensor similar to Kinect are provided with the dataset. This

is a challenging dataset because of the high similarity be-

tween many actions (e.g., hammer and hand catch).

5.1. Experiments Settings and Parameters

For all datasets, we followed the cross-subject test set-

ting of [38], in which half of the subjects was used for

training and the remaining half was used for testing. Re-

ported results were averaged over ten different combina-

tions of training and test data. For Florence3D-Action and

UTKinect-Action datasets, we followed an additional set-

ting for each: Leave-one-actor-out (LOAO) [32, 37] and

Leave-one-sequence-out (LOSO) [42], respectively. For

MSR-Action3D dataset, we also followed [28] and divided

the dataset into three subsets AS1, AS2, and AS3, each

consisting of 8 actions, and performed recognition on each

subset separately, following the cross-subject test setting of

[38]. The subsets AS1 and AS2 were intended to group ac-

tions with similar movements, while the subset AS3 was

intended to group complex actions together. In all ex-

periments, we performed recognition based on two clas-

sification schemes, as explained in section 4, to evaluate

the performance of our proposed representation and its in-

dependency to a specific classifier. In the first scheme, we

used a pipeline of DTW, FTP, and one-vs-all linear SVM as

in [35]. In all experiments, we used a six-level Fourier tem-

poral pyramid and fixed the value of SVM parameter C to

1. In the second scheme, we train the network with one Bi-

LSTM layer. The minimization is performed using Adam

optimizer and the applied probability of dropout is 0.3, for

all experiments. Due to variations in terms of the num-

ber of joints and sequence length for different datasets, the

value of neuron size was chosen based on cross-validation

for each dataset.

5.2. Results and discussion

A. Comparison to existing Riemannian representations

Table 1 reports recognition accuracies for different Rieman-

nian skeletal representations. Conforming to other methods,

we compare results obtained using the evaluation protocol

of [38] for Florence3D, UTKinect, and MSR-Action, in ad-

dition to the protocol of [28] for MSR-Action. Moreover, as

in [2] human actions are also first represented as trajectories

in the Kendall’s shape space, we report additional results of

[2] on Florence3D and UTKinect datasets to give more in-

sights about the strength of our coding approach compared

to the method of [2]. In Table 1, it can be seen that we obtain

better results than all Riemannian approaches on the three

datasets. We recall that one drawback of these methods is to

map trajectories on manifolds to a reference tangent space,

which may introduce distortions in the case points are not

close to the reference point. Our method avoids such a non-

trivial problem as coding of each shape is performed locally,

on its attached tangent space. First, we discuss our results

obtained with the first classification scheme, i.e., FTP repre-
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sentation with linear SVM, similarly used in [1, 35, 36]. In

the three datasets, it is clearly seen that our approach outper-

forms existing approaches when using the same classifica-

tion pipeline, which shows the effectiveness of our skeletal

representation. For instance, we highlight an improvement

of 1.73% on MSR-Action 3D (following protocol [28]) and

1.45% on Florence3D-Action.

Now, we discuss the results we obtained using Bi-LSTM.

Note that although we do not perform any preprocess-

ing on the sequences of codes when using this classifier,

our approach still outperforms existing approaches on Flo-

rence3D, with 1.64% higher accuracy. However, it per-

forms less well on UTKinect yielding an average accuracy

of 96.89% against 97.08% obtained in [35]. In MSR-Action

3D, our approach performs better than the method of [1] us-

ing the first protocol. Note that in [1], results were averaged

over all 242 possible combinations. However, our average

accuracy is lower than other approaches following both pro-

tocols on this dataset (around 3.5% in the first and 0.62% in

the second). Here, it is important to mention that data pro-

vided in MSR-Action 3D are noisy [31]. As a consequence,

using Bi-LSTM without any additional processing step to

handle the noise (e.g., FTP) could not achieve state-of-the-

art results on this dataset.

Table 1. Comparison to Riemannian representations.

Method MSR3D1 Florence UTK MSR3D2

T-SRVF Lie group [1] 85.16 89.67 94.87 –

T-SRVF on S [2] 89.9 70.40* 89.82* –

Lie Group [35] 89.48 90.8 97.08 92.46

Rolling rotations [36] – 91.4 – –

Kernel-based SCDL* – 85.76* 88.94* –

Ours (FTP-SVM) 90.01 92.85 97.39 94.19

Ours (Bi-LSTM) 86.18 93.04 96.89 91.84

1 Average accuracy following protocol of [39].
2 Average accuracy following protocol of [28].
* Experiments were conducted as part of our work.

B. Comparison to State-of-the-art We discuss our re-

sults with respect to recent non Riemannian approaches. In

all datasets, our approach achieved competitive results.

Florence3D-Action – On this dataset, our method out-

performs other methods using Bi-LSTM in the case of

LOAO protocol, as shown in Table 2. However, using the

second protocol, it is 2.19% lower than [26]. The authors

of [26] combine two kernel representations: sequence com-

patibility kernel (SCK) and dynamics compatibility kernel

(DCK) which separately achieved 92.98% and 92.77%, re-

spectively. The proposed approach achieves good perfor-

mance for most of the actions. However, the main confu-

sions concern very similar actions, e.g., Drink from a bottle

and answer phone.

UTKinect – Results are reported in table 3. Following

the LOSO setting, our approach achieves the best recog-

Table 2. Florence3D: comparison with state-of-the-art.
Method LOAO prot. of [38]

Graph-based [40] 91.63 –

T-Forest [13] 94.16 –

SCK+DCK [26] – 95.23

Ours (FTP-SVM) 92.27 92.85

Ours (Bi-LSTM) 94.48 93.04

nition rate with each of the adopted classifiers, yielding to

an improvement of 2.49% compared to the method of [29],

which is based on an extended version of LSTM. For the

second protocol, our best result is competitive to the accu-

racy of 98.2% obtained in [26]. Considering the main chal-

lenge of this dataset, i.e., variations in the view point, our

approach confirms the importance of the invariance prop-

erties gained by adopting the Kendall’s representation of

shape, hence, the relevance of the resulting functions of

codes generated using the geometry of the manifold.

Table 3. UTKinect: comparison with state-of-the-art.
Method LOSO prot. of [38]

ST-LSTM [29] 97.0 95.0

JLd+RNN [44] – 95.96

Graph-based [40] – 97.44

SCK+DCK [26] – 98.2

Ours (FTP-SVM) 97.50 97.39

Ours (Bi-LSTM) 98.49 96.89

MSR-Action 3D – For the experimental setting of [28],

our best result is competitive to recent approaches. In par-

ticular, on AS3, we report the highest accuracy of 100%.

This result shows the efficiency of our approach in recogniz-

ing complex actions, as AS3 was intended to group complex

actions together. On AS1, we achieved one of the highest

accuracies (95.87%). However, our result on AS2 is about

8.9% lower than state-of-the-art best result. This shows that

our approach performs less well when recognizing similar

actions, as AS2 was intended to group similar actions to-

gether. Although our best result is slightly higher than [26],

it is lower than the same method when following the ex-

perimental setting of [39]. This shows that our approach

performs better in recognition problems with less classes.

Table 4. MSR-Action 3D: comparison with state-of-the-art.

Method AS1 AS2 AS3 Avg1 Avg2

SCK+DCK [26] – – – 93.96 91.45

HBRNN-L [10] 93.33 94.64 95.50 94.49 –

T-Forest [13] 96.10 90.54 97.06 94.57 –

ST-NBNN [41] 91.5 95.6 97.3 94.8 –

Ours (FTP-SVM) 95.87 86.72 100 94.19 90.01

Ours (Bi-LSTM) 92.72 84.93 97.89 91.84 86.18

1 Average accuracy for AS1, AS2, and AS3 following [28].
2 Average accuracy following protocol of [39].

C. Comparison to an extrinsic SCDL method To fur-

ther evaluate the strength of the proposed intrinsic ap-

proach, we compare it to a kernel-based SCDL method
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that we implemented. Several works studied kernels on the

2D Kendall manifold. However, to our knowledge, none

of them has proved the existence of valid positive definite

(PD) kernels on the 3D Kendall manifold. In [23], for 2D

shapes, the authors proved the positive definiteness of the

Procrustes Gaussian kernel (PGk) which is based on the full

Procrustes distance (fPd). For 3D shapes, we adapted the

general kernel-based SCDL formulation of [17] by apply-

ing the PGk of [23] in which we also adapted the fPd to

3D shapes as dFP ([z1], [z2]) = sin(θ) (see section 4.2.1

of [9]) (θ is the geodesic distance defined in section 3.1).

Experimentally, we checked the positive definiteness of the

adapted PGk and found out that it is only PD for some val-

ues of σ. We empirically chose 0.1 for Florence3D and 0.3
for UTKinect as to have valid PD kernels. Results reported

in Table 1 show superiority of our method.

D. Additional Experiments We evaluate some properties

of the proposed SCDL approach. In addition, we compare

the performance of using Bi-LSTM against a traditional

LSTM. These experiments were conducted on the Florence-

3D dataset.

Sparsity regularization – In this experiment, we evalu-

ate the effect of the sparsity regularization parameter λ (in

Eq. (3) and Eq. (6)) on recognition accuracies obtained us-

ing both of the adopted classifiers. To do so, we used half

of a training set for learning the dictionary and training the

classifiers and the other half for validation. The first graph

of Fig. 2 shows the impact of increasing λ from 10−4 to

1 at steps of 10−2. Further, we report the average sparsity

percentage (i.e., number of non-zero codes divided by the

total number of codes) for some values of λ to show the co-

herence of the obtained codes with the proposed theory. As

expected, the sparsity percentage increases when increas-

ing λ. We remark that the accuracy reached a maximum

value at λ = 0.01 (37% of sparsity) and λ = 0.02 (49%
of sparsity) for SVM and Bi-LSTM, respectively. Note that

in all previous experiments, λ was chosen empirically so to

correspond to these latter percentages of sparsity.
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Figure 2. Left: Accuracy when varying the sparsity regularization

parameter λ (% values in the x-axis represent the average spar-

sity). Right: Dictionary learning objective over iterations for: (1)

Random initialization; (2) Our proposed initialization based on

Bayesian clustering and PGA.

.

Dictionary structure – As described in section 4, we

build class-specific dictionaries. To show the relevance of

this structure in the context of classification, we compare it

to the case of using a global dictionary, e.g., when labels

are not taken into account. The obtained recognition ac-

curacies using Bi-LSTM and following the LOAO setting

are 94.48% and 91.53% for class-specific and global dic-

tionary, respectively. These results clearly prove that the

adopted structure is better in classifying actions.

Dictionary initialization – In this experiment, we eval-

uate the performance of our proposed initialization step

based on Bayesian clustering of shapes and PGA. To this

end, we compare it to the case of random initialization,

where atoms are randomly selected from the training set.

We train a class-specific dictionary (for class tight lace in

Florence3D dataset) with the same training data in both

cases. For the case of random initialization, we set the

number of atoms N to 41 to be equal to that of our pro-

posed initialization. Recall that in our approach, N is auto-

matically inferred to avoid its empiric choice, especially as

we build class-specific dictionaries. In Fig. 2, on the right

graph, we plot the two corresponding dictionary learning

objectives over iterations. As it is expected, the proposed

initialization shows faster convergence, dividing the overall

dictionary learning processing time by approximately two

times, when taking into account the execution time of our

initialization step.

Performance of Bi-LSTM – We compared average ac-

curacies yielded by Bidirectional LSTM and a traditional

LSTM. Following LOAO experimental setting, using Bi-

LSTM shows an improvement of around 0.7%, indicating

the positive effect of learning both future and past contexts

to recognize actions.

6. Conclusion

In this paper, we represented a 3D human skeleton as

a point in the Kendall’s shape space, hence a human ac-

tion as a trajectory in this space, to consider important in-

variance properties for shape analysis. Due to the inher-

ent non-linearity of this manifold, we proposed to sparsely

code each skeletal shape on its attached tangent space with

respect to a trained dictionary, avoiding the problematic

mapping of points to a fixed tangent space attached to the

manifold. We initialized the dictionary by clustering skele-

tal shapes and principal geodesic analysis in the clusters.

This step not only accelerated the dictionary learning algo-

rithm but also inferred automatically the number of atoms.

We learned the initial dictionary using the geometry of the

Kendall’s shape space. Our coding scheme yielded to rep-

resent trajectories as sparse code functions allowing to di-

rectly process and classify them in vector space. This was

illustrated on the problem of 3D action recognition using

two different classifiers and achieved competitive results

with respect to the literature.
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