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Abstract

In this paper, we propose a deep progressive reinforce-

ment learning (DPRL) method for action recognition in

skeleton-based videos, which aims to distil the most infor-

mative frames and discard ambiguous frames in sequences

for recognizing actions. Since the choices of selecting rep-

resentative frames are multitudinous for each video, we

model the frame selection as a progressive process through

deep reinforcement learning, during which we progressive-

ly adjust the chosen frames by taking two important factors

into account: (1) the quality of the selected frames and (2)

the relationship between the selected frames to the whole

video. Moreover, considering the topology of human body

inherently lies in a graph-based structure, where the ver-

tices and edges represent the hinged joints and rigid bones

respectively, we employ the graph-based convolutional neu-

ral network to capture the dependency between the joints for

action recognition. Our approach achieves very competitive

performance on three widely used benchmarks.

1. Introduction

Action recognition is an important research direction in

computer vision, which has worldwide applications, such

as video surveillance, human-robot interaction and so on.

Compared with the conventional RGB videos, the skeleton-

based sequences contain compact 3D positions of the major

body joints, which are robust to variations of viewpoints,

body scales and motion speeds [1]. Thus, skeleton-based

action recognition has attracted more and more attention in

recent years [2–8].

With the development of the cost-effective depth sen-

sors (e.g. Kinect) and pose estimation algorithms [9], the

amount of skeleton-based data is growing rapidly [10, 11].

Therefore data-driven methods have been increasingly pro-

posed for skeleton-based action recognition, by training

∗indicates equal contribution, the corresponding author is Jiwen Lu.

Figure 1. The pipeline of our proposed method for skeleton-based

action recognition in the testing period. Given a video of human

body joints, we first select key frames with a frame distillation net-

work (FDNet), which is trained by the proposed deep progressive

reinforcement learning method. Then, we employ a graph-based

convolutional neural network (GCNN), which retains the depen-

dency between human joints, to deal with the selected key frames

for action recognition. (Best viewed in color)

deep models like recurrent neural networks (RNN) [12–14]

and convolutional neural networks (CNN) [15, 16]. The

RNN-based model has the capability to model the temporal

dependency, but it is difficult to train the stacked RNN in

practice [15, 17]. On the other hand, the CNN-based mod-

el, which captures the relationship of neighboring frames

at lower layers and long-term dependency at higher layer-

s [18], is more effective and obtains promising performance

recently [15, 16]. However, most CNN-based methods for

skeleton-based action recognition consider all of the frames

in a sequence as equally important, which fails to focus

on the most representative frames. Take a video of action

15323



‘kick’ as an example, there are some frames in which the

subject stands upright, as well as other frames showing the

subject kicks out the leg. The latter are more informative

for recognizing this action.

In order to seek the most informative frames of a se-

quence, we propose a deep progressive reinforcement learn-

ing (DPRL) method. Since the choices of selecting different

frames are multitudinous for each video, we model the pro-

cedure of selecting frames as a progressive process. Specifi-

cally, given the initialised frames which are uniformly sam-

pled from an input sequence, we progressively adjust the

chosen frames at each state according to two important fac-

tors. One is the discriminative power of the selected frames

for action recognition. The other is the relationship of the

selected frames to the whole action sequences. The final se-

lected frames are considered as the distillation of the video,

and are employed to recognize actions. Moreover, most

CNN-based methods adopt the Euclidean structure to mod-

el the articulated joints, which ignore the intrinsic topology

of human bodies. To address this, we model the joints and

their dependency as a graph. The vertices of the graph con-

tain the 3D coordinates of the body joints, while the adja-

cency matrix captures their relationship. Since the graph of

joints lies in a non-Euclidean space, we leverage the graph-

based convolutional neural network (GCNN) to learn the

spatial dependency between the joints. We evaluate our ap-

proach on three skeleton-based action recognition datasets,

where the competitive experimental results demonstrate the

effectiveness of our approach.

2. Related Work

Skeleton-based Action Recognition: There have been

a number of skeleton-based action recognition methods in

recent years [12–15, 19–24] , and they can be mainly clas-

sified into two categories: hand-crafted feature based and

deep learning feature based. For the first category, Vemu-

lapalli et al. [6] represented the human skeleton as a point

in the Lie group, and implemented temporal modelling and

classification in the Lie algebra. Weng et al. [8] extend-

ed Naive-Bayes Nearest-Neighbor (NBNN) method [25] to

Spatio-Temporal-NBNN, and employed the stage-to-class

distance to classify actions. Koniusz et al. [26] presented

two kernel-based tensor representations to capture the com-

patibility between two action sequences and the dynamic

information of a single action. Wang et al. [5] proposed an

undirected complete graph representation, and presented a

new graph kernel to measure the similarity between graphs.

However, the graph representation in [5] is used to model

the video, while the graph in our work is adopted to cap-

ture the topology of human body. The Deep learning fea-

ture based methods can be further divided into CNN-based

model and RNN-based model. For the CNN-based mod-

el, Ke et al. [15] presented a new representation of skele-

ton sequences based on the cylindrical coordinates. Liu

et al. [16] transformed the skeletons into a series of color

images and fed them into the CNN architecture to classi-

fy action category. Motivated by [27], Li et al. [20] em-

ployed a two-stream CNN architecture to combine the po-

sition and velocity information of human joints. Differen-

t from these CNN-based methods in which all the frames

are treated equally, our method aims to find the most infor-

mative frames of the video for action recognition. For the

RNN-based model, Zhu et al. [12] introduced a regularized

LSTM model for co-occurrence feature learning. Song et

al. [13] proposed a spatio-temporal attention model to al-

locate different weights to different frames and joints in the

video. Liu et al. [14] presented a trust gate module to ad-

dress the noise in skeletal data. Recently, Jain et al. [28]

combined RNN with the spatio-temporal graph, modelling

the relationship of three parts (i.e. spine, arm and leg) for

human motion. Different from [28], our graph model takes

every joint of human body as a vertex, which is a finer way

for utilizing the skeleton-based data.

Deep Reinforcement Learning: Reinforcement learn-

ing [29] is originated from the psychological and neuro-

scientific understandings of how humans learn to optimize

their behaviors in an environment. It can be mathematically

formulated as a Markov decision process (MDP) [30]. With

a person being generalized to an agent, the behaviors be-

ing generalized to a set of actions∗, a typical reinforcement

learning problem can be formulated as an agent optimizes

its policy of actions by maximizing the numerical rewards

it receives from an environment. As a pioneering work, M-

nih et al. [31] combined recent advances in deep neural net-

works. They proposed deep reinforcement learning (DRL)

to bridge the divide between high-dimensional sensory in-

puts and actions, and achieved human-level control in Atari

games. Computer vision has also benefited from DRL in

recent years. For example, Mnih et al. [32] proposed

the Recurrent Attention Model, in which the visual fixa-

tions of an image is modelled as a sequential MDP. Haque

et al. [33] applied DRL to person identification, Yeung et

al. [34] to action detection, and Jie et al. [35] to object de-

tection. More recently, Yun et al. [36] employed DRL for

visual tracking and Rao et al. [37] for face recognition. To

date, little progress has been made in DRL for action recog-

nition, especially skeleton-based action recognition. [34,37]

are similar to our work in the purpose of DRL, i.e. selecting

key frames in videos. However, in both works the actions

affected only one single frame. More specifically, [37] de-

cided whether to drop a frame or not and [34] selected one

frame at each step, while we deal with the adjustments of

all the selected frames at one time.

∗There are two types of actions in this paper, i.e., the actions to be

recognized and the actions in the Markov decision process (MDP). For

clarity, We use the bold-sized word to represent the actions of MDP.
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Figure 2. Modelling human body as a graph. The vertices of the

graph are presented as the blue dots, which contain the 3D coor-

dinates of human joints, while the edges reflect the relationships

between joints, which can be categorized as intrinsic dependencies

(i.e. physical connection) and extrinsic dependencies (i.e. physi-

cal disconnection). Take the action ‘clap hand’ as an example, the

intrinsic dependency is suggested as black solid lines, while the

extrinsic dependency is represented as orange dashed lines. We

set different parameters in the weighted adjacency matrix to dis-

tinguish these two types of dependencies. For simplicity, we only

draw several important lines.

3. Approach

Figure 1 illustrates the pipeline of our proposed mod-

el. Specifically, there are two sub-networks in our method:

frame distillation network (FDNet) and graph-based convo-

lutional network (GCNN). The FDNet aims to distil a fixed

number of key frames from the input sequences with a deep

progressive reinforcement learning method. Then, we or-

ganize the outputs of the FDNet into a graphical structure

based on the dependencies between human joints, and feed

them into the GCNN to recognize the action label. As the

GCNN provides rewards for the FDNet during the training

process, we first introduce the GCNN part as follows.

3.1. Graph­based Representation Learning

Graph Construction: Since the human body can be

considered as an articulated system consisting of hinged

joints and rigid bones, which inherently lies in a graphed-

based structure, we construct a graph G(x,W ) to model the

human body for each single frame, where x ∈ R
N×3 con-

tains the 3D coordinates of the N joints and W is a N ×N
weighted adjacency matrix:

wij =





0, if i = j

α, if joint i and joint j are connected

β, if joint i and joint j are disconnected

(1)

Here, we set wii = 0 to discard the self connection of

each joint. Moreover, we distinguish the relationship be-

tween joints as intrinsic dependency and extrinsic depen-

dency. The intrinsic dependency, which is described as α
in the weighted matrix W and suggested as the black solid

lines in Figure 2, refers to the physical connection of joints.

As an important property, the distance between each pair of

connected joints keeps invariant during the action process.

The extrinsic dependency, as the orange dashed lines show

in Figure 2, refers to the disconnected relationship of two

joints, which is also an important factor during the action

process. For example, the left hands and right hands are

disconnected physically, but their relationship presents sig-

nificant importance for recognizing the action ‘clap hands’.

Here, we use the parameter β in W to model the extrinsic

relationship.

Graph-based Architecture: The GCNN can be regard-

ed as a modification of the conventional CNN, aiming to

deal with the graph-based data which lies in non-Euclidean

space. Given a video with T frames, we first construct each

frame into a graph according to Eqn.1 as [G1,G2, ...,GT ].
For each graph Gt at tth frame, we first feed it into the

graph-based convolutional layer as:

zt = y(η,W ) ∗ xt (2)

where y(η,W ) and * are the kernel and operator of the

graph-based convolutional [38] respectively and will be de-

tailed later. We then feed zt into a fully-connected layer,

the output of which is denoted as gt. For t = 1, 2, ..., T , we

concatenate gt in the time axis and obtain a feature map G
for the input video:

G = concat[g1, g2, .., gT ] (3)

where G is a 3D tensor, which is finally sent into a conven-

tional CNN for action recognition. We adopt the categorical

cross-entropy loss to train the GCNN.

Graph-based Convolution: The graph-based convolu-

tional layer is the core module in this network. We consider

the graph Laplacian [39] on the spectral domain with the

normalized definition: L = In − D−1/2WD−1/2 , where

D is the diagonal degree matrix with dii =
∑

j wij . We

scale L as L̃ = 2L/λmax− In and denote xk = Tk(L̃) ∗ x,

where λmax is the maximised eigen value of L and Tk is

the Chebyshev polynomial [40]. Then, the convolutional

operator can be formulated as [38]:

y(η,W ) ∗ x = η[x0, x1..., xK−1]
T (4)

Here, η ∈ [η0, η1..., ηK−1] are the parameters to be trained,

and K is the size of the graph-based convolutional kernel.

3.2. Deep Progressive Reinforcement Learning

For the task of action recognition in skeletal videos, not

every frame is of equal temporal importance. This is the key

insight to our application of reinforcement learning-based

attention. The selection of key frames is formulated as a

Markov decision process (MDP) [41], based on which we
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Figure 3. Process of selecting key frames in skeleton-based videos progressively. Given a skeleton-based sequence, we first uniformly

sample several frames. After the progressive adjustment, we obtain the most informative frames of the videos. Each state contains the

information of selected frames, their indices and the whole sequence. Actions, which are obtained by the states and FDNet, denote the

direction of ‘shifting to left’, ‘staying the same’ or ‘shifting to right’ at the next step for each selected frame.

use reinforcement learning to refine the frames at each it-

eration. Figure 3 provides a sketch map of this process,

which is implemented based on FDNet as shown in Figure

4. The agent, interacting with an environment that provides

rewards and updates its state, learns by maximizing the to-

tal discounted reward to adjust the selected frames, finally

resulting in a given number m of the most distinguishable

frames. The states, actions and rewards of this MDP are

elaborated below.

States: The state S of the MDP consists of two sep-

arate parts {Sa, Sb}. Sa = [F,M ], which is the concate-

nation of two tensors F and M . F consists of the global

information of a skeletal video, which is a tensor with the

shape of f × N × 3. Here, f , N and 3 denote the num-

bers of frames, joints and axes respectively. For the videos

that are not exactly f frames long, we use bicubic interpola-

tion [42] to derive a video of f frames in which the first and

last frame are the same as the original one. Similar to F , M
is a m×N×3 tensor, representing the information of the m
selected frames. M is introduced to implicitly provide the

FDNet with knowledge about which frames of the video are

selected. Sb, the binary mask of the selected indices, is de-

signed to explicitly make the FDNet aware of the selection.

It is an f -dimensional vector with m elements being 1 and

the rest being 0. Here we set f to be 100 and m to be 30.

Actions: The action, i.e. the output of the FDNet, is

the adjustment direction of each selected frame. We define

3 types of action as ‘shifting to left’ (action 0), ‘staying

the same’ (action 1) and ‘shifting to right’ (action 2), and

shifting step is set to be 1 frame. As shown in Figure 4, the

FDNet emits a vector A ∈ Rm×3 at each iteration, where

Ai,j ∈ [0, 1] represents the probability of choosing action

j for the ith selected frame. To ensure the order of the m
frames, for example the 1st selected frame should always

be temporally earlier than the 2nd selected one, we set the

upper bound of the frame adjustment Υi (i = 1, 2, ...,m) to

be the middle between one frame and the frame next to it in

the selected frame set:

Υi =

{
⌈(Mi +Mi+1)/2⌉ , 1 ≤ i ≤ m− 1

f , i = m
(5)

where ‘⌈⌉’ represents the ceil function. Similarly, the lower

bound Λi (i = 1, 2, ...,m) is set to be the middle between

the current frame and the previous one.

Λi =

{
⌈(Mi−1 +Mi)/2⌉ , 2 ≤ i ≤ m

0 , i = 1
(6)

Here Υ and Λ are two arrays of size m. The adjust-

ment of a frame i is executed within the bound [Λi,Υi), or

otherwise invalidated. Then, the frame adjustments can be

written as:

M ′
i = Mi + δi (7)

where

δi =





−min{1, (Mi − Λi)} , if action 0

0 , if action 1

min{1, (Υi −Mi − 1)} , if action 2

(8)
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Figure 4. The FDNet architecture for adjusting the key frames

in skeleton-based videos. The FDNet takes the input of Sa and Sb

separately, where Sa contains the information of the whole video

F as well as the selected frames M , and Sb is an f - dimension bi-

nary mask of the selected indices with f elements being 1 and the

rest being 0. Then, Sa is processed by a CNN of 3 convolutional

layers with the kernel size 3× 3 and a fully connected layer (fc1),

while Sb is passed through fc2. The extracted features of these

two parts are concatenated before they are fed into fc3. Softmax

functions are then employed to regularize the output of fc3. The

output is a set of actions, which direct the refining process at the

next step.

In this way, the action will make influence on the state tran-

sition.

Rewards: The reward, as a function r(S,A), reflects

how good the action taken by the agent is with regard to the

state S. We generate the reward with the pre-trained GCNN,

which takes the m selected frames of a video as input (we

set T = m). For the first iteration, r is set to be 1 if the

prediction is correct, and−1 otherwise. For the nth (n > 1)
iteration, we first define the r0 reward as follows:

r0 = sgn(Pn,c − Pn−1,c) (9)

where c is the ground truth label of the video, and Pn,c

represents the probability of predicting the video as class

c at the nth iteration. The reward r0 takes value in

{−1, 1}, reflecting the predicted possibility improvemen-

t of the ground-truth action, i.e. the aggregated predicted

possibility fall of the other actions. We choose this func-

tion to enhance the rewards by probability change and it is

shown better than numeric values from experimental result-

s. Besides, a strong stimulation of r = Ω is enforced when

the predicted action turns from incorrect to correct after one

iteration, and a strong punishment of r = −Ω if the turning

goes otherwise. Thus, the final form of the reward r when

n > 1 can be written as:

r =





Ω , if stimulation

−Ω , if punishment

r0 , otherwise

(10)

Progressive Reinforcement: Figure 4 presents the ar-

chitecture of our FDNet FD(S; θ), which contains three

convolutional layers and three fully connected layers. It pre-

dicts the optimal action when fed with the state in the form

of S, which is initialized by uniformly sampling. The two

parts of S are sent into the FDNet separately, as Sa is fed

into a convolutional network followed by one fully connect-

ed layer and Sb is fed into a fully connected layer. Then, the

outputs of the two fully connected layers are concatenated

and fed through the third fully connected layer. Finally, m
softmax layers are adopted to produce A for actions.

In order to maximize the discounted reward R =∑
t≥0

γtrt, we compute the cross-entropy loss as follows:

l(θ) = −
1

m

m∑

t=1

log(πθ(St, At)) (11)

This loss term gives the direction of updating the param-

eters θ. We normalize R to be R̃, which plays the role of

strengthening this gradient descent. Thus, θ is updated by

θi+1 = θi +∇l(θ)R̃ (12)

The pipeline of our DPRL is summarized in Algorithm 1.

The training of DRL problems can generally be catego-

rized into two branches: deep Q-learning and policy gradi-

ent. As defined above, our action set consists of the differ-

ent choices of adjusting the m selected frames. There are 3
actions for each selected frame, the exponential size 3m is

computationally infeasible for deep Q-learning. Thus, we

employ the policy gradient method which requires only a

linear increase of the output dimension.

3.3. Combination of GCNN and FDNet

For all of the skeleton-based videos in the training set,

we first sample their frames uniformly to obtain the se-

quences in fixed size. These sequences are used to train

the GCNN to capture joint dependencies in the spatial do-

main. Then, we fix the parameters in GCNN to train FDNet

and update the selected frames for each video in the tempo-

ral domain, which are used to refine the GCNN. These two

models promote each other mutually, as GCNN provides

rewards for FDNet and FDNet selects key frames for refin-

ing GCNN. The better GCNN is, the more accurate reward-

s will be provided. The higher quality the selected frames

have, the better GCNN can be refined. At the test time, each

video goes through the FDNet to produce its corresponding

sequence with the informative frames, which will be finally

sent into the GCNN to provide the action label.
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Algorithm 1: DPRL

Input: Training videos V, label l, GCNN model G.

Output: Weights θ of FDNet FD

initialise θ
for epoch← 1, 2, ..., E do

for Vi in V do

uniformly select frames M1 from Vi

initialise S1 with M1

for t← 1,2, ... , τ do

use St to generate At = FD(St; θ)
choose the action w.r.t. At

update the selected frames to Mt+1 by (7)

update the state to St+1

compute the reward rt using G, l by (10)

end

compute the loss l(θ) by (11)

compute the normalized total reward R̃
update θ by (12)

end

end

return θ

4. Experiments

We conducted experiments on three widely used dataset-

s to evaluate our proposed DPRL method, and compared it

with state-of-the-art skeleton-based action recognition ap-

proaches as well as the baseline methods. The following

describes the details of the experiments and results.

4.1. Datasets and Experiment Settings

NTU+RGBD Dataset (NTU) [22]: This is the current-

ly largest dataset for action recognition with more than 56

thousand sequences and 4 million frames. The dataset was

captured from 40 different human subjects and has 60 class-

es actions. We use the 3D skeleton data of 25 major body

joints. The benchmark evaluations include Cross-Subject

(CS) and Cross-View (CV) setting. In the Cross-Subject e-

valuation, 40320 samples from 20 subjects were used for

training and the other 16540 samples were for testing. In

Cross-View evaluation, the 37,920 samples captured from

camera 2 and 3 were used for training, while the other

18960 samples from camera 1 were for testing.

SYSU-3D Dataset (SYSU) [43]: The SYSU-3D dataset

contains 480 sequences and 12 different actions performed

by 40 persons. The 3D coordinates of 20 joints are asso-

ciated with each frame of the sequence. We employed the

videos performed by 20 subjects for training, and the se-

quences captured from the rest 20 subjects for testing. We

adopted 30-fold cross-validation and show the mean accu-

racy on this dataset.

UT-Kinect Dataset (UT) [44]: This dataset includes

200 skeleton sequences with 20 skeleton joints per frame.

There are 10 types of actions and each of them is per-

formed by 10 subjects twice. We adopted the leave-one-

out cross-validation protocol to evaluate our method on this

dataset [45].

Baseline Methods: We organized each video as a T ×
N × 3 tensor, where T represents the uniformly sampled

frames, N is the number of the body joints, and 3 denotes

the 3D coordinates of joints. We empirically set T to be

30, and N is equal to 25, 20 and 20 for NTU, SYSU and

UT respectivly. Then, a CNN-based model with 3 convo-

lutional layers and 3 fully-connected layers is employed to

recognize the actions. The kernel sizes of the 3 convolu-

tional layers were 3 × 3 and the numbers of channels were

32, 64 and 128. We adopted 3 max pooling layers with

the size of 2 × 2 after each convolutional layer. The di-

mension of 3 fully connected layers were 256, 128 and C

(the number of action category). In order to demonstrate

the effectiveness of DPRL and module of graph-based rep-

resentation learning, we report the results on the baseline

model (i.e. Ours-CNN) as well as our proposed method-

s (i.e. Ours-GCNN, Ours-DPRL and Ours-DPRL+GCNN)

for each dataset respectively. Here, Ours-DPRL stands for

adopting the DPRL to select frames rather than uniformly

sampling frames, while Ours-DPRL+GCNN represents re-

placing the baseline model with GCNN architecture while

DPRL is employed.

Implementation Details: Our proposed method was im-

plemented with the Tensorflow [46] and Keras [47] tool-

box, while the network architecture was built on two Nvidia

GTX 1080 GPUs. The two sub-networks were both trained

from scratch. For the GCNN, we chose ELUs [48] as the

activation functions and set the dropout rate to 0.5. The k-

ernel size of the graph-based convolutional layer was set to

be 5, and the batchsize was set to be 64, 16, 8 for NTU,

SYSU and UT dataset respectively. In terms of construct-

ing the adjacent weight matrix, we set α = 5 and β = 1,

which highlights the intrinsic dependency and retained the

extrinsic dependency. We employed Adam [49] to train the

whole network with the initial learning rate 10−3. In order

to deal with the condition of two people in NTU dataset, we

adopted the maxout scheme [50] as suggested in [20]. We

did not perform any rotations and normalization for skele-

ton data during pre-processing.

For the FDNet model, the structure of which is shown

in Figure 4, we set the dropout rate to be 0.5, chose ReLUs

as the activation functions, and utilized Adam optimizer to

train the FDNet with the learning rate 10−5. The actions

were selected stochastically with the corresponding prob-

ability Ai,j . We empirically set the number of adjustment

iterations τ of a video to be 7 and the parameter Ω in Eqn.10

to be 25, so that Ω was greater than τ × |r0| to perform the

strong simulation/punishment.
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Figure 5. Visualizations of the selected results.The horizontal axis denotes the frame index, while the vertical axis represents the number

of frames selected in the neighbourhood corresponding to the index.

Table 1. Comparisons of action recognition accuracy (%) on the

NTU dataset. The GCNN, GCNN1 and GCNN2 stand for different

adjacency matrices used for graph construction: GCNN for α = 5,

β = 1, GCNN1 for α = 1, β = 0, GCNN2 for α = 1, β = 1.

Method CS CV Year

Dynamic Skeletons [43] 60.2 65.2 2015

HBRNN-L [24] 59.1 64.0 2015

Part-aware LSTM [22] 62.9 70.3 2016

ST-LSTM+Trust Gate [51] 69.2 77.7 2016

STA-LSTM [13] 73.4 81.2 2017

LieNet-3Blocks [21] 61.4 67.0 2017

Two-Stream RNN [19] 71.3 79.5 2017

Clips+CNN+MTLN [15] 79.6 84.8 2017

VA-LSTM [23] 79.2 87.7 2017

View invariant [16] 80.0 87.2 2017

Two-Stream CNN [20] 83.2 89.3 2017

LSTM-CNN [52] 82.9 91.0 2017

Ours-CNN 79.7 84.9

Ours-GCNN 81.1 87.0

Ours-DPRL 82.3 87.7

Ours-DPRL+GCNN1 82.5 88.1

Ours-DPRL+GCNN2 82.8 88.9

Ours-DPRL+GCNN 83.5 89.8

4.2. Results on NTU+RGBD Dataset

The results on the NTU dataset show that, our method

achieves the performance of 83.5% (CS) and 89.8% (CV)

respectively. For the DPRL, our model achieves 2.6% (C-

S) and 2.8% (CV) improvement over the baseline method

(ours-CNN), while the graph-based module (ours-GCNN)

brings 1.4% (CS) and 2.1% (CV) improvement, which

shows the effectiveness of our proposed method.

Comparison with the State-of-the-arts: Table 1

presents the comparison performance with the state-of-the-

arts. We see that, our method is superior to other state-of-

the-art approaches except LSTM-CNN method [52]. This

is because [52] combines 3 LSTM and 7 CNN to reach the

higher performance, while our model only requires train-

ing the two CNN-based models and is easier to implement.

Compared with the soft attention model [13], our method

achieves 10.1% (CS) and 8.6% (CV) improvement.

Analysis on DPRL: We analyze the results of the se-

lected frames in Figure 5. As mentioned, our key insight

is that the different temporal significances of the frames in

Figure 6. DPRL training process. This figure demonstrates that,

with training, the positive ratio gradually becomes stably above the

level of 1, which demarcates the effectiveness of the progressive

refinement process.

a given video can be estimated progressively by deep re-

inforcement learning. Thus, in the climax of a video, the

frames should be selected more frequently than the trivial

parts. In Figure 5, the horizontal axis represents the frame

index and the vertical axis represents the number of frames

selected in the neighbourhood of the index, different actions

should correspond to different shapes of the curve. We al-

so present several selected skeleton frames in blue and dis-

carded frames in grey, while their corresponding indices are

under the skeletons. The action of (a) is ‘take off jacket’,

which mainly contains three stages: 1) pulling the jacket

off the back, 2) pulling the jacket off the forearm, and 3)

putting the jacket on the forearm. The first stage has a larg-

er range of motion and lasts for a longer period, while the

second and the third stages are relatively gentle and quick.

Note that, though the jacket may cause some occlusion and

noise, our DPRL can discard these inferior frames. The ac-

tion label of (b) is ‘make a phone call’ and there is no part

of particular significance. The selected frames first show

the process of taking on the phone, after which the subject

remains the pose.

Moreover, Figure 6 shows the process of DPRL training,

where the horizontal axis is the number of training epochs,

the vertical axis refers to the positive ratio, which is defined

as follows. After an iteration of progressive refinement, the

prediction of a video can go from ‘incorrect’ to ‘correct’,

which is called a positive result, the opposite being called a

negative result. In an epoch, the number of positive results

is denoted by npos and the number of negative results is de-

noted by nneg . We define the positive ratio as the ratio of

npos to nneg , i.e.
npos

nneg

. Obviously, the positive ratio being
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Table 2. Comparisons of action recognition accuracy (%) on the

SYSU dataset.

Method Acc. Year

LAFF(SKL) [53] 54.2 2016

Dynamic Skeletons [43] 75.5 2015

ST-LSTM(Tree) [51] 73.4 2017

ST-LSTM(Tree)+Trust Gate [51] 76.5 2017

Ours-CNN 75.5

Ours-GCNN 76.0

Ours-DPRL 76.7

Ours-DPRL+GCNN 76.9

1 represents no change of total classification accuracy. Fig-

ure 6 demonstrates the effectiveness of our progressive re-

finement method. Typically, there are approximately 3,000

positive results in an epoch.

Analysis on GCNN: The graph-based representation

learning mines the dependency between body joints. Exper-

imental results in Table 1 demonstrate that the graph-based

module improves the performance. We tried different pa-

rameters for α and β in our experiments, which are regarded

as different weights we allocate to the intrinsic dependency

and extrinsic dependency. In the table, GCNN1 ignores the

extrinsic dependency, GCNN2 attaches equal importance to

these two types of dependencies, and GCNN highlights the

intrinsic dependency while retains the extrinsic dependency

in the meantime. As the results demonstrate, GCNN per-

forms the best and GCNN2 performs better than GCNN1.

We can conclude from the results that, both types of depen-

dencies make contributions to action recognition, and the

intrinsic dependency is more crucial. However, there is still

room for further improving the results by carefully and dy-

namically adjusting the allocated weights.

4.3. Results on SYSU­3D Dataset

We compare our method with the state-of-the-art

skeleton-based action recognition methods, which are pre-

sented in Table 2. As is seen, our proposed method outper-

forms all the other state-of-the-art methods on this dataset.

We also find that the proposed DPRL method can help to

improve the baseline classification accuracy by 1.2%, while

combining the graph-based representation learning model

can lead to another 0.2% improvement. This shows the ef-

fectiveness of selecting the key frames and learning the s-

patial dependency in the two modules.

4.4. Results on UT­Kinect Dataset

The performance comparison with the state-of-the-art

methods on the UT dataset is presented in Table 3. We

also find that the proposed DPRL and graph-based model

can lead to 2% and 1% improvement respectively, which

demonstrate the effectiveness of our proposed methods a-

gain. Further more, we discover that our proposed method

Table 3. Comparisons of action recognition accuracy (%) on the

UT dataset.

Method Acc. Year

Grassmann Manifold [54] 88.5 2015

Histogram of 3D Joints [44] 90.9 2012

Riemannian Manifold [55] 91.5 2015

ST-LSTM+Trust Gate [51] 97.0 2016

GMSM [5] 97.4 2016

SCK+DCK [26] 98.2 2016

ST-NBNN [8] 98.0 2017

VA-LSTM [23] 99.5 2017

Ours-CNN 96.0

Ours-GCNN 97.0

Ours-DPRL 98.0

Ours-DPRL+GCNN 98.5

outperforms all the other state-of-the-art methods excep-

t VA-LSTM [23]. The reason is that the VA-LSTM ben-

efits a lot from the view adaptation sub-network, which is

specially designed to recognize actions in variant views. In

the UT dataset, such conditions are common. On the other

hand, we outperform GMSM [5] by 1.1%, where another

graphical model is also employed.

5. Conclusion

In this paper, we have proposed a deep progressive rein-

forcement learning (DPRL) method for action recognition

in skeleton-based videos, which aims to select the most in-

formative frames of the input sequences. Moreover, we em-

ploy a graph-based deep learning model to capture both the

intrinsic and extrinsic dependencies between human joints.

Our approach achieves very competitive performance on the

widely used NTU, SYSU and UT datasets. In the future, it

is promising to apply our method to other related computer

vision tasks like video summarization and event detection.

Moreover, as our GCNN employs hand-crafted parameter-

s for the graph adjacency matrix, it is desirable to explore

some learning-based methods to design the weights.
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