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Abstract

In single image deblurring, the “coarse-to-fine” scheme,

i.e. gradually restoring the sharp image on different reso-

lutions in a pyramid, is very successful in both traditional

optimization-based methods and recent neural-network-

based approaches. In this paper, we investigate this strategy

and propose a Scale-recurrent Network (SRN-DeblurNet)

for this deblurring task. Compared with the many recent

learning-based approaches in [25], it has a simpler net-

work structure, a smaller number of parameters and is eas-

ier to train. We evaluate our method on large-scale deblur-

ring datasets with complex motion. Results show that our

method can produce better quality results than state-of-the-

arts, both quantitatively and qualitatively.

1. Introduction

Image deblurring has long been an important task in

computer vision and image processing. Given a motion- or

focal-blurred image, caused by camera shake, object motion

or out-of-focus, the goal of deblurring is to recover a sharp

latent image with necessary edge structures and details.

Single image deblurring is highly ill-posed. Traditional

methods applied various constraints to model characteris-

tics of blur (e.g. uniform/non-uniform/depth-aware), and

utilized different natural image priors [1, 3, 6, 39, 14, 40,

26, 27] to regularize the solution space. Most of these meth-

ods involve heuristic parameter-tuning and expensive com-

putation. Further, the simplified assumptions on the blur

model often hinder their performance on real-word exam-

ples, where blur is far more complex than modeled and is

entangled with in-camera image processing pipeline.

Learning-based methods have also been proposed for de-

blurring. Early methods [29, 34, 38] substitute a few mod-

ules or steps in traditional frameworks with learned pa-

rameters to make use of external data. More recent work

started to use end-to-end trainable networks for deblurring

images [25] and videos [18, 33, 37]. Among them, Nah et

* These two authors contributed equally to this work.
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Figure 1. One real example. (a) Input blurred image. (b) Result

of Sun et al. [34]. (c) Result of Nah et al. [25]. (d) Our result.

al.[25] have achieved state-of-the-art results using a multi-

scale convolutional neural network (CNN). This method

commences from a very coarse scale of the blurry image,

and progressively recovers the latent image at higher reso-

lutions until the full resolution is reached. This framework

follows the multi-scale mechanism in traditional methods,

where the coarse-to-fine pipelines are common when han-

dling large blur kernels [6].

In this paper, we explore a more effective network struc-

ture for multi-scale image deblurring. We propose the new

scale-recurrent network (SRN), which addresses two impor-

tant and general issues in CNN-based deblurring systems.

Scale-recurrent Structure In well-established multi-

scale methods, the solver and corresponding parameters at

each scale are usually the same. This is intuitively a natural

choice since in each scale we aim to solve the same prob-

lem. It was also found that varying parameters at each scale

could introduce instability and cause the extra problems of

unrestrictive solution space. Another concern is that input

images may have different resolutions and motion scales. If

parameter tweaking in each scale is allowed, the solution
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Figure 2. Different CNNs for image processing. (a) U-Net [28] or encoder-decoder network [24]. (b) Multi-scale [25] or cascaded

refinement network [4]. (c) Dilated convolutional network [5]. (d) Our proposed scale-recurrent network (SRN).

may overfit to a specific image resolution or motion scale.

We believe this scheme should also be applied to CNN-

based methods for the same reasons. However, recent cas-

caded networks [4, 25] still use independent parameters for

each of their scales. In this work, we propose sharing net-

work weights across scales to significantly reduce training

difficulty and introduce obvious stability benefits.

The advantage is twofold. First, it significantly reduces

the number of trainable parameters. Even with the same

training data, the recurrent exploitation of shared weights

works in a way similar to using data multiple times to learn

parameters, which actually amounts to data augmentation

regarding scales. Second, our proposed structure can incor-

porate recurrent modules, where the hidden state captures

useful information and benefits restoration across scales.

Encoder-decoder ResBlock Network Also inspired by

recent success of encoder-decoder structure for various

computer vision tasks [23, 33, 35, 41], we explore the effec-

tive way to adapt it in image deblurring. In this paper, we

show that directly applying existing encoder-decoder struc-

ture cannot produce optimal results. Our Encoder-decoder

ResBlock network, on the contrary, amplifies the merit of

various CNN structures and yields the feasibility in train-

ing. It also produces a very large receptive field, which is of

vital importance for large-motion deblurring.

Our experiments show that with the recurrent structure

and combining above advantages, our end-to-end deep im-

age deblurring framework can greatly improve training ef-

ficiency (≈1/4 training time of [25] to accomplish similar

restoration). We only use less than 1/3 trainable parame-

ters with much faster testing time. Besides training effi-

ciency, our method can also produce higher quality results

than existing methods both quantitatively and qualitatively,

as shown in Fig. 1 and to be elaborated later. We name this

framework scale-recurrent network (SRN).

2. Related Work

In this section, we briefly review image deblurring meth-

ods and recent CNN structures for image processing.

Image/Video Deblurring After the seminal work of Fer-

gus et al. [12] and Shan et al. [30], many deblurring meth-

ods were proposed towards both restoration quality and

adaptiveness to different situations. Natural image priors

were designed to suppress artifacts and improve quality.

They include total variation (TV) [3], sparse image priors

[22], heavy-tailed gradient prior [30], hyper-Laplacian prior

[21], l0-norm gradient prior [40], etc. Most of these tradi-

tional methods follow the coarse-to-fine framework. Excep-

tions include frequency-domain methods [8, 14], which are

only applicable to limited situations.

Image deblurring also benefits from recent advancement

of deep CNN. Sun et al. [34] used the network to pre-

dict blur direction and width. Schuler et al. [29] stacked

multiple CNNs in a coarse-to-fine manner to simulate it-

erative optimization. Chakrabarti [2] predicted deconvolu-

tion kernel in frequency domain. These methods follow the

traditional framework with several parts replaced by CNN

modules. Su et al. [33] used an encoder-decoder network

with skip-connections to learn video deblurring. Nah et

al. [25] trained a multi-scale deep network to progressively

restore sharp images. These end-to-end methods make use

of multi-scale information via different structures.

CNNs for Image Processing Different from classifica-

tion tasks, networks for image processing require special

design. As one of the earliest methods, SRCNN [9] used 3
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Figure 3. Our proposed SRN-DeblurNet framework.

flat convolution layers (with the same feature map size) for

super-resolution. Improvement was yielded by U-net [28]

(as shown in Fig. 2(a)), also termed as encoder-decoder net-

works [24], which greatly increases regression ability and

is widely used in recent work of FlowNet [10], video de-

blurring [33], video super-resolution [35], frame synthesis

[23], etc. Multi-scale CNN [25] and cascaded refinement

network (CRN) [4] (Fig. 2(b)) simplified training by pro-

gressively refining output starting from a very small scale.

They are successful in image deblurring and image synthe-

sis, respectively. Fig. 2(c) shows a different structure [5]

that used dilated convolution layers with increasing rates,

which approximates increasing kernel sizes.

3. Network Architecture

The overall architecture of the proposed network, which

we call SRN-DeblurNet, is illustrated in Fig. 3. It takes as

input a sequence of blurry images downsampled from the

input image at different scales, and produces a set of corre-

sponding sharp images. The sharp one at the full resolution

is the final output.

3.1. Scalerecurrent Network (SRN)

As explained in Sec. 1, we adopt a novel recurrent struc-

ture across multiple scales in the coarse-to-fine strategy. We

form the generation of a sharp latent image at each scale as

a sub-problem of the image deblurring task, which takes

a blurred image and an initial deblurring result (upsampled

from previous scale) as input, and estimates the sharp image

at this scale as

Ii,hi = NetSR(B
i, Ii+1↑,hi+1↑; θSR), (1)

where i is the scale index, with i = 1 representing the finest

scale. Bi and Ii are the blurry and estimated latent images

at the i-th scale, respectively. NetSR is our proposed scale-

recurrent network with training parameters denoted as θSR.

Since the network is recurrent, hidden state features hi flow

across scales. The hidden state captures image structures

and kernel information from the previous coarser scales.

(·)↑ is the operator to adapt features or images from the

(i+ 1)-th to i-th scale.

Eq. (1) gives a detailed definition of the network. In prac-

tice, there is enormous flexibility in network design. First,

recurrent networks can take different forms, such as vanilla

RNN, long-short term memory (LSTM) [16, 32] and gated

recurrent unit (GRU) [7]. We choose ConvLSTM [32] since

it performs better in our experiments. Analysis will be given

in Sec. 4. Second, possible choices for operator (·)↑ in-

clude deconvolution layer, sub-pixel convolution layer [31]

and image resizing. We use bilinear interpolation for all our

experiments for its sufficiency and simplicity. Third, the

network at each scale needs to be properly designed for op-

timal effectiveness to recover the sharp image. Our method

is detailed in the following.
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3.2. Encoderdecoder with ResBlocks

Encoder-decoder Network Encoder-decoder network

[24, 28] refers to the symmetric CNN structures that first

progressively transform input data into feature maps with

smaller spatial sizes and more channels (in encoder), and

then transform them back to the shape of the input (in de-

coder). Skip-connections between corresponding feature

maps are widely used to combine different levels of infor-

mation. They can also benefit gradient propagation and ac-

celerate convergence. Typically, the encoder contains sev-

eral stages of convolution layers with strides, and the de-

coder module is implemented using a series of deconvolu-

tion layers [23, 33, 35] or resizing. Additional convolution

layers are inserted after each level to further increase depth.

The encoder-decoder structure has been proven to be ef-

fective in many vision tasks [23, 33, 35, 41]. However,

directly using the encoder-decoder network is not the best

choice for our task with the following considerations.

First, for the task of deblurring, the receptive field needs

to be large to handle severe motion, resulting in stacking

more levels for encoder/decoder modules. However, this

strategy is not recommended in practice since it increases

the number of parameters quickly with the large number

of intermediate feature channels. Besides, the spatial size

of middle feature map would be too small to keep spatial

information for reconstruction. Second, adding more con-

volution layers at each level of encoder/decoder modules

would make the network slow to converge (with flat con-

volution at each level). Finally, our proposed structure re-

quires recurrent modules with hidden states inside.

Encoder/decoder ResBlock We make several modifica-

tions to adapt encoder-decoder networks into our frame-

work. First, we improve encoder/decoder modules by in-

troducing residual learning blocks [15]. Based on results

of [25] and our experiments, we choose to use ResBlocks

instead of the original one in ResNet [15] (without batch

normalization). As illustrated in Fig. 3, our proposed En-

coder ResBlocks (EBlocks) contains one convolution layer

followed by several ResBlocks. The stride for convolution

layer is 2. It doubles the number of kernels of previous layer

and downsamples the feature maps to half size. Each of

the following ResBlocks contains 2 convolution layers. Be-

sides, all convolution layers have the same number of ker-

nels. Decoder ResBlock (DBlocks) is symmetric to EBlock.

It contains several ResBlocks followed by one deconvolu-

tion layer. The deconvolution layer is used to double the

spatial size of feature maps and halve channels.

Second, our scale-recurrent structure requires recurrent

modules inside networks. Similar to the strategy of [35], we

insert convolution layers in the bottleneck layer for hidden

state to connect consecutive scales. Finally, we use large

convolution kernels of size 5×5 for every convolution layer.

The modified network is expressed as

f i = NetE(B
i, Ii+1↑; θE),

hi,gi = ConvLSTM(hi+1↑, f i; θLSTM ),

Ii = NetD(gi; θD),

(2)

where NetE and NetD are encoder and decoder CNNs

with parameters θE and θD. 3 stages of EBlocks and

DBlocks are used in NetE and NetD, respectively.

θLSTM is the set of parameters in ConvLSTM. Hidden state

hi may contain useful information about intermediate result

and blur patterns, which is passed to the next scale and ben-

efits the fine-scale problem.

The details of model parameters are specified here. Our

SRN contains 3 scales. The (i + 1)-th scale is of half size

of the i-th scale. For the encoder/decoder ResBlock net-

work, there are 1 InBlock, 2 EBlocks, followed by 1 Con-

volutional LSTM block, 2 DBlocks and 1 OutBlock, as

shown in Fig. 3. InBlock produces a 32-channel feature

map. OutBlock takes previous feature map as input and

generates output image. The numbers of kernels of all con-

volution layers inside each EBlock/DBlock are the same.

For EBlocks, the numbers of kernels are 64 and 128, re-

spectively. For DBlocks, they are 128 and 64. The stride

size for the convolution layer in EBlocks and deconvolution

layers is 2, while all others are 1. Rectified Linear Units

(ReLU) are used as the activation function for all layers,

and all kernel sizes are set to 5.

3.3. Losses

We use Euclidean loss for each scale, between network

output and the ground truth (downsampled to the same size

using bilinear interpolation) as

L =

n∑

i=1

κi

Ni

‖Ii − Ii∗‖
2
2, (3)

where Ii and Ii∗ are our network output and ground truth

respectively in the i-th scale. {κi} are the weights for each

scale. We empirically set κi = 1.0. Ni is the number of el-

ements in Ii to normalize. We have also tried total variation

and adversarial loss. But we notice that L2-norm is good

enough to generate sharp and clear results.

4. Experiments

Our experiments are conducted on a PC with Intel Xeon

E5 CPU and an NVIDIA Titan X GPU. We implement our

framework on TensorFlow platform [11]. Our evaluation

is comprehensive to verify different network structures, as

well as various network parameters. For fairness, unless

noted otherwise, all experiments are conducted on the same

dataset with the same training configuration.
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Data Preparation To create a large training dataset, early

learning-based methods [2, 29, 34] synthesize blurred im-

ages by convolving sharp images with real or generated

uniform/non-uniform blur kernels. Due to the simplified

image formation models, the synthetic data is still differ-

ent from those captured by cameras. Recently, researchers

[25, 33] proposed generating blurred images through aver-

aging consecutive short-exposure frames from videos cap-

tured by high-speed cameras, e.g. GoPro Hero 4 Black, to

approximate long-exposure blurry frames. These generated

frames are more realistic since they can simulate complex

camera shake and object motion, which are common in real

photographs.

For fair comparison with respect to the network struc-

ture, we train our network using the GOPRO dataset of [25],

which contains 3,214 blurry/clear image pairs. Following

the same strategy as in [25], we use 2,103 pairs for training

and the remaining 1,111 pairs for evaluation.

Model Training For model training, we use Adam solver

[19] with β1 = 0.9, β2 = 0.999 and ǫ = 10−8. The

learning rate is exponentially decayed from initial value of

0.0001 to 1e−6 at 2000 epochs using power 0.3. Accord-

ing to our experiments, 2,000 epochs are enough for con-

vergence, which takes about 72 hours. In each iteration,

we sample a batch of 16 blurry images and randomly crop

256 × 256-pixel patches as training input. Ground truth

sharp patches are generated accordingly. All trainable vari-

ables are initialized using Xavier method [13]. The param-

eters described above are fixed for all experiments.

For experiments that involve recurrent modules, we ap-

ply gradient clip only to weights of ConvLSTM module

(clipped by global norm 3) to stabilize training. Since our

network is fully convolutional, images of arbitrary size can

be fed in it as input, as long as GPU memory allows. For a

testing image of size 720 × 1280, running time of our pro-

posed method is around 1.87 seconds.

Table 1. Quantitative results of the baseline models.

Model SS SC w/o R RNN SR-Flat

Param 2.73M 8.19M 2.73M 3.03M 2.66M

PSNR 28.40 29.05 29.26 29.35 27.53

SSIM 0.9045 0.9166 0.9197 0.9210 0.8886

Model SR-RB SR-ED SR-EDRB1 SR-EDRB2 SR-EDRB3

Param 2.66M 3.76M 2.21M 2.99M 3.76M

PSNR 28.11 29.06 28.60 29.32 29.98

SSIM 0.8991 0.9170 0.9082 0.9204 0.9254

4.1. Multiscale Strategy

To evaluate the proposed scale-recurrent network, we de-

sign several baseline models. To evaluate network struc-

tures, we use kernel size 3 for all convolution layers for rea-

sonable efficiency. Single-scale model SS uses the same

(a) Input (b) 1 Scale (c) 2 Scales (d) 3 Scales

Figure 4. Results of the multi-scale baseline method.

structure as our proposed one, except that only a single-

scale image is taken as input at its original resolution. Re-

current modules are replaced by one convolution layer to

ensure the same number of convolution layers.

Baseline model SC refers to the scale-cascaded structure

as in [4, 25], which uses 3 stages of independent networks.

Each single-stage network is the same as model SS. There-

fore, the trainable parameters of this model are 3 times more

than our method. Model w/oR does not contain explicit re-

current modules in bottleneck layer (i.e. model SS), which

is a shared-weight version of model SC. Model RNN uses

vanilla RNN structure instead of ConvLSTM.

The results of different methods on the testing dataset

are shown in Table 1, from which we make several use-

ful observations. First, the multi-scale strategy is very ef-

fective for the image deblurring task. Model SS uses the

same structure and the same number of parameters as our

proposed SRN structure, and yet performs much worse in

terms of PSNR (28.40dB vs.29.98dB). One visual compar-

ison is given in Fig. 4 where the single-scale Model SS in

(b) can recover structure from severely blurred images. But

the characters are still not clear enough for recognition.

Results are improved when we use 2 scales as shown

in Fig. 4(c), because multi-scale information has been ef-

fectively incorporated. The more complete model with 3

scales further produces better results in Fig. 4(d); but the

improvement is already minor.

Second, independent parameters for each scale are not

necessary and may be even harmful, proved by the fact that

Model SC performs worse than Model w/oR, RNN and

SR-EDRB3 (which share the same Encoder-decoder Res-

Block structure with 3 ResBlocks). We believe the reason

is that, although more parameters lead to a larger model, it
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also requires longer training time and larger training dataset.

In our constrained setting with fixed dataset and training

epochs, model SC may not be optimally trained.

Finally, we also test different recurrent modules. The

results show that vanilla RNN is better than not using RNN,

and ConvLSTM achieves the best results with model SR-

EDRB3.

4.2. Encoderdecoder ResBlock Network

We also design a series of baseline models to evalu-

ate the effectiveness of the encoder-decoder with ResBlock

structure. For fair comparison, all models here use our

scale-recurrent (SR) framework. Model SR-Flat replaces

encoder-decoder architecture with flat convolution layers,

the number of which is the same as that of the proposed net-

work, i.e. 43 layers. Model SR-RB replaces all EBlocks and

DBlocks with ResBlock. No stride or pooling is included.

This makes feature maps have the same size. Model SR-ED

uses original encoder-decoder structure, with all ResBlocks

replaced with 2 convolution layers. We also compare with

different numbers of ResBlocks in EBlock/DBlock. Models

SR-EDRB1, SR-EDRB2 and SR-EDRB3 refer to models

using 1, 2 and 3 ResBlocks, respectively.

Quantitative results are shown in Table 1. Flat convolu-

tion model Flat performs worst in terms of both PSNR and

SSIM. In our experiments, it takes significantly more time

to reach the same level of quality as other results. Model RB

is much better, since ResBlock structure is designed for bet-

ter training. The best results are accomplished by our pro-

posed model SR-EDRB1-3. The quantitative results also

get better as the number of ResBlocks increases. We choose

3 ResBlocks in our proposed model, since the improvement

beyond 3 ResBlocks is marginal and it is a good balance

between efficiency and performance.

4.3. Comparisons

We compare our method with previous state-of-the-art

image deblurring approaches on both evaluation datasets

and real images. Since our model deals with general camera

shake and object motion (i.e. dynamic deblurring [17]), it is

unfair to compare with traditional uniform deblurring meth-

ods. The method of Whyte et al. [36] is selected as a repre-

sentative traditional method for non-uniform blur. Note that

for most examples in the testing dataset, blurred images are

caused merely by camera shake. Thus the non-uniform as-

sumption in [36] holds.

The method of Kim et al. [17] should be able to han-

dle dynamic blurring. But no code or executable is pro-

vided. Instead we compare with more recent work of Nah

et al. [25], which demonstrated very good results. Sun et

al. [34] estimated blur kernels using CNN, and used tradi-

tional deconvolution methods to recover the sharp image.

We use official implementation from the authors with de-

Table 2. Quantitative results on “test” dataset (in terms of

PSNR/SSIM).

Method
GOPRO Köhler Dataset

Time
PSNR SSIM PSNR MSSIM

Kim et al. 23.64 0.8239 24.68 0.7937 1 hr

Sun et al. 24.64 0.8429 25.22 0.7735 20 min

Nah et al. 29.08 0.9135 26.48 0.8079 3.09 s

Ours 30.26 0.9342 26.75 0.8370 1.87s

fault parameters. The quantitative results on GOPRO test-

ing set and Köhler Dataset [20] are listed in Table 2. Visual

comparison is shown in Figs. 5 and 6. More results are in-

cluded in our supplementary material.

Benchmark Datasets The first row of Fig. 5 contains

images from the GOPPRO testing datasets, which suffer

from complex blur due to large camera and object mo-

tion. Although traditional method [36] models a general

non-uniform blur for camera translation and rotation, it still

fails for Fig. 5(a), (c), and (d), where camera motion dom-

inates. It is because forward/backward motion, as well as

scene depth, plays important roles in real blurred images.

Moreover, violation of the assumed model results in annoy-

ing ringing artifacts, which make restored image even worse

than input.

Sun et al. used CNN to predict kernel direction. But

on this dataset, the complex blur patterns are quite dif-

ferent from their synthetic training set. Thus this method

failed to predict reliable kernels on most cases, and results

are only slightly sharpened. Recent state-of-the-art method

[25] can produce good quality results, with remaining a few

blurry structure and artifacts. Thanks to the designed frame-

work, our method effectively produces superior results with

sharper structures and clear details. According to our exper-

iments, even on extreme cases, where motion is too large for

previous solutions, our method can still produce reasonable

results for important part and does not cause many visual ar-

tifacts on other regions, as shown in the last case of Fig. 6.

Quantitative results are in accordance with our observation,

where our framework outperforms others by a large margin.

Real Blurred Images The GoPro testing images are syn-

thesized from high-speed cameras, which may still differ

from real blurred input. We show our results on real-

captured blurred images in Fig. 6. Our trained model gen-

eralizes well on these images, as shown in Fig. 6(d). Com-

pared with results of Sun et al.and Nah et al., ours are of

high quality.

5. Conclusion

In this paper, we have explained what is the proper net-

work structure for using the “coarse-to-fine” scheme in im-

age deblurring. We have also proposed a scale-recurrent
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(a) (b) (c) (d)

Figure 5. Visual comparisons on testing dataset. In the top-down order, we show input, results of Whyte et al. [36], Sun et al. [34], and

Nah et al. [25], and our results (best view in high resolutions).
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(a) Input (b) Sun et al. (c) Nah et al. (d) Ours
Figure 6. Real-world blurred images.

network, as well as an encoder-decoder ResBlocks structure

in each scale. This new network structure has less param-

eters than previous multi-scale deblurring ones and is eas-

ier to train. The results generated by our method are state-

of-the-art, both qualitatively and quantitatively. We believe

this scale-recurrent network can be applied to other image

processing tasks, and we will explore them in the future.
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