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Abstract

Deep Learning has had a transformative impact on Com-

puter Vision, but for all of the success there is also a signif-

icant cost. This is that the models and procedures used are

so complex and intertwined that it is often impossible to dis-

tinguish the impact of the individual design and engineer-

ing choices each model embodies. This ambiguity diverts

progress in the field, and leads to a situation where devel-

oping a state-of-the-art model is as much an art as a sci-

ence. As a step towards addressing this problem we present

a massive exploration of the effects of the myriad architec-

tural and hyperparameter choices that must be made in gen-

erating a state-of-the-art model. The model is of particular

interest because it won the 2017 Visual Question Answering

Challenge. We provide a detailed analysis of the impact of

each choice on model performance, in the hope that it will

inform others in developing models, but also that it might

set a precedent that will accelerate scientific progress in the

field.

1. Introduction

The task of Visual Question Answering (VQA) involves

an image and a related text question, to which the ma-

chine must determine the correct answer (see Fig. 1). The

task lies at the intersection of the fields of computer vi-

sion, natural language processing, and artificial intelligence.

This paper presents a relatively simple model for VQA that

achieves state-of-the-art results. It is based on a deep neu-

ral network that implements the well-known joint embed-

ding approach. The details of its architecture and hyper-

parameters were carefully selected for optimal performance

on the VQA v2 benchmark [12]. Admittedly, a large part

of such a search is necessarily guided by empirical explo-

ration and validation. Given the limited understanding of

neural networks trained on a task as complex as VQA, small

variations of hyperparameters and of network architectures

may have significant and sometimes unpredictable effects

on final performance [20]. The aim of this paper is to share
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What is on the coffee table ? What color is the hydrant ?

candles black and yellow

What is on the bed ? What is the long stick for ?

books whipping

Figure 1. The task of visual question answering (VQA) relates

visual concepts with elements of language and, occasionally,

common-sense or general knowledge. Examples of training ques-

tions and their correct answer from the VQA v2 dataset [12].

the details of a successful model for VQA. The findings re-

ported herein may serve as a basis for future development

of VQA systems and multimodal reasoning algorithms in

general.

The proposed model is based on the principle of a joint

embedding of the input question and image, followed by a

multi-label classifier over a set of candidate answers. While

this general approach forms the basis of many modern VQA

methods [33], the details of the model are critical to achiev-

ing a high quality result. We also complement our model

with a few key technical innovations that greatly enhance

its performance. We have conducted an extensive empiri-

cal study to explore the space of architectures and hyperpa-

rameters to determine the importance of the various compo-

nents.

Our key findings are summarized with the following

characteristics of the proposed model, which enable its high

performance (see also Table 1).
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– Using a sigmoid output that allows multiple correct an-

swers per question, instead of a common single-label

softmax.

– Using soft scores as ground truth targets that cast the

task as a regression of scores for candidate answers, in-

stead of a traditional classification.

– Using gated tanh activations in all non-linear layers.

– Using image features from bottom-up attention [3]

that provide region-specific features, instead of tradi-

tional grid-like feature maps from a CNN.

– Using pretrained representations of candidate an-

swers to initialize the weights of the output layer.

– Using large mini-batches and smart shuffling of train-

ing data during stochastic gradient descent.

Our hope is that presenting these findings will alleviate

the need for others to explore some of the intricacies of the

many design and implementation decisions that need to be

made in developing state-of-the-art models. In doing so we

hope to further progress in the field by illuminating the dis-

tinction between the impact of a novel design from that of

the other decisions made.

2. Background

The task of VQA has attracted considerable interest

since the seminal paper of Antol et al. [6], mainly from the

Computer Vision community as VQA constitutes a practical

setting to evaluate deep visual understanding [25, 26]. The

task of VQA is extremely challenging since it also requires

the comprehension of a text question and reasoning on the

basis of general and common-sense knowledge (see Fig. 1).

A number of large-scale datasets for VQA have been cre-

ated (e.g. [6, 12, 22, 38]. The VQA-real dataset [6] and its

iteration VQA v2 [12] have served as a benchmark to evalu-

ate and compare methods. The latter associates two images

to every question, which are chosen so as to each lead to

different answers. This dataset was used for the 2017 VQA

challenge [1] and for the experiments presented in this pa-

per.

The prevailing approach to VQA is based on three com-

ponents. (1) Posing question answering as a classification

problem, solved with (2) a deep neural network that imple-

ments a joint embedding model, (3) trained end-to-end with

supervision of example questions/answers. First, question-

answering is posed as a classification over a set of candi-

date answers. Questions in the current VQA datasets are

mostly visual in nature, and the correct answers therefore

only span a small set of words and phrases. Practically, cor-

rect answers are concentrated in a small set of words and

phrases (typically a few hundreds to a few thousands). Sec-

ond, most VQA models are based on a deep neural network

that implements a joint embedding of the image and of the

question. The two inputs are mapped into fixed-size vector

representations with convolutional and recurrent neural net-

works, respectively. Further non-linear mappings of those

representations are usually interpreted as projections into

a joint “semantic” space. They can then be combined by

means of concatenation of element-wise multiplication, be-

fore feeding the classifier mentioned above. Third, owing

to the success of deep learning on supervised learning prob-

lems, this whole neural network is trained end-to-end from

questions, images, and their ground truth answers.

The majority of recent methods for VQA have built on

the basic joint embedding approach (see [33] for a survey).

Interestingly, recent studies have shown that very simple

models can achieve strong performance [16, 20] given a

careful implementation and/or selection of hyperparame-

ters. Our work follows a similar line. Our extensive ex-

periments show that a some key choices in implementation

(e.g. gated activations, regression output, smart shuffling,

etc.) dramatically improve the performance of a relatively

simple model.

3. Proposed Model

This section presents the proposed model, based on a

deep neural network. For the sake of transparency, we prag-

matically describe the model with the specific choices and

values of hyperparameters that lead to its best performance.

Section 4 will examine variations of architecture and hyper-

parameters and their influence on performance.

The complete model is summarized in Fig. 2. As a one-

sentence summary, it implements the well-known joint RN-

N/CNN embedding of the question/image, with question-

guided attention over the image [33, 35, 16, 20].

3.1. Question Embedding

The input for each instance – whether during training or

test time – is a text question and an image. The question is

tokenized, i.e. first split into words using spaces and punc-

tuation. Any number or number-based word (e.g. 10,000

or 2:15pm) is also considered as a word. Questions are

trimmed to a maximum of 14 words for computational effi-

ciency. The extra words are then simply discarded. but only

about 0.25% of questions in the dataset are longer than 14

words. Each word is turned into a vector representation with

a look-up table, whose entries are 300-dimensional vectors

learned along other parameters during training. Those vec-

tors are however initialized with pretrained GloVe word em-

beddings [28] (Global Vectors for Word Representation).

We use the publicly available version of GloVe pretrained

on the Wikipedia/Gigaword corpus[27]. The words not

present in the pretrained word embdding are initialized with

vectors of zeros (subsequenty optimized during training).

The questions shorter than 14 words are end-padded with

vectors of zeros (frozen during training). The resulting se-
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Figure 2. Overview of the proposed model. A deep neural network implements a joint embedding of the input question and image, followed

by a multi-label classifier over a fixed set of candidate answers. Gray numbers indicate the dimensions of the vector representations between

layers. Yellow elements use learned parameters. The elements w© represent linear layers, and w©⊲ non-linear layers (gated tanh).

quence of word embeddings is of size 14 × 300 and it is

passed through a Recurrent Gated Unit (GRU [9]). The re-

current unit has an internal state of dimension 512, and we

use its final state, i.e. after processing the 14 word embed-

dings, as our question embedding q. Note that we do not use

sentinel start or end tokens, nor do we trim sequences,

or process the strict number of tokens in the given sentence

(also known as per-example dynamic unrolling in [20], or

TrimZero in [21]). We rather found it more effective to al-

ways run the recurrent units for the same number of itera-

tions, including entries containing zero-padding.

3.2. Image Features

The input image is passed through a Convolutional Neu-

ral Network (CNN) to obtain a vector representation of size

K × 2048, where K is a number of image locations. Each

location is thus represented by a 2048-dimensional vector

that encodes the appearance of the image in that region. Our

evaluation in Section 4 compares two main options with dif-

ferent trade-offs in commodity and performance: a standard

pretrained CNN, or a better-performing option. The first,

lower-performance option is a 200-layer ResNet (Residual

Network [13]) pretrained on ImageNet and publicly avail-

able [14]. This gives feature maps of size 14×14 that we

resize by average pooling (i.e. bilinear interpolation) to 7×7
(i.e. K=49). The second, higher-performance option is to

use the method proposed in [3] which provides image fea-

tures using bottom-up attention. The method is based on a

ResNet CNN within a Faster R-CNN framework [29]. It is

trained to focus on specific elements in the given image, us-

ing annotations from the Visual Genome dataset [22]. The

resulting features can be interpreted as ResNet features cen-

tered on the top-K objects in the image. Our experiments

evaluate both a fixed K=36, and an adaptive K that uses

a fixed threshold for the detected elements in the image, al-

lowing the number of regions K to vary with the complexity

of each image, up to a maximum of 100. The images used

by the VQA v2 dataset yield in that case an average of about

K=60 per image.

In all cases, the CNN is pretrained and held fixed during

the training of the VQA model. The features can therefore

be extracted from the input images as a preprocessing step

for efficiency.

3.3. Image Attention

Our model implements a classical question-guided atten-

tion mechanism common to most modern VQA models (see

e.g. [38, 34, 8, 17, 5, 35]). We refer to this stage as the top-

down attention, as opposed to the model of [3] that provides

image features from bottom-up attention.

For each location i = 1...K in the image, the feature

vector vi is concatenated with the question embedding q

(see Fig. 2). They are both passed through a non-linear layer

fa (see Section 3.7) and a linear layer to obtain a scalar

attention weight αi,t associated with that location:

ai = wafa([vi, q]) (1)

α = softmax (a) (2)

v̂ = ΣK
i=1αivi (3)

where wa is a learned parameter vector. The attention

weights are normalized over all locations with a softmax

function (Eq. 2). The image features from all locations

are then weighted by the normalized values and summed

(Eq. 3) to obtain a single 2048-sized vector v̂ representing

the attended image.

Note that this attention mechanism is a simple one-

glimpse, one-way attention, as opposed to more complex

schemes of recent models (e.g. stacked, multi-headed, or

bidirectional attention [35, 16, 20, 24]).

3.4. Multimodal Fusion

The representations of the question (q) and of the image

(v̂) are passed through non-linear layers and then combined

with a simple Hadamard product (i.e. element-wise multi-

plication):

h = fq(q) ◦ fv(v̂) (4)

The resulting vector h is referred to as the joint embedding

of the question and of the image, and is then fed to the out-

put classifier.

3.5. Output Classifier

A set of candidate answers, that we refer to as the out-

put vocabulary, is predetermined from all the correct an-
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swers in the training set that appear more than 8 times. This

amounts to N=3129 candidate answers. We treat VQA as

a multi-label classification task. Indeed, each training ques-

tion in the VQA v2 dataset is associated with one or sev-

eral answers, each labeled with soft accuracies in [0, 1].
Multiple answers and accuracies in (0, 1) arise in case of

disagreement between human annotators, particularly with

ambiguous questions and multiple or synonymous correct

answers [12]. Moreover, in our case, some training ques-

tions (about 7%) have no correct answer within the selected

output vocabulary. Those questions are not discarded how-

ever. They provide a useful training signal by driving to-

wards zero the scores predicted for all candidates of the

output vocabulary, although the resulting benefit is marginal

(see Section 4.1).

Our multi-label classifier passes the joint embedding h

through a non-linear layer fo then through a linear mapping

wo to predict a score ŝ for each of the N candidates:

ŝ = σ
(

wo fo(h)
)

(5)

where σ is a sigmoid (logistic) activation function, and

wo ∈ R
N×512 is a learned weight matrix initialized as de-

scribed below.

The sigmoid normalizes the final scores to (0, 1), which

are followed by a loss similar to a binary cross-entropy, al-

though we use soft target scores. This final stage can be

seen as a logistic regression that predicts the correctness of

each candidate answer. Our objective function is

L = −

M
∑

i

N
∑

j

sij log(ŝij) − (1−sij) log(1−ŝij) (6)

where the indices i and j run respectively over the M train-

ing questions and N candidate answers. The ground-truth

scores s are the aforementioned soft accuracies of ground

truth answers. The above formulation proved to be much

more effective than a softmax classifier as commonly used

in other VQA models. The advantage of the above formula-

tion is two-fold. First, the sigmoid outputs allow optimiza-

tion for multiple correct answers per question [16, 32] as is

occasionally the case in the VQA v2 dataset. Second, the

use of soft scores as targets provides a slightly richer train-

ing signal than binary targets, as they capture the occasional

uncertainty in ground truth annotations.

3.6. Pretraining the Classifier

In the output stage described above (Eq. 5), the score of a

candidate answer j is effectively determined by a dot prod-

uct between our joint image-question representation fo(h)
and the jth row of wo. During training, an appropriate rep-

resentation for each candidate answer is thus learned as a

row of wo. We propose to use prior information about the

candidate answers from two sources to initialize the rows of

wo. On the one hand, we use linguistic information in the

form of the GloVe word embeddings of the answer word

(as described above for Question embedding). When the

answer cannot be matched exactly with a pretrained embed-

ding, we use the closest match after spell checking, remov-

ing hyphenation, or keeping a single term from multi-word

expressions. The corresponding vectors are placed in the

matrix wtext
o .

We also exploit visual information gathered from im-

ages representing the candidate answers. We use Google

Images to automatically retrieve 10 photographs associated

with each candidate answer. Those photographs are passed

through a ResNet-101 CNN pretrained on ImageNet [13].

The final mean-pooled features are extracted and averaged

over the 10 photographs. The resulting 2048-sized vector of

each candidate answer is placed in the corresponding row

of a matrix w
img
o . Those visual representations are comple-

mentary to the linguistic ones obtained through word em-

beddings. They can also be obtained for any candidate an-

swer, including multi-word expressions and rare words for

which no word embeddings are available. On the downside,

abstract words and expressions may not lead to informative

visual representations (see Section 4.6 and Fig. 5).

We combine the prior representations wtext
o and w

img
o as

follows, decomposing Eq. 5 into

ŝ = σ
(

wtext
o f text

o (h) + wimg
o f img

o (h)
)

(7)

where the non-linear transformations f text
o and f

img
o bring

h to the appropriate dimensions, i.e. 300 and 2048 respec-

tively (see Fig. 2). The matrices wtext
o and w

img
o are fine-

tuned with the remainder of the network using smaller rel-

ative learning rates, respectively 0.5 and 0.01 (determined

through cross-validation).

3.7. Non­linear Layers

The network described above uses multiple learned non-

linear layers (see Fig. 2). A common implementation for

such a layer would be an affine transformation followed by a

Rectified Linear Unit (ReLU). In our implementation, each

non-linear layer uses a gated hyperbolic tangent activation.

That is, each of those layers implements a function fa : x ∈
R

m → y ∈ R
n with parameters a defined as follows:

ỹ = tanh (Wx+ b) (8)

g = σ(W ′x+ b′) (9)

y = ỹ ◦ g (10)

where σ is the sigmoid activation function, W,W ′ ∈ R
n×m

are learned weights, b, b′ ∈ R
n are learned biases, and ◦ is

the Hadamard (element-wise) product. The vector g acts

multiplicatively as a gate on the intermediate activation ỹ.

That formulation is inspired by similar gating operations

within recurrent units such as LSTMs and GRUs [9]. This

can also be seen as a special case of highway networks [30]

and has been mentioned in other work in natural language
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VQA v2 validation

VQA Score Accuracy over

All Yes/no Numbers Other balanced pairs

Reference model 63.15 ±0.08 80.07 42.87 55.81 34.66

(1) Removing initialization of wtext
o (randomly shuffled) 63.01 ±0.12 80.11 42.80 55.51 34.40

(2) Removing initialization of wimg
o (randomly shuffled) 62.67 ±0.07 79.75 42.64 55.14 34.22

(3) Removing image features from bottom-up attention [3]; 7×7 ResNet-200 features instead 58.90 ±0.10 77.16 37.18 50.92 29.39

(4) Removing extra training data from the Visual Genome, only uses the VQA v2 training set 57.84 ±0.05 77.46 36.73 48.68 28.66

(5) Removing shuffling “by balanced pairs”, standard random shuffling instead 57.68 ±0.14 77.25 36.46 48.58 28.53

(6) Removing GloVe embeddings to encode the question; learned from random init. instead 56.97 ±0.22 75.92 36.03 48.26 27.50

(7a) Replace gated tanh layers with tanh activations 52.13 ±7.33 75.90 34.51 38.92 24.78

(7b) Replace gated tanh layers with ReLU activations 55.38 ±0.05 74.65 34.83 46.33 25.24

(8a) Binary ground truth targets s′ij = (sij
?

> 0.0); ReLU 54.34 ±0.19 73.81 34.50 44.95 23.75

(8b) Binary ground truth targets s′ij = (sij
?
= 1.0); ReLU 53.41 ±0.20 73.23 34.38 43.54 24.32

(9) Replace sigmoid output with softmax; single binary target s′ij = (sij
?
= 1.0); ReLU 52.52 ±0.31 72.79 34.33 42.09 23.81

Table 1. Cumulative ablations of a single network, evaluated on the VQA v2 validation set. The ablations of table rows are cumulative

from top to bottom. The experimental setup is identical to the one used for Table 2.

processing [10, 31].

3.8. Training

We train the network using stochastic gradient descent.

We use the AdaDelta algorithm [36], which does not require

fixing learning rates and is very insensitive to the initializa-

tion of the parameters. The model is prone to overfitting,

which we prevent by early stopping as follows. We first

train leaving out the official validation set of the VQA v2

dataset for monitoring, and identify the epoch yielding the

best performance (highest overall VQA score). The train-

ing is then repeated for the same number of epochs, now

also using the validation set as training data (as in [12]).

We use questions/answers from the Visual Genome [22]

as additional training data. We only use questions whose

correct answers overlap the output vocabulary determined

on the VQA v2 dataset. This amounts to only about 30% or

485,000 questions from the Visual Genome.

During training with stochastic gradient descent, we en-

force the shuffling of training instance to keep balanced

pairs of VQA v2 in the same mini-batches. Those pairs cor-

respond to identical questions with different images and an-

swers. Our intuitive motivation is that such pairs likely lead

to gradients pulling the network parameters in different di-

rections. Keeping an example and its balanced counter-part

in a same mini-batch is expected to make the learning more

stable, and encourage the network to discern the subtle dif-

ferences between the paired instances [31].

4. Ablative Experiments

We present an extensive set of experiments that com-

pare our model as presented above (referred to as the ref-

erence model) with alternative architecture and hyperpa-

rameter values. The objective is to show that the proposed

model corresponds to a local optimum in the space of ar-

chitectures and parameters, and to evaluate the sensitivity

of the final performance to each design choice. The follow-

ing discussion follows the structure of Tables 2 and 1. Note

the significant breadth and exhaustivity of the following ex-

periments, which represent more than 3,000 GPU-hours of

training time.

Experimental setup Each experiment in this section uses

a single network (i.e. no ensemble) that is a variation of

our reference model (first row of Table 2). Each network is

trained on the official training set of VQA v2 and on the ad-

ditional questions from the Visual Genome unless specified.

Results are reported on the validation test VQA v2 at the best

epoch (highest overall VQA score). Each experiment (i.e.

each row of Tables 2 and 1) is repeated 3 times, training the

same network with different random seeds. We report the

average and standard deviation over those three runs. The

main performance metric is the standard VQA accuracy [6],

i.e. the average ground truth score of the answers predicted

for all questions1. We additionally report the metric of Ac-

curacy over pairs [37] (last column of Tables 2 and 1). It

is the ratio of balanced questions (i.e. questions associated

with two images leading to two different answers) that are

answered perfectly, i.e. with both predicted answers hav-

ing a ground truth score of 1.0. This metric is significantly

harder than the standard per-question score since it requires

a correct answer to both images of the pair, discouraging

blind guesses and reliance on language priors [12, 37].

We now discuss the results of each ablative experiment

from Tables 2 and 1 in turn.

4.1. Training Data

The use of additional training questions/answers from

the Visual Genome (VG) [22] increase the performance on

1The ground truth score of a candidate answer j to a question i is a

value sij ∈ [0, 1] provided with the dataset. It accounts for possible dis-

agreement between annotators: sij = 1.0 if provided by m≥ 3 anno-

tators, and s = m/3 otherwise. Those scores are further averaged in a

10–choose–9 manner [6].
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VQA v2 validation

VQA Score Accuracy over

All Yes/no Numbers Other balanced pairs

Reference model 63.15 ±0.08 80.07 42.87 55.81 34.66

Training data (reference: with Visual Genome data; shuffling keeps balanced pairs in the same minibatches)

Without extra training data from Visual Genome 62.48 ±0.15 80.37 42.06 54.44 34.12

Random shuffling of training data 63.16 ±0.06 80.17 42.92 55.73 34.54

Discard training questions without answers of score=1.0 63.15 ±0.12 80.15 42.90 55.73 34.62

Question embedding (reference: 300-dimensional GloVe word embeddings, 1-layer forward GRU)

Word embeddings learned from random initialization; 1-layer forward GRU 62.28 ±0.06 78.77 41.92 55.27 33.67

100-dimensional GloVe; forward GRU 62.45 ±0.05 78.84 42.12 55.51 33.70

200-dimensional GloVe; forward GRU 62.96 ±0.12 79.76 42.49 55.75 34.34

300-dimensional GloVe; bag-of-words (sum) 62.14 ±0.04 79.54 41.88 54.41 33.73

300-dimensional GloVe; bag-of-words (average) 62.53 ±0.09 80.17 42.15 54.67 34.22

300-dimensional GloVe; 1-layer backward GRU 62.82 ±0.02 79.57 42.39 55.64 33.98

300-dimensional GloVe; 2-layer forward GRU 62.29 ±0.10 78.66 42.42 55.23 33.56

300-dimensional GloVe randomly shuffled; 1-layer forward GRU 62.16 ±0.08 78.74 41.73 55.11 33.45

Image features (reference: image features from bottom-up attention, adaptive K)

ResNet-200 global features (K=1, i.e. without image attention)) 56.16 ±0.14 75.89 36.39 46.57 25.93

ResNet-200 features 14×14 (K=196)) 57.93 ±0.25 76.17 36.25 49.95 27.64

ResNet-200 features downsampled to 7×7 (K=49) 59.35 ±0.10 77.34 37.74 51.55 29.49

Image features from bottom-up attention, K=36 62.82 ±0.14 79.92 42.44 55.35 34.18

Image attention (reference: image features from bottom-up attention, 1 attention head, softmax normalization)

ResNet-200 7×7 features, 1 head, sigmoid normalization 58.96 ±0.37 77.05 37.99 50.90 28.68

ResNet-200 7×7 features, 1 head, softmax normalization 59.35 ±0.10 77.34 37.74 51.55 29.49

ResNet-200 7×7 features, 2 heads, sigmoid normalization 58.70 ±0.30 76.42 37.95 50.87 28.40

ResNet-200 7×7 features, 2 heads, softmax normalization 59.20 ±0.13 76.97 37.52 51.58 29.43

Image features from bottom-up attention, 1 head, sigmoid normalization 62.15 ±1.41 78.83 43.44 54.57 32.98

Image features from bottom-up attention, 2 heads, sigmoid normalization 62.91 ±0.26 79.74 43.99 55.27 34.30

Image features from bottom-up attention, 2 heads, softmax normalization 63.10 ±0.05 79.80 43.17 55.82 34.52

Output vocabulary (reference: >8 occurrences as correct answers in the training data, N = 3, 129

Keep answers with >6 training occurrences, N = 3, 793 63.26 ±0.07 80.23 42.94 55.89 34.50

Keep answers with >10 training occurrences, N = 2, 748 ∗ 63.30 ±0.06 80.33 43.02 55.86 34.69

Keep answers with >12 training occurrences, N = 2, 418 63.16 ±0.08 80.18 43.17 55.66 34.56

Keep answers with >14 training occurrences, N = 2, 160 63.27 ±0.08 80.45 43.07 55.69 34.83

Keep answers with >16 training occurrences, N = 1, 961 63.17 ±0.10 80.29 42.94 55.65 34.62

Keep answers with >20 training occurrences, N = 1, 656 63.14 ±0.05 80.21 42.90 55.66 34.67

Keep answers with >200 training occurrences, N = 278 59.59 ±0.04 79.90 42.11 48.93 32.64

Output classifier (reference: sigmoid output, wtext
o and w

img
o pretrained

Softmax output, w
text
o pretrained, w

img
o pretrained 60.47 ±0.08 78.19 40.93 52.32 32.27

Sigmoid output, w
text
o randomly initialized, w

img
o randomly initialized 62.28 ±0.99 78.50 42.50 55.32 33.14

Sigmoid output, w
text
o randomly shuffled, w

img
o randomly shuffled 62.64 ±0.15 79.82 42.26 55.13 34.17

Sigmoid output, w
text
o pretrained, w

img
o randomly initialized 62.94 ±0.14 79.99 42.72 55.47 34.26

Sigmoid output, w
text
o pretrained, w

img
o randomly shuffled 63.04 ±0.02 80.20 42.83 55.50 34.66

Sigmoid output, w
text
o randomly initialized, w

img
o pretrained 63.21 ±0.01 80.06 42.97 55.90 34.65

Sigmoid output, w
text
o randomly shuffled, w

img
o pretrained 62.97 ±0.06 79.83 42.62 55.68 34.31

General architecture (reference: gated tanh non-linear activations, hidden states of dimension 512)

Non-linear activations: ReLU 61.63 ±0.21 78.48 41.15 54.39 32.57

Non-linear activations: tanh 61.74 ±0.44 79.20 40.92 54.13 33.10

Non-linear activations: gated ReLU 62.44 ±0.07 79.33 42.12 55.13 33.52

Hidden states of dimension 256 62.80 ±0.05 79.62 42.46 55.53 34.12

Hidden states of dimension 384 63.12 ±0.11 80.06 42.89 55.74 34.54

Hidden states of dimension 768 63.12 ±0.11 80.06 42.89 55.74 34.54

Hidden states of dimension 1024 63.02 ±0.55 79.88 42.68 55.73 34.34

Hidden states of dimension 1280 ∗ 63.37 ±0.21 80.40 43.02 55.96 34.76

Mini-batch size (reference: 512 training questions)

128 Training questions 62.38 ±0.08 79.70 42.29 54.67 34.01

256 Training questions ∗ 63.17 ±0.09 80.22 42.94 55.72 34.71

384 Training questions ∗ 63.20 ±0.04 80.21 43.08 55.75 34.61

768 Training questions 62.99 ±0.12 79.84 42.61 55.73 34.40

Table 2. Ablations of a single network, evaluated on the VQA v2 validation set. We evaluate variations of our best “reference”

model (first row), and show that it corresponds to a local optimum in the space of architectures and hyperparameters. Every

row corresponds to one variation of that reference model. We train each variation with three different random seeds and

report averages and standard deviations (±).
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VQA v2 [12] in all question types. As mentioned above, we

only use VG instances with a correct answer appearing the

output vocabulary determined on VQA v2, and which use

an image also used in VQA v2. Note that the +0.67% in-

crease in performance is modest relative to the amount of

additional training questions (an additional 485,000 over

the 650,000 of VQA v2). Note that including VG questions

relating to MS COCO images not used in VQA v2 resulted

in slightly lower final performance (not reported in Table 2).

We did not further investigate this issue.

We compare the proposed shuffling of training data

which keeps balanced pairs in the same mini-batches, with a

standard, arbitrary random shuffling. The results in Table 2

are inconclusive: the overall VQA score is virtually identi-

cal either way. The accuracy over pairs however improves

with the proposed shuffling. This is to be expected, as the

purpose of the proposed method is to improve the learning

of differentiating between balanced pairs. The cumulative

ablation (row (5) in Table 1) confirms this advantage more

clearly.

We evaluate discarding the training questions that do not

have their ground truth answer within the selected candi-

dates. Early experiments have shown that those instances do

still carry a useful training signal by drawing the predicted

scores of the selected candidate answers towards zero. In

Table 2, the VQA score remains virtually identical, but a

very slight benefit is observed on the accuracy over pairs by

retaining those instances.

4.2. Question Embedding

Our reference model uses pretrained GloVe word embed-

dings of dimension 300 followed by a one-layer GRU pro-

cessing words in forward order. We compare this choice to a

series of more simple and more advanced options. Learning

the word embeddings from scratch, i.e. from random initial-

izations reduces performance by 0.87%. The gap with pre-

trained embeddings is even greater as the model is trained

on less training data (Fig. 3 and Section A.2). This is con-

sistent with findings previously reported in [32]. This ex-

periment shows, on the one hand, a benefit of leveraging

non-VQA training data. On the other hand, it suggests that

a sufficiently large VQA training set may remove this ben-

efit altogether. Using GloVe vectors of smaller dimension

(100 or 200) also give lower performance than those in the

reference model (300).

We investigate whether the pretrained word embeddings

(GloVe vectors) really capture word-specific information.

The alternative, null hypothesis is that the simple spreading

of vectors in the word embedding space is a benefit in itself.

To test this, we randomly shuffle the same GloVe vectors,

i.e. we associate them with words from the input dictionary

chosen at random. The shuffled GloVe vectors perform even

worse than word embeddings learned from scratch. This

shows that GloVe vectors indeed capture word-specific in-

formation.

Replacing our GRU with advanced options (backward,

bidirectional, or two-layer GRU) gives lower performance.

Simpler options (bag-of-words, simply summing or averag-

ing word embeddings) also give lower performance but are

still a surprisingly strong baseline, as previously reported

in [16, 32].

4.3. Image Features

Our best model uses the images features from bottom-

up attention of [3]. These are obtained through a Faster R-

CNN framework and an underlying 101-layer ResNet that

focuses on specific image regions. The method uses a fixed

threshold on object detections, and the number of features

K is therefore adaptive to the contents of the image. It

is capped at a maximum of 100, and yields an average in

the order of K=60. We experiment with a fixed number

of features K=36. The performance degrades only slightly.

This option may be a reasonable alternative considering the

lower implementation and computational costs.

We also experiment with mainstream image features

from a 200-layer ResNet [13, 14]. As per the common

practice, we use the last feature map of the network, of

dimensions 14×14 and 2,048 channels. The performance

with ResNet features drops dramatically from 63.15% to

57.52%. A global average pooling of those features, i.e.

collapsing to a 1×1 map and discarding the attention mech-

anism, is expectedly even worse. A surprising finding how-

ever is that coarser 7×7 ResNet feature maps give a rea-

sonable performance of 59.24. Those are obtained by linear

interpolation of the 14×14 maps, equivalent to a 2×2 average

pooling of stride 2. As an explanation, we hypothesize that

the resolution of the coarser maps better correspond to the

scale of objects in our images.

Note that the proposed model was initially developed

with standard ResNet features, and is not specifically opti-

mized for the features of [3]. On the contrary, we found that

optimal choices were stable across types of image features

(including for the attention mechanism, see Section 4.4). In

all cases, we also observed that an L2 normalization of the

image features was crucial for good performance – at least

with our choices of architecture and optimizer.

4.4. Image Attention

Our reference model uses a single set of K attention

weights normalized with a softmax. Some previous studies

have reported better performance with multiple sets of at-

tention weights (also known as multiple “glimpses” or “at-

tentions heads”) [11] and/or with a sigmoid normalization

over the weights [31] (which allows multiple glimpses in

one pass). In our case, none of these options proved ben-

eficial, whether with ResNet features or with features from

bottom-up attention. This confirms that the latter image fea-
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tures are suited to a simple drop-in replacement in lieu of

traditional feature maps, as argued in [3].

4.5. Output Vocabulary

We determine the output vocabulary, i.e. the set of candi-

date answers from those appearing in the training set more

than ℓ times. We cross-validate this threshold and find a rel-

atively broad optimum around ℓ = 8–12 occurrences. This

corresponds to about N=2, 400 to 3, 800 candidate answers,

which is of the same order as the values typically reported in

the literature (without cross-validation) of 2, 000 or 3, 000.

Note however a higher ℓ (i.e. lower N ) still gives reason-

able performance with a lower number of parameters and

computational complexity.

4.6. Output classifier

Our reference model uses sigmoid outputs and the soft

scores sij as ground truth targets. We first compare the soft

scores with two binarized versions s′ij = (sij
?
> 0.0), and

s′ij = (sij
?
= 1.0). The proposed soft scores perform sig-

nificantly better than either of those binarized versions (Ta-

ble 1).

We then compare the sigmoid outputs of our reference

model to the common choice of a softmax. Both use a cross-

entropy loss. The softmax uses the single ground truth an-

swer provided in the dataset, whereas the sigmoid uses the

complete annotation data, occasionally with multiple cor-

rect answers marked for one question, due to disagreement

between multiple annotators. The sigmoid performs sig-

nificantly better than a softmax. This observation is con-

firmed in the cumulative ablations (Table 1)

We now evaluate the proposed pretraining of the param-

eters wtext
o and/or wimg

o of the classifiers. We consider

two baselines for those two matrices: random initialization

and random shuffling. The former simply initializes and

learns the weights like any others in the network. The lat-

ter uses the proposed pretraining as initializations but as-

signs then to the candidate answers randomly by shuffling

the rows. This should reveal whether the proposed initial-

ization provides answer-specific information, or whether it

simply helps the numerical optimization because of better

conditioned initial values. The proposed initialization per-

forms consistently better than those baselines. The ran-

dom initialization of wtext
o may seem surprisingly good as

it even surpasses the reference model on the overall VQA

score. It does not, however, on the metric of Accuracy over

pairs. The experiments with reduced training data (Sec-

tion A.2 and Fig. 3) confirm even more clearly the benefits

of the proposed initialization.

4.7. General Architecture

All of our non-linear layers are implemented as gated

tanh (Section 3.7). These show a clear benefit over the

gated ReLU, and even more so over simple ReLU or tanh

activations. Note that we also experimented, without suc-

cess, with various other combinations of highway [30],

residual [13] and gating connections (not reported in Ta-

ble 2). One benefit of gated layers is to double the number

of learned parameters without increasing the dimension of

the hidden states.

We cross-validate the dimension of hidden states

among the values {256, 384, 512, 768, 1024, 1280}. We

settled on 512 as a reasonable sweet spot. Larger dimen-

sions (e.g. 1280) can be better but without guarantees. The

variance across repeated experiments is larger, likely due to

overfitting and unstable training. We use a simple element-

wise product to combine the question and image represen-

tations. This proved far superior to a concatenation. We did

not experiment with advanced forms of pooling [11, 7].

Please consult the supplementary material for additional

experiments including a comparison with competing meth-

ods on the VQA v2 benchmark.

5. Discussion and Conclusions

This paper presented a model for VQA based on a deep

neural network that significantly outperforms all other ap-

proaches proposed to date. Importantly, we reported an ex-

tensive suite of experiments that identify the contribution of

each design choice and the performance of alternative de-

signs. The general take-away from this study is that the per-

formance is very dependent on design choices and on vari-

ous details of the implementation. We attribute the success

of our model to a number of points. Some are seemingly mi-

nor and easily implemented (e.g. large mini-batch size, sig-

moid output) while others are clearly non-trivial (e.g. gated

non-linear activations, image features from bottom-up at-

tention, pretraining the output classifier).

This paper does not claim to make breakthrough ad-

vances in the field of VQA, which remains a largely un-

solved problem. We hope that our model may however

serve as a solid basis on which to make future progress. Our

extensive analysis and exploration of designs is unprece-

dented in scale for VQA, and is a significant contribution

to the field. It provides indicators on the importance of the

various components of a VQA model. It also allows us to

point at promising directions for future developments.

Our evaluation of simple baselines have shown surpris-

ingly strong performances. For example, encoding ques-

tions as a simple bag-of-words performs almost as well as

state-of-the-art recurrent encoders. It suggests that the word

ordering in questions may not convey much information –

which is plausible for the most basic ones – or, more realis-

tically, that our current models are still unable to understand

and make effective use of language structure. Recent works

on compositional models for VQA are a promising direction

to address this issue [4, 15, 18, 19].
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