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Abstract

Superpixel segmentation has been widely used in many

computer vision tasks. Existing superpixel algorithms are

mainly based on hand-crafted features, which often fail to

preserve weak object boundaries. In this work, we lever-

age deep neural networks to facilitate extracting superpix-

els from images. We show a simple integration of deep fea-

tures with existing superpixel algorithms does not result in

better performance as these features do not model segmen-

tation. Instead, we propose a segmentation-aware affinity

learning approach for superpixel segmentation. Specifi-

cally, we propose a new loss function that takes the seg-

mentation error into account for affinity learning. We also

develop the Pixel Affinity Net for affinity prediction. Ex-

tensive experimental results show that the proposed algo-

rithm based on the learned segmentation-aware loss per-

forms favorably against the state-of-the-art methods. We

also demonstrate the use of the learned superpixels in nu-

merous vision applications with consistent improvements.

1. Introduction

Superpixels are the image regions generated by group-

ing image pixels. Superpixels provide a more natural rep-

resentation of image data compared to pixels. In addi-

tion, superpixels reduce the number of primitives to oper-

ate on, thereby improving the computational efficiency of

vision algorithms. The process of extracting superpixels

is known as superpixel segmentation or over-segmentation.

Superpixels are widely used in both conventional energy-

minimization [32, 30] and recent deep learning [23, 13, 9]

frameworks with applications to a wide range of problems

such as salient object detection [29, 32, 13], and semantic

segmentation [23, 9], to name a few.

In light of fundamental importance of superpixels in

computer vision, numerous superpixel segmentation algo-

rithms [17, 1, 27, 16, 2] have been proposed in the litera-

ture. Despite their differences in problem formulation, ex-

isting algorithms mainly rely on hand-crafted features, and

thus often fail to separate objects from the backgrounds if

no strong boundaries can be identified.

In this work, we leverage deep networks to facilitate ex-

tracting superpixels from images. There are several chal-

lenges in learning superpixels using deep networks. First,

there is no groundtruth for superpixels. Second, the indices

of different superpixels are interchangeable. Third, existing

superpixel algorithms are not differentiable. To overcome

these issues, we propose to learn pixel affinities for graph-

based superpixel segmentation. Pixel affinities measure the

likelihood of two neighboring pixels belonging to the same

object. With better pixel affinities that take object bound-

aries into account, graph-based algorithms can extract se-

mantically more meaningful superpixels. Empirically, we

find that deep features learned from other high-level vision

tasks do not perform well for superpixel segmentation. Our

experiments show that simply replacing the hand-crafted

features with pre-trained deep features for computing pixel

affinities does not result in good superpixel segmentation. A

closely-related problem to affinity computation is edge de-

tection, where a number of CNN-based methods have been

developed. One may expect that edges extracted from the

state-of-the-art deep networks [28] provide effective visual

cues of pixel affinities for superpixel segmentation. How-

ever, our experiments show that this approach results in in-

ferior performance compared to that of using hand-crafted

pixel affinities.

We observe that affinities derived from pre-trained deep

features or deep edges are not sensitive to segmenta-

tion errors. We therefore propose a method for learning

segmentation-aware affinities for graph-based superpixel

segmentation. Specifically, we propose a deep network,

termed Pixel Affinity Net (PAN), for learning pixel affini-

ties and exploiting existing segmentation datasets [3, 6] as

supervisory signals where pixel affinities should be low at

segmentation boundaries and high elsewhere. To ensure the

predicted affinities result in good segmentation quality, we

propose a new SEgmentation-Aware Loss (SEAL) function.

We first use the predicted affinities to compute superpix-

els with a graph-based algorithm. Then the SEAL function

computes a loss at every pixel based on the computed su-

perpixels and groundtruth segmentation. The loss at each

pixel is then back-propagated through the proposed PAN

model to adjust its parameters, thereby facilitating the use of

deep neural networks for learning superpixels while avoid-
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ing back-propagating through the non-differentiable super-

pixel segmentation algorithm.

Extensive experiments on the BSDS500 [3] and

Cityscapes [6] datasets demonstrate that the proposed

learning-based approach performs favorably against the

state-of-the-art superpixel segmentation methods. In addi-

tion, we show that improvements in superpixel accuracy,

obtained with our approach, also translates to performance

improvements in vision tasks that rely on superpixels, such

as semantic segmentation and salient object detection.

We make the following contributions in this work:

• We propose a deep learning based approach to learn

pixel affinities for superpixel segmentation. To the best

of our knowledge, this is the first deep learning based

approach for superpixel segmentation.

• We develop a novel segmentation-aware loss that

makes use of segmentation errors to learn affinities for

superpixel segmentation.

• We demonstrate that with the learned pixel affini-

ties, the computed superpixels preserve object bound-

aries better than those with hand-crafted features. Ex-

periments show that our algorithm performs favor-

ably against the state-of-the-arts and helps improve

superpixel-based vision applications.

2. Related Work

In this work, we briefly review the superpixel algorithms

closely related to this work in proper context.

Graph-based algorithms. Graph-based algorithms con-

sider an image as a planar graph, where pixels are ver-

tices and pixel affinities are computed for connected pix-

els. These algorithms compute superpixels by partitioning

the graph. The Normalized Cuts (NC) [22] method gener-

ates superpixels by recursively computing normalized cuts

on the graph. The NC method generates compact superpix-

els but they do not adhere to boundaries well. Felzenszwalb

and Huttenlocher (FH) [8] propose a bottom-up method that

treats image pixels as disjoint sets and progressively merges

the sets based on internal variation [8] of pixel affinities. Al-

though the FH method preserves boundaries well, it often

generates both extremely large and small segments. More-

over, it is difficult to control the number of superpixels in the

FH method. In [11], Grundmann et al. use the χ2 distance

between color histograms of two adjacent sets as a merging

criterion for superpixel segmentation. The ERS [17] algo-

rithm merges disjoint sets by maximizing the entropy rate of

pixel affinities to extract superpixels. While the above meth-

ods differ in graph merging or splitting techniques, they all

use hand-crafted features to compute superpixels.

Clustering-based algorithms. Numerous superpixel seg-

mentation methods are developed based on clustering tech-

niques. These algorithms progressively refine an initial

clustering of pixels until meeting the specified criteria.

The SEEDS [27] algorithm uses uniform blocks as ini-

tial approximation of superpixels and iteratively exchanges

neighboring blocks in a coarse-to-fine manner based on an

objective function. Yao et al. [31] use the block-based ini-

tialization and propose a more complex objective function

for superpixel segmentation. Typically, these block-based

methods do not take number of superpixels as input. In-

stead, users need to set several parameters manually (e.g.,

minimum block size and number of scales) based on image

resolution and desired number of superpixels.

The SLIC [1] method places initial cluster centers on a

uniform grid and performs k-means in the five dimensional

CIELab color and position feature space to cluster pixels.

The LSC [16] method projects the five dimensional fea-

tures to a ten dimensional space and performs clustering

in the projected space. The Manifold-SLIC [18] method

clusters pixels in a reduced two dimensional space. Both

LSC and Manifold-SLIC schemes suggest that the segmen-

tation quality can be improved by merely changing the fea-

ture representation, which also inspires us to leverage learn-

ing techniques for superpixel segmentation. More recently,

Achanta et al. introduce the SNIC [2] algorithm based on

a non-iterative clustering scheme. It only visits most pixels

once during clustering while still achieving state-of-the-art

performance among the clustering-based methods.

Other approaches. Several other algorithms [26] have

been developed based on other techniques such as the Wa-

tershed transform [20] and geometric flows [15], also using

hand-crafted features.

3. Superpixels Meet Deep Learning

Learning superpixels with deep neural networks is not

straightforward due to the following issues. First, there is

no groundtruth for superpixel segmentation. As superpixels

are over-segmentation of an image, the superpixel bound-

aries can be arbitrary as long as a superpixel is within an

object. Second, the superpixel indices are interchangeable.

We can shuffle the indices while keeping the superpixel rep-

resentation intact. Third, most superpixel algorithms are

not differentiable as they often involve discrete operations

of clustering or subset selection.

A naı̈ve way to address these issues is to use deep fea-

tures from pre-trained networks and plug them into ex-

isting superpixel algorithms. Since pre-trained deep net-

work features were shown to generalize to different vision

tasks [10, 5], one may expect that these features would lead

to performance gain in superpixel segmentation. We adopt

this strategy using the SNIC [2] and ERS [17] methods.

We first replace the hand-crafted features in the SNIC

and ERS algorithms with the deep features extracted from

the pre-trained VGG16 model [25]. As illustrated in Fig-
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Figure 1: Segmentation leakage. (a) shows the typical challenge

in natural images that the object has similar colors with back-

ground. (b) and (c) show the results of the SNIC and ERS methods

using the deep features from VGG16. (d) is the result of the ERS

method using the HED-based affinities. (e) is the corresponding

affinities derived from HED edges. We also show the result using

our learned segmentation-aware affinities in (f).

ure 1 (b) and (c), the extracted superpixels often fail to align

with object boundaries. While the deep features provide

discriminative information for high-level vision tasks, they

are invariant to some spatial information which is of great

importance for localizing object boundaries. More details

regarding this experiment and quantitative results are pre-

sented in Section 5.1 and supplementary materials.

As edge detection is closely related to image segmenta-

tion, we also consider utilizing edge information to guide

the graph-based superpixel algorithms. By letting pixels

with high edge probability have low pixel affinities and pix-

els with low edge probability have high affinities, the graph-

based algorithms should be able to keep object bound-

aries from merging when computing superpixels. We use

the ERS algorithm and derive the pixel affinities from the

groundtruth segmentation maps [3], which we refer to as

“oracle affinities”. We find the performance of the ERS al-

gorithm can be significantly improved with the oracle affini-

ties. We analyze whether similar improvements can be ob-

tained with pixel affinities derived from the state-of-the-art

deep edge detectors such as HED [28]. However, no signif-

icant improvements can be achieved with the HED-based

affinities. Figure 1(d) shows that a few missing boundary

pixels in the near-perfect boundary map (Figure 1(e)) lead

to merging of foreground and background regions and intro-

duce segmentation errors. More experimental details along

with the quantitative results are presented in Section 5.1.

The reason that pre-trained deep features perform poorly

for superpixel segmentation can be attributed to the fact that

image segmentation is not explicitly considered in the train-

ing objectives. For classification networks, the objective is

to correctly classify images in terms of feature representa-

tions that are invariant to local edge information, thereby

making them unsuitable for superpixel segmentation. Deep

edge detectors, on the other hand, are trained with the ob-

jective of maximizing boundary accuracy. As a result, a few

missing boundary pixels would only contribute to a small

increase in edge detection loss but can cause a large seg-

mentation error when used as affinities for superpixel seg-

mentation.

4. Learning Segmentation-Aware Affinities

We propose a segmentation-aware pixel affinity learning

approach for graph-based superpixel segmentation. It over-

comes the challenges discussed in Section 3 via learning

pixel affinities by minimizing a novel segmentation-aware

loss function. The PAN architecture is designed to pre-

dict 4-connected pixel affinities on image graphs. These

predicted affinities are then passed to a graph-based super-

pixel algorithm. Based on the computed superpixels and the

groundtruth object segmentation map, the SEAL function

is computed and the errors are back-propagated to train the

PAN model. An overview of the proposed affinity learning

framework is illustrated in Figure 2.

4.1. Segmentationaware loss

We leverage existing segmentation datasets (e.g.,

BSDS500 [3]) as supervisory signals to train the PAN

model for affinity prediction. We note that the groundtruth

segmentation map is for object segmentation rather than

for superpixel segmentation. However, as superpixels are

over-segmentation of an image, we can still use the object

segmentation groundtruth to define a proper loss function

for affinity prediction. The SEAL function is for this pur-

pose. To use the segmentation datasets, we first convert the

groundtruth segmentation maps into pixel affinities with ze-

ros for the boundary pixels and ones for the remaining pix-

els. We use horizontal label transitions in the groundtruth

segmentation maps to generate horizontal affinities and use

vertical transitions to generate vertical affinities. For in-

stance, if there is a groundtruth label transition from pixel

(x, y) to pixel (x + 1, y) then we only set the horizontal

affinity at (x, y) as zero, but not vertical affinity.

Given the binary groundtruth affinities and the network

predictions in both the horizontal and vertical directions, we

formulate the affinity learning task as a supervised learning

problem and use the binary cross-entropy (BCE) loss L:

L(θ)= −
∑

i

(

ti log(ai)+(1−ti) log(1−ai)
)

, (1)

where ai ∈ (0, 1) denotes predicted affinity at pixel i and

ti ∈ {0, 1} denotes the corresponding target affinity com-

puted from groundtruth segmentation maps. In addition, θ

denotes the parameters of the PAN model. Note that train-

ing affinities is similar to training edge prediction where the

simple BCE loss suffers from imbalance of edge and non-

edge samples. To overcome data imbalance, extra weights

are introduced in the class-balancing BCE loss [28] to bal-

ance two classes when training edge detectors. However,

it still does not take segmentation into account. Our experi-

ments (in Section 5.1) also indicate that the affinities trained
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Figure 2: Illustration of the proposed affinity learning framework. The PAN model takes the image as input and predicts horizontal

and vertical affinities at each pixel. The affinities are then passed into a graph-based superpixel algorithm to compute superpixels. The

SEAL function takes the affinities, computed superpixels and the groundtruth segmentation map as input and computes gradients for

back-propagation. The dashed lines indicate the flow of gradients.

Gj

Sk ∩Gj

Bj

Sk ∩BjSk \ {Sk ∩Gj}

Figure 3: Segmentation errors. Illustration of segmentation er-

ror of a superpixel Sk (in green) with respect to the groundtruth

object boundary Bj (in blue). We weigh the loss on boundary

pixels (in red) with the segmentation error Sk \ {Sk ∩Gj}.

with class-balancing BCE loss do not generate satisfactory

superpixels as this loss is agnostic to segmentation errors.

We propose the SEAL, which improves the BCE loss

by tying it to superpixel segmentation errors. Specifi-

cally, we first use the predicted affinities to compute su-

perpixels using a graph-based superpixel segmentation al-

gorithm. The resulting superpixels are then compared with

the groundtruth segmentation map to measure the segmen-

tation errors at each superpixel.

As illustrated in Figure 3, we use Sk to refer to a su-

perpixel (shaded green) and Gj to refer to the groundtruth

object segment (shaded blue) that overlaps the most with

Sk. Because a superpixel must belong to a single object,

the over-segmentation error ωSk
is given by the number of

pixels in Sk but not in Gj :

ωSk
= |Sk \ {Sk ∩Gj}| = |Sk| − |Sk ∩Gj |. (2)

If the predicted affinities perfectly correlate with object

boundaries, ωSk
should be zero. When ωSk

is not zero, it

means some predicted affinities are incorrect. The key idea

of the SEAL function is to penalize pixel affinity predictions

according to the over-segmentation errors.

Specifically, let Bj denote the set of groundtruth bound-

ary pixels (dark blue contour). The pixels that are both in

the groundtruth boundaries and in Sk are given by Sk ∩Bj

(red pixels in Figure 3). The SEAL function is defined as a

weighted BCE loss:

LSEAL(θ)= −
∑

i

(1+γi)(ti log ai+(1−ti) log(1−ai)), (3)

where γi = ωSk
if i ∈ Sk ∩ Bj for some superpixel Sk

and the corresponding groundtruth segment Gj , otherwise

γi = 0. In other words, If the pixels are on the groundtruth

boundaries, we weigh the BCE loss with over-segmentation

error (1 + γi); otherwise, we use plain BCE loss. This way

a larger over-segmentation error will lead to a larger loss

value, which in term will induce stronger gradients during

training with the back-propagation algorithm. Furthermore,

since we only weigh the groundtruth boundary pixels, we

implicitly handle the data imbalance issue.

4.2. Pixel Affinity Net

We propose the PAN model to predict affinities from a

given image. The input to the network is a color image and

the output is a two-channel affinity map with one represent-

ing horizontal affinities and the other for vertical affinities.

For each pixel, the network predicts affinities towards right

and bottom pixels. For instance, the horizontal affinity at

pixel (x, y) indicates the affinity value between pixel (x, y)
and (x + 1, y) and the vertical affinity at pixel (x, y) is the

affinity value between pixel (x, y) and (x, y + 1). The last

column of horizontal affinity and the last row of vertical

affinity are discarded during testing and gradients with re-

spect to these locations are set to zero during training.

The local affinity is computed independently of the ori-

entation of an input image. That is, both the horizontal and

vertical affinities can be computed using the same network

by rotating the input image along the horizontal and vertical

axis. We train the PAN model to predict horizontal affinities

only and the vertical affinities are computed by passing the
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rotated input image. These predicted affinities correspond

to edge weights on the image graph, which are then fed into

a graph-based superpixel segmentation algorithm.

The PAN model, illustrated in Figure 2, uses 1× 7 hori-

zontal convolution kernels in the first layer to capture hori-

zontal changes in the image. This is followed by 3 standard

residual blocks (ResBlock) [12] of 128 channels. A single

1 × 1 convolution layer is then used to convert 128 chan-

nels into 1-channel intermediate affinity prediction. This

intermediate affinity map is concatenated with the Canny

edges [4] and is then passed onto two 1×1 convolution lay-

ers for final affinity prediction. We use Canny edges here

because they help localize the boundaries. Empirically, they

lead to improved performance as will be shown in Section 5.

We use sigmoid activations at the layers generating interme-

diate and final affinity maps to constrain the affinity values

between 0 and 1. All other convolutional layers are inter-

leaved with the ReLU function.

5. Experiments

Implementation details. We use the Adam [14] opti-

mization to train the PAN model for 100k iterations. We

set the initial learning rate to 1e-4 and reduce it by a fac-

tor of 10 every 30k iterations until the learning rate drops

to 1e-6. Other optimization parameters (β1, β2) and weight

decay are set to (0.9, 0.999) and 1e-4 respectively. We use

the ERS [17] algorithm to compute superpixels in the main

paper. In the supplementary materials, we report additional

results using the FH [8] algorithm. During training, the

PAN model generates horizontal and vertical affinities that

are passed into the 4-connected ERS algorithm to compute

superpixels.

For testing, we develop an approach to derive the di-

agonal affinities from 4-connected affinities and use the 8-

connected ERS to compute superpixels. We observe that us-

ing the 8-connected ERS with the learned affinities achieves

the best performance, which we refer to as the SEAL-ERS.

The details for approximating 8-connected affinities from

the 4-connected affinities are described in the supplemen-

tary materials.

Performance metrics. We use the Achievable Segmenta-

tion Accuracy (ASA) and Boundary Recall (BR) metrics for

performance evaluation. The ASA score evaluates super-

pixels by measuring the total effective segmentation area of

a superpixel representation with respect to the groundtruth

segmentation map. For example, if a superpixel straddles an

object boundary, only the larger side is considered correct.

The BR score, on the other hand, measures the superpixel

boundary adherence with respect to the groundtruth bound-

ary. Higher ASA and BR scores indicate better superpixel

segmentation results. More details about these two metrics

are presented in the supplementary material. Some existing

methods [2, 27] use the Corrected Under-Segmentation Er-

ror (CUSE) metric, which is equivalent to (1 − ASA). In

this paper, we report all experimental results using the ASA

and BR metrics.

5.1. Comparisons with baselines

We compute a number of baseline affinities using sev-

eral existing techniques and use them with the ERS algo-

rithm [17] for superpixel segmentation. We then evaluate

the resulting superpixels with the ASA and BR scores on

the BSDS500 [3] test set. These scores for different base-

line methods are shown in Figure 4 where the standard ERS

algorithm with affinities computed with RGB pixel differ-

ences is referred to as “RGB features”, and our proposed

method is referred to as “Affinities trained with SEAL loss”.

The plots indicate that the proposed algorithm performs fa-

vorably against the standard ERS method in terms of ASA

scores with slightly better BR scores.

Affinities with pre-trained deep features. As stated in

Section 3, we evaluate affinities computed using deep fea-

tures from pre-trained networks. Specifically, we extract

features from the VGG16 [25] model trained for the Ima-

geNet classification and use them to compute pixel affini-

ties. We experiment with features from different layers and

find that conv1 1 layer features result in the best perfor-

mance for the pre-trained deep feature based superpixels.

We refer to this experiment as “VGG16 Features” in Fig-

ure 4. The ASA and BR scores indicate that using VGG16

features for affinity measure performs worse than that us-

ing basic RGB pixel features. We also observe similar per-

formance drop with the SNIC [2] method using pre-trained

deep features, and present the experimental results in the

supplementary material.

Edge-based affinities. Edge detection is closely related

to segmentation. As discussed in Section 3, we experiment

with the affinities computed from the state-of-the-art deep

edge detectors. Specifically, we use the HED [28] method

and convert the predicted edge map E into affinity map A

by A = 1− E. The results with these edge-based affinities

are referred to as “HED-based affinities” in Figure 4. Ex-

perimental results indicate that the ERS method using HED-

based affinities achieves similar ASA score as the original

ERS superpixels but with a lower BR. In Figure 1, we show

a few missing boundary pixels in the predicted edges can

cause large errors in superpixel segmentation.

Class-balancing BCE loss. In addition to existing deep

features, we also experiment with another variant of BCE

loss function that is commonly used for training edge de-

tectors [28]. The class-balancing BCE loss uses different

weights for the boundary and non-boundary pixels in the

BCE loss function to account for the data imbalance. Both
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Figure 4: Comparison to baseline affinities. We compute ASA and BR scores on the BSDS500 test set for superpixels computed using

the ERS [17] algorithm with different baseline affinities and our learned affinities.

this class-balancing loss and the proposed segmentation-

aware loss are weighted BCE losses, but the class-balancing

loss is still agnostic to superpixel segmentation errors. As a

baseline, we train the PAN model with this class-balancing

BCE loss and report the resulting superpixel scores in Fig-

ure 4 as “Affinities trained with HED loss ”. Experimental

results indicate that this approach performs worse than that

with the affinities trained with the SEAL function.

The oracle. We also carry out experiments using affini-

ties computed from the groundtruth segmentation maps in

the BSDS500 dataset. Since, several groundtruth segmen-

tation annotations are provided for each image, we aver-

age the affinities computed from each of the annotations

and consider that as groundtruth affinities. We refer to the

superpixels computed using those groundtruth affinities as

“the oracle” and the results in Figure 4 show that the oracle

affinities can significantly boost the performance of the ERS

algorithm. We note that our approach with learned affinities

performs almost as well as that based on the oracle in terms

of ASA score.

5.2. Comparisons with the stateofthearts

We compare our method with the state-of-the-art su-

perpixel algorithms including the ERS [17], SLIC [1],

LSC [16], SEEDS [27] and SNIC [2]. We evaluate on the

BSDS500 [3] and the Cityscapes [6] datasets, where accu-

rate segmentation masks are provided.

BSDS500. We train the PAN model using 300 images

in the BSDS500 train and validation sets and evaluate on

200 test images. Each image in this dataset is provided

with multiple groundtruth annotations. For training, we

treat each annotation as an independent sample. With this

dataset, we have 1633 train pairs and 1063 test pairs of im-

ages and annotations. We apply random image rotations

and reflections as data augmentation for training the PAN

model. Empirically, we observe that the proposed affinity

learning framework is not sensitive to the number of su-

perpixels used in training. We use a fixed number of 300

superpixels during training and apply the trained model to

compute superpixels of different numbers.

The experimental results with the ASA and BR scores

are shown in Figure 6. We set the boundary tolerance to 1

pixel for computing the BR scores. In addition to separate

ASA and BR plots, we show a combined plot in Figure 6

where average ASA and average BR from 100 to 1200 su-

perpixels are used in this plot. Evaluation scores indicate

that our proposed SEAL-ERS method performs favorably

against the base ERS algorithm and other state-of-the-art

superpixel segmentation algorithms. Note that the SEAL-

ERS method is able to retain high ASA score even when the

number of superpixels is small. Figure 5 shows a couple of

visual results where foreground objects have similar color

to background. The SEAL-ERS method using the learned

affinities demonstrate better boundary-preserving ability for

superpixel segmentation.

Cityscapes. We evaluate superpixel segmentation meth-

ods on a larger Cityscapes [6] dataset. Each image in this

dataset is provided with a pixel-wise segmentation map. We

train our model with 2975 Cityscapes train images and eval-

uate on 500 validation images. As the image resolution is

high (1024×2048), we use random 512×512 crops to train

our network. Similar to the experimental setup with the

BSDS500 dataset, we fix the number of superpixels to 300

during training. For testing, we measure the ASA and BR

scores with the number of superpixels ranging from 1000 to

6000. As the images in this dataset contain long and thin

objects, we use a larger number of superpixels for all the

evaluated methods. We set the boundary tolerance to 3 pix-

els for computing BR scores, as this dataset images are of

high-resolution. Figure 7 shows that significant improve-

ments can be obtained by the SEAL-ERS method for this

dataset as well, which demonstrates the generalization capa-

bility of the proposed algorithm. Specifically, our approach

performs favorably against existing superpixel algorithms

in this dataset. Note that the SEEDS [27] algorithm is not

included for comparison on this dataset as we are not able
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Figure 5: Visual results. We show 200 superpixels generated by the existing state-of-the-arts and our SEAL-ERS superpixel algorithm.

200 400 600 800 1000 1200

Number of Superpixels

0.92

0.94

0.96

0.98

A
S

A SNIC

SLIC

SEEDS

LSC

ERS

SEAL-ERS

200 400 600 800 1000 1200

Number of Superpixels

0.5

0.6

0.7

0.8

0.9

1

B
R SNIC

SLIC

SEEDS

LSC

ERS

SEAL-ERS

0.84 0.86 0.88 0.9 0.92

BR

0.94

0.945

0.95

0.955

0.96

0.965

0.97

A
S

A

SEAL-ERS

ERS
LSC

SNIC
SLIC

SEEDS

Figure 6: Results on BSDS500. We compare our SEAL-ERS method with the state-of-the-art algorithms on the BSDS500 test set.

to determine reasonable parameters (e.g., minimum block

size, number of scales) to generate the desired number of

superpixels for fair evaluations.

5.3. Ablation study of PAN

We present an ablation study where we evaluate differ-

ent design choices of the proposed PAN model. There are

3 key features that distinguishes PAN from standard deep

architectures: 1). The model predicts only horizontal affini-

ties rather than both horizontal and vertical affinities. We

refer to this aspect of our network as “One-way prediction”.

2). The model uses horizontal 1D convolution (1 × 7) fil-

ters in the first layer. 3). The model fuses Canny edges

with the intermediate affinity prediction. For comparison,

we include a baseline model that predicts both horizontal

and vertical affinities, uses 7× 7 filters instead of 1× 7 and

without using Canny edge fusion. We evaluate each of these

design options of the network. Figure 8 shows that each of

the three alternatives in the PAN model perform relatively

well. In other words, the proposed PAN model performs

robustly with respect to different design choices.

6. Applications

We evaluate whether the improvements in superpixel

quality achieved by our learning technique can translate

to the improvements in downstream vision tasks that use

superpixels. For this study, we choose existing semantic

segmentation and salient object detection techniques, and

replace the superpixels used in those techniques with our

SEAL-ERS superpixels.

Semantic segmentation. CNN models achieve the state-

of-the-art performance for semantic segmentation [5, 19].

However, most CNN architectures for semantic segmenta-

tion generates lower resolution outputs which are then up-

sampled using post-processing techniques such as Dense-

CRF. Recently, Gadde et al. [9] propose the Bilateral In-

ception (BI) networks, where superpixels are used for

long-range and edge-aware propagation across CNN units,

thereby alleviating the need for post-processing CRF tech-
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Figure 7: Results on Cityscapes. We compare our SEAL-ERS method with the state-of-the-arts on the Cityscapes validation set.
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Figure 8: Ablation study. We show the effectiveness of each

design choice in the PAN model in improving accuracy.

Table 1: Superpixels for semantic segmentation. We compute

semantic segmentation using the BI network [9] with different

types of superpixels and compare the IoU scores on the Pascal-

VOC 2012 test set.

Method # of Superpixels IoU

DeepLab [5] - 68.9

+ CRF [5] - 72.7

+ BI (SLIC) [9] 1000 74.1

+ BI (ERS) 1000 74.5

+ BI (SEAL-ERS) 600 75.0

+ BI (SEAL-ERS) 1000 75.4

niques. In the original BI network [9], 1000 SLIC super-

pixels are used for segmentation on the PascalVOC dataset.

Here, we replace those with the ERS and SEAL-ERS su-

perpixels and evaluate the resulting semantic segmentation

on the PascalVOC 2012 test set [7]. We report the stan-

dard Intersection over Union (IoU) scores in Table 1. The

results indicate that we can also obtain significant IoU im-

provements when using the learned SEAL-ERS superpixels

(75.4) compared to standard ERS superpixels (74.5). In ad-

dition, we observe that SEAL-ERS can obtain better IoU

(75.0) even when using less superpixels (600).

Salient object detection. Numerous salient object de-

tection algorithms are based on superpixels. We demon-

strate the effectiveness of SEAL-ERS superpixels by sub-

Table 2: Superpixels for salient object detection. We run the

SO [32] and GMR [29] algorithms with different types of super-

pixels and evaluate on the ECSSD dataset.

SLIC [1] ERS [17] SEAL-ERS

SO [32]
MAE ↓ 0.1719 0.1686 0.1633

Weighted Fβ ↑ 0.5101 0.5070 0.5237

GMR [29]
MAE ↓ 0.1892 0.1877 0.1841

Weighted Fβ ↑ 0.4909 0.4897 0.4955

stituting SLIC superpixels used in existing salient object

detection algorithms with our superpixels. We experi-

ment with two salient object detection algorithms: Saliency

Optimization (SO) [32] and Graph-based Manifold Rank-

ing (GMR) [29]. We report standard Mean Absolute Er-

ror (MAE) and weighted Fβ [21] scores on the ECSSD

dataset [24]. With the same setting as in [32, 29], we use

200 superpixels for this study. Experimental results in Ta-

ble 2 show that the use of SEAL-ERS superpixels consis-

tently improves the performance of both the SO and GMR

methods in both metrics. These results on semantic segmen-

tation and salient object detection demonstrate the potential

of using learned superpixels for downstream vision tasks.

7. Conclusion

In this paper, we present a segmentation-aware affinity

learning framework for superpixel segmentation. We pro-

pose the PAN model for affinity prediction and develop the

SEAL that makes use of superpixel segmentation errors for

affinity learning. The resulting SEAL-ERS method gen-

erates better boundary-preserving superpixels compared to

those using hand-crafted features or deep features trained

without taking segmentation into account. Our SEAL-ERS

performs favorably against several existing state-of-the-art

superpixels. Furthermore, we demonstrate that the SEAL-

ERS can be used in numerous vision applications with sig-

nificant performance gains.
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