
CLIP-Q: Deep Network Compression Learning by In-Parallel

Pruning-Quantization

Frederick Tung Greg Mori

Simon Fraser University

ftung@sfu.ca, mori@cs.sfu.ca

Abstract

Deep neural networks enable state-of-the-art accuracy

on visual recognition tasks such as image classification and

object detection. However, modern deep networks con-

tain millions of learned weights; a more efficient utiliza-

tion of computation resources would assist in a variety of

deployment scenarios, from embedded platforms with re-

source constraints to computing clusters running ensem-

bles of networks. In this paper, we combine network prun-

ing and weight quantization in a single learning frame-

work that performs pruning and quantization jointly, and

in parallel with fine-tuning. This allows us to take advan-

tage of the complementary nature of pruning and quantiza-

tion and to recover from premature pruning errors, which

is not possible with current two-stage approaches. Our

proposed CLIP-Q method (Compression Learning by In-

Parallel Pruning-Quantization) compresses AlexNet by 51-

fold, GoogLeNet by 10-fold, and ResNet-50 by 15-fold,

while preserving the uncompressed network accuracies on

ImageNet.

1. Introduction

Deep neural networks have become indispensable tools

for a wide range of visual recognition tasks, such as im-

age classification [19, 27, 48], object detection [6, 32, 42],

semantic segmentation [2, 33, 39, 58], and visual question

answering [21, 35, 36, 56]. The capacity of deep neural

networks to act as powerful non-linear function approxima-

tors is made possible by their millions of learnable connec-

tion weights. In general, there has been a trend towards

deeper architectures with increasing numbers of learnable

connections [19, 23, 45]. However, many practical appli-

cations of computer vision require efficient solutions with

low memory and energy footprint. For example, a mo-

bile robot may need to map its surroundings while detect-

ing objects and people, or a smartphone app may need to

perform fine-grained classification of animals in the wild.

1. Clipping

2. Partitioning

3. Quantizing

Minibatch

Forward

pass

Backward

pass

In-parallel pruning-quantization

0

0

0

[while not max iterations]

Figure 1. An overview of our deep network compression approach.

CLIP-Q combines weight pruning and quantization in a single

learning framework, and performs pruning and quantization in par-

allel with fine-tuning. The joint pruning-quantization adapts over

time with the changing network.

More generally, a more efficient utilization of computation

resources would assist in a variety of deployment scenar-

ios, from resource-constrained platforms to computing clus-

ters running ensembles of deep networks. An important re-

search question is therefore: how can we make state-of-the-

art deep neural networks, with millions of parameters, more

compact and efficient?

Our focus in this paper is on deep network compression,

which has the goal of making deep networks more compact

[13, 16, 49]. Complementary lines of work focus on accel-

erating deep network inference at test time [9, 10, 11, 30],

or reducing deep network training times [1, 24]. The con-

ventional understanding is that large numbers of connec-

tions (weights) are necessary for training deep networks

with high predictive accuracy; however, once the network

17873

has been trained, there will typically be a high degree of

parameter redundancy [7]. Network pruning, in which the

network connections are reduced or sparsified, is one com-

mon strategy for compression. Another common strategy is

weight quantization, in which connection weights are con-

strained to a set of discrete values, allowing weights to be

represented using fewer bits. However, current approaches

perform pruning and quantization separately. This does not

exploit the complementary nature of weight pruning and

quantization, and errors made in the first stage cannot be

corrected in the second stage.

This paper presents CLIP-Q (Compression Learning by

In-Parallel Pruning-Quantization), a new approach to deep

network compression that (1) combines network pruning

and weight quantization in a single learning framework that

solves for both weight pruning and quantization jointly;

(2) makes flexible pruning and quantization decisions that

adapt over time as the network structure changes; and (3)

performs pruning and quantization in parallel with fine-

tuning the full-precision weights (Fig. 1). Experiments on

AlexNet [27], GoogLeNet [48], and ResNet [19] for Im-

ageNet classification demonstrate the potential of the pro-

posed approach.

2. Related Work

2.1. Network pruning

Network pruning is a common and intuitive approach

to deep network compression. Pruning methods remove

“unimportant” connections from a pre-trained network and

then fine-tune the sparsified network to restore accuracy.

The earliest pruning methods removed connections based

on the second-order derivatives of the network loss [18, 29].

Data-free parameter pruning [47] discovers and removes re-

dundant neurons using a data-independent technique. Deep

compression [16] removes the connections with the lowest

magnitude weights, with the intuition that low-magnitude

weights are likely to have less impact on the computation

result if set to zero. It achieves further compression by then

quantizing the remaining weights and applying Huffman

coding. Our method is different in that we perform prun-

ing and quantization jointly instead of sequentially. This

allows us to take advantage of the complementary nature of

these tasks and to recover from earlier pruning errors, which

is not possible with a two-stage approach.

Determining the importance of a connection is difficult

due to the complex interactions among neurons: a connec-

tion that initially seems unimportant may become impor-

tant when other connections are removed. This presents a

significant challenge to pruning algorithms as most make

hard (permanent) pruning choices during the optimization

[13]. Dynamic network surgery [13] additionally performs

weight splicing, which restores previously pruned connec-

tions. Connections are pruned and spliced based on the

magnitude of their weights. In a similar spirit, CLIP-Q

makes flexible pruning choices that can adapt to changes to

the network over time during training. Different from dy-

namic network surgery, we incorporate both network prun-

ing and weight quantization in the optimization and solve

for the pruning-quantization parameters jointly.

Besides compression, network pruning has also been

used to regularize the training of more accurate full-sized

networks [17], reduce over-fitting in transfer learning [31],

and produce energy-efficient networks for battery-powered

devices [55].

2.2. Weight quantization

Weight quantization refers to the process of discretizing

the range of weight values so that each weight can be rep-

resented using fewer bits. For example, if weights can take

on only 16 discrete values (quantization levels), then each

weight can be encoded in 4 bits instead of the usual 32 bits

for a single-precision value.

Deep compression [16] performs weight quantization

separately from pruning in a two-stage approach. Quanti-

zation levels are linearly distributed to cover the range of

weights. Soft weight-sharing [50] re-trains a network while

fitting the weights to a Gaussian mixture model prior. Quan-

tization levels correspond to centers in the Gaussian mixture

model, and pruning can be incorporated by enforcing a mix-

ture component at zero. Though theoretically principled,

the method is computationally expensive and practical only

for small networks [50]. Weighted-entropy-based quantiza-

tion [38] distributes quantization levels using a weighted en-

tropy measure that encourages fewer quantization levels to

be allocated to near-zero and very high-magnitude weights,

and a more balanced distribution of quantization levels to

be allocated to weights away from these extremes.

Quantized convolutional networks [53] express the for-

ward passes of convolutional and fully connected layers

as inner products, which can be approximated using prod-

uct quantization. Our method performs scalar quantization

[16, 38, 50] instead of product or vector quantization.

In the limit, weights can be quantized to a single bit to

form binary weight networks [5, 41]. Network sketching

[14] binarizes pre-trained networks by approximating real-

valued filters with weighted combinations of binary filters.

Local binary convolutional networks [54] replace convolu-

tional layers with a learnable module inspired by local bi-

nary patterns [37].

2.3. Distillation, lowrank approximation, and
structured projections

In addition to network pruning and weight quantization,

several other directions have been successfully applied to

train or fine-tune compact deep networks. Knowledge dis-

7874

0.1 -0.1 0.7 -0.4

0.7 -0.5 0.9 -0.1

-1.0 -0.6 -1.6 0.8

-0.5 1.1 0.2 1.2

0.7 -0.4

0.7 -0.5 0.9

-1.0 -0.6 -1.6 0.8

-0.5 1.1 1.2

0.7 -0.4

0.7 -0.5 0.9

-1.0 -0.6 -1.6 0.8

-0.5 1.1 1.2

0.9

-0.5

-1.3

Clipping Partitioning Quantizing

Figure 2. An example illustrating the three steps of the pruning-quantization operation for a layer with 16 weights, p = 0.25 and b = 2.

Pruning-quantization is performed in parallel with fine-tuning the network’s full-precision weights, and updates the pruning statuses,

quantization levels, and assignments of weights to quantization levels after each training minibatch.

tillation [20, 43] trains a compact student network using a

weighted combination of ground truth labels and the soft

outputs of a larger, more expensive teacher network. Low-

rank approximation methods exploit the redundancy in fil-

ters and feature map responses [8, 26, 59]. Structured pro-

jection methods [3, 57] replace the fully connected layers

of convolutional networks, which can be viewed as unstruc-

tured projections, with efficient structured projections that

can be specified using fewer weights.

2.4. Efficient architectures

An orthogonal direction is the design of efficient network

architectures. SqueezeNet [25] replaces 3x3 convolutional

filters with 1x1 filters, reduces the number of input chan-

nels to 3x3 filters, and downsamples later in the network.

Xception [4] replaces Inception modules [48] with depth-

wise separable convolutions. Multi-scale DenseNet [22]

uses early-exit classifiers to enable anytime classification

and budgeted batch classification. Pruning and quantiza-

tion are complementary to these architectural innovations;

for example, deep compression [16] is applied to compress

SqueezeNet by 10-fold in [25].

2.5. Testtime acceleration

Inference speed is another important consideration when

running deep networks on mobile or embedded platforms.

Methods dedicated to accelerating deep network inference

at test time (without prior compression) focus on reducing

the amount of exact computation needed. Perforated convo-

lutional layers [11] perform exact computations in a subset

of spatial locations and interpolate the remaining using the

nearest spatial neighbors. Motivated by the fact that nega-

tive responses are discarded by ReLU activations, low-cost

collaborative layers [9] predict which spatial locations will

produce negative responses and skips those locations. Spa-

tially adaptive computation time [10] accelerates residual

networks by learning to predict halting scores that allow

computation to stop early within a block of residual units.

3. CLIP-Q

The goal of our method is to learn a compressed deep

network by fine-tuning a pre-trained deep network while (a)

removing connections (weights) and (b) reducing the num-

ber of bits required to encode the remaining connections. To

accomplish this, we combine network pruning and weight

quantization in a single operation and learn the pruned net-

work structure and quantized weights together. Our method

performs pruning-quantizations that adapt over the course

of training as the network structure evolves. Connections

may be removed and restored in a later iteration as the net-

work learns more efficient structures. Quantization levels

and assignments of connections likewise adapt to the net-

work structure over time.

3.1. Inparallel pruningquantization

An overview of our approach is presented in Fig. 1. In

parallel with network fine-tuning, we perform a pruning-

quantization operation on each layer that consists of three

steps:

1. Clipping. We place two “clips”, scalars c− and c+,

such that (p × 100)% of the positive weights in the

layer are less than or equal to c+, and (p × 100)% of

the negative weights are greater than or equal to c−.

All the weights between c− and c+ are set to zero in

the next forward pass. This removes the correspond-

ing connections from the network when processing the

next minibatch. Note that this pruning decision is im-

permanent: in the next iteration, we apply the rule

again on updated weights, and previously pruned con-

nections can return. While the hyperparameter p is

constant, the thresholds c− and c+ change in each it-

eration. Like paper clips, c− and c+ can be flexibly

“moved” along the 1-D axis of weight values. Clips

are represented by red triangles in Fig. 1.

2. Partitioning. In the second step, we partition the non-

clipped portion of the 1-D axis of weight values into

quantization intervals. These intervals are visualized

7875

as different colored ranges in Fig. 1. Given a preci-

sion budget of b bits per weight, this step produces a

partitioning of the 1-D axis into 2b − 1 intervals, plus

the zero interval between the clips c− and c+. We per-

form linear (uniform) partitioning [16] to the left of c−

and to the right of c+ for simplicity; other partitioning

strategies (e.g. weighted entropy [38]) could also be

used for improved accuracy.

3. Quantizing. We next update the quantization levels

– the discrete values that the weights are permitted

to take in the compressed network. Each quantiza-

tion level is computed by averaging the full-precision

weights falling within the corresponding quantization

interval (colored ranges in Fig. 1). We then quantize

the weights by setting them to the new quantization

levels in the next forward pass. Similar to pruning, the

quantization applies to the next minibatch and is then

re-evaluated. The quantization levels and assignments

of weights to levels evolve over time as the learning

progresses.

Fig. 2 illustrates the pruning and quantization operation

using a layer with 16 weights. Suppose the pruning rate

p = 0.25 and the bit budget b = 2. We first apply clipping,

which sets the two lowest-magnitude negative weights and

the two lowest-magnitude positive weights to zero, in effect

removing the corresponding connections from the network.

We then linearly partition the 1-D axis of weight values. Fi-

nally, we compute the quantization levels by averaging the

weight values within each partition, and set the weights to

these discrete values. These steps are repeated with the next

training minibatch using the new full-precision weights.

During training, both the quantized and full-precision

weights are tracked. The full-precision weights are used in

the pruning-quantization update as well as during backprop-

agation [38, 41], while the forward pass uses the quantized

weights, simulating the output of the compressed network.

A summary of the training process is shown in Algorithm

1. After training is complete, the full-precision weights are

discarded and only the quantized weights need to be stored.

We store the weights of the compressed network using a

standard sparse encoding scheme [16, 50]. In brief, the

structure of the sparse weight matrix is encoded using in-

dex differences, and each non-pruned weight stores the b-

bit identifier of its quantization level. Full implementation

details can be found in [16].

To summarize, we update pruning statuses, quantization

levels, and quantization level assignments with each train-

ing minibatch, allowing these to adapt over time as needed.

For example, a previously pruned connection may become

relevant again once other connections have been pruned, in

which case it can be spliced back into the network. In addi-

tion, connections can be reassigned quantization levels and

Algorithm 1 Training the compressed network

Input: Full-precision layer weights w1...wL, pruning-

quantization hyperparameters {p1...pL, b1...bL} pre-

computed using Bayesian optimization (Sect. 3.2), net-

work learning parameters

Output: Quantized weights ŵ1...ŵL

1: repeat

2: for each layer i = 1 to L do

3: Clip using full-precision weights wi

4: Partition full-precision weights

5: Quantize full-precision weights to update ŵi

6: end for

7: Input minibatch of images

8: Forward propagate and compute loss with ŵ1...ŵL

9: Backpropagate to update full-precision weights

w1...wL

10: until maximum iterations reached

the quantization levels themselves evolve over time. The

full-precision weights are fine-tuned during training, and

discarded after training is complete.

3.2. Pruningquantization hyperparameter predic
tion

The pruning-quantization operation is guided by two hy-

perparameters: the pruning rate p and the bit budget b.

We predict a set of pruning-quantization hyperparameters

θi = (pi, bi) for each layer i in the network using Bayesian

optimization.

Bayesian optimization provides a general framework for

minimizing blackbox objective functions that are typically

expensive to evaluate, non-convex, may not be expressed

in closed form, and may not be easily differentiable [51].

It enables an efficient search of the joint parameter space

by learning from the outcomes of previous exploration.

Bayesian optimization iteratively constructs a probabilistic

model of the objective function while determining the most

promising candidate in parameter space to evaluate next.

The result of each evaluation is used to refine the model.

To guide our search for promising pruning-quantization

hyperparameters, we optimize

min
θ

ε(θ)− λ · ci(θ) (1)

for each layer i. We obtain a coarse estimate of the quality

of θ by testing the compressed network on a subset of the

training data; ε(θ) is the resulting top-1 error. For speed

we do not perform fine-tuning of the network after apply-

ing this prospective pruning and quantization. ci(θ) mea-

sures the overall compression benefit of applying pruning-

quantization hyperparameters θ to layer i, and is computed

by

7876

ci(θ) =
mi − si(θ)∑

i mi

, (2)

where mi is the number of bits required to store the weights

of layer i in uncompressed form and si(θ) is the number

of bits required to store the using the weights of layer i af-

ter pruning-quantization with θ, using the sparse encoding

scheme (Section 3.1). Finally, λ is an importance weight

that balances accuracy and compression.

We model the objective function as a Gaussian process

[40] and select the most promising candidate in pruning-

quantization hyperparameter space to evaluate next using

the expected improvement criterion, which can be com-

puted in closed form. We briefly sketch the standard so-

lution below and refer the interested reader to more com-

prehensive treatments in [12, 40, 46].

A Gaussian process is parameterized by a mean function

µ(·) and a covariance kernel k(·, ·). Let

f ∼ GP(µ(·), k(·, ·)) , (3)

µ(θ) = E [f(θ)] ,

k(θ, θ′) = E [(f(θ)− µ(θ))(f(θ′)− µ(θ′))] .

Given Θ = {θ1, θ2, ..., θn} and function evaluations

f(Θ) = {f(θ1), f(θ2), ..., f(θn)}, the posterior belief of

f at a novel candidate θ̂ is given by

f̃(θ̂) ∼ N (µ̃f (θ̂), Σ̃
2
f (θ̂))) , (4)

µ̃f (θ̂) = µ(θ̂) + k(θ̂,Θ)k(Θ,Θ)−1(f(Θ)− µ(Θ)),

Σ̃2
f (θ̂) = k(θ̂, θ̂)− k(θ̂,Θ)k(Θ,Θ)−1k(Θ, θ̂) .

Let θ+ denote the best candidate evaluated so far. The ex-

pected improvement of a candidate θ̂ is defined as

EI(θ̂) = E[max{0, f(θ+)− f̃(θ̂)}] , (5)

and it can be efficiently computed in closed form:

EI(θ̂) = Σ̃f (θ̂)(ZΦ(Z) + φ(Z)) , (6)

Z =
µ̃f (θ̂)− f(θ+)

Σ̃f (θ̂)
,

where Φ is the standard normal cumulative distribution

function and φ is the standard normal probability density

function.

4. Experiments

We performed compression experiments using AlexNet

[27], GoogLeNet [48], and ResNet [19] image classification

networks on ImageNet (ILSVRC-2012) [44], which con-

tains 1.2M training images and 50K validation images. We

implemented CLIP-Q in Caffe and used the public Bayesian

optimization libraries of [12, 40].

Layer p b Original Compressed Rate

conv1 0.21 8 140 KB 35 KB 4×
conv2 0.36 6 1.2 MB 204 KB 6×
conv3 0.43 4 3.5 MB 395 KB 9×
conv4 0.32 4 2.7 MB 321 KB 8×
conv5 0.31 3 1.8 MB 174 KB 10×
fc6 0.96 3 151.0 MB 1.80 MB 84×
fc7 0.95 3 67.1 MB 969 KB 69×
fc8 0.74 3 16.4 MB 876 KB 19×
Overall 243.9 MB 4.8 MB 51×

Table 1. Layerwise compression statistics for AlexNet on Ima-

geNet (p: pruning rate, b: bits per weight). Original top-1 ac-

curacy: 57.2%. Compressed top-1 accuracy: 57.9%.

4.1. AlexNet on ImageNet

We started with Caffe’s bundled ImageNet-pretrained

AlexNet and trained the compressed network for 900K it-

erations with a batch size of 256, an initial learning rate

of 0.001, and a 1/10 multiplier on the learning rate every

400K iterations. Other network learning parameters (e.g.

momentum, weight decay) were kept at Caffe defaults. For

Bayesian optimization, we set λ to 40 and the maximum

number of iterations (i.e. candidate evaluations) to 50.

Table 1 shows layerwise statistics for pruning rate,

quantization in bits, and storage requirements using the

sparse encoding scheme [16]. Since Eq. 2 considers the

whole-network compression benefit of applying candidate

pruning-quantization hyperparameters, CLIP-Q learns to

prioritize compressing the fully-connected layers fc6 and

fc7, which have the most parameters. CLIP-Q prunes these

layers the most aggressively, with close to 95% of the con-

nections removed in both cases, and allocates the small-

est number of bits to encode the remaining connections.

This enables 84× compression of the fc6 layer and 69×
compression of the fc7 layer. Overall, CLIP-Q compresses

AlexNet from 243.9 MB to 4.8 MB – a 51× compression

rate – while preserving the accuracy of the uncompressed

AlexNet on ImageNet.

Fig. 3 visualizes the pruning-quantization hyperparame-

ter prediction using Bayesian optimization. Each row shows

the prediction process for one layer in AlexNet over 50

Bayesian optimization iterations. The left plot shows the

value of p (pruning rate) selected by Bayesian optimiza-

tion as the most promising candidate to evaluate next; the

middle plot shows the value of b (bits per weight) before

rounding; the right plot shows the best objective observed

so far. In most cases, Bayesian optimization converges to

good pruning-quantization hyperparameters within 20-30

iterations.

7877

conv1

0 20 40

Bayesian opt. iteration

0

0.1

0.2

0.3

0.4

P
ru

n
in

g
 r

a
te

 p

0 20 40

Bayesian opt. iteration

3

4

5

6

7

8

B
it
 b

u
d
g
e
t
b
 (

u
n
ro

u
n
d
e
d
)

0 20 40

Bayesian opt. iteration

0.2

0.3

0.4

0.5

0.6

B
e
s
t
o
b
je

c
ti
v
e
 s

o
 f
a
r conv2

0 20 40

Bayesian opt. iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ru

n
in

g
 r

a
te

 p

0 20 40

Bayesian opt. iteration

3

4

5

6

7

8

B
it
 b

u
d
g
e
t
b
 (

u
n
ro

u
n
d
e
d
)

0 20 40

Bayesian opt. iteration

0.1

0.15

0.2

0.25

0.3

B
e
s
t
o
b
je

c
ti
v
e
 s

o
 f
a
r

conv3

0 20 40

Bayesian opt. iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ru

n
in

g
 r

a
te

 p

0 20 40

Bayesian opt. iteration

3

4

5

6

7

8

B
it
 b

u
d
g
e
t
b
 (

u
n
ro

u
n
d
e
d
)

0 20 40

Bayesian opt. iteration

-0.255

-0.25

-0.245

-0.24

-0.235

B
e
s
t
o
b
je

c
ti
v
e
 s

o
 f
a
r conv4

0 20 40

Bayesian opt. iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ru

n
in

g
 r

a
te

 p

0 20 40

Bayesian opt. iteration

3

4

5

6

7

8

B
it
 b

u
d
g
e
t
b
 (

u
n
ro

u
n
d
e
d
)

0 20 40

Bayesian opt. iteration

-0.149

-0.148

-0.147

-0.146

-0.145

-0.144

B
e
s
t
o
b
je

c
ti
v
e
 s

o
 f
a
r

conv5

0 20 40

Bayesian opt. iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ru

n
in

g
 r

a
te

 p

0 20 40

Bayesian opt. iteration

3

4

5

6

7

8

B
it
 b

u
d
g
e
t
b
 (

u
n
ro

u
n
d
e
d
)

0 20 40

Bayesian opt. iteration

-0.031

-0.03

-0.029

-0.028

-0.027

-0.026

B
e
s
t
o
b
je

c
ti
v
e
 s

o
 f
a
r fc6

0 20 40

Bayesian opt. iteration

0.5

0.6

0.7

0.8

0.9

1

P
ru

n
in

g
 r

a
te

 p

0 20 40

Bayesian opt. iteration

3

4

5

6

7

8

B
it
 b

u
d
g
e
t
b
 (

u
n
ro

u
n
d
e
d
)

0 20 40

Bayesian opt. iteration

-24

-23.8

-23.6

-23.4

-23.2

B
e
s
t
o
b
je

c
ti
v
e
 s

o
 f
a
r

fc7

0 20 40

Bayesian opt. iteration

0.5

0.6

0.7

0.8

0.9

1

P
ru

n
in

g
 r

a
te

 p

0 20 40

Bayesian opt. iteration

3

4

5

6

7

8

B
it
 b

u
d
g
e
t
b
 (

u
n
ro

u
n
d
e
d
)

0 20 40

Bayesian opt. iteration

-10.5

-10.45

-10.4

-10.35

-10.3

-10.25

B
e
s
t
o
b
je

c
ti
v
e
 s

o
 f
a
r fc8

0 20 40

Bayesian opt. iteration

0.5

0.6

0.7

0.8

0.9

1

P
ru

n
in

g
 r

a
te

 p

0 20 40

Bayesian opt. iteration

3

4

5

6

7

8

B
it
 b

u
d
g
e
t
b
 (

u
n
ro

u
n
d
e
d
)

0 20 40

Bayesian opt. iteration

-2.284

-2.282

-2.28

-2.278

-2.276

-2.274

-2.272

B
e
s
t
o
b
je

c
ti
v
e
 s

o
 f
a
r

Figure 3. Pruning-quantization hyperparameter prediction for AlexNet on ImageNet.

4.2. GoogLeNet on ImageNet

We compressed GoogLeNet using the default network

learning parameters of the quick-solver bundled with

Caffe’s distribution of GoogLeNet, except that we initial-

ized the learning rate to 1e-5. For Bayesian optimization,

we set λ to 5 and the cutoff number of iterations (i.e. num-

ber of candidate evaluations) to 50. We excluded the aux-

iliary branches of the network from pruning-quantization

since these are discarded after training.

Table 2 shows the full layerwise statistics for pruning

rate, quantization in bits, and storage requirements using the

sparse encoding scheme [16]. Similar to AlexNet, CLIP-Q

learns to prioritize the later layers as these contain more pa-

rameters. The most aggressively compressed layer is incep-

tion 5b/3x3, in which 71% of the connections are pruned

and the remaining weights are quantized to 3 bits, resulting

in a compression rate of 15×. Overall, CLIP-Q compresses

GoogLeNet from 28.0 MB to 2.8 MB, or 10×, while match-

ing the accuracy of the uncompressed network. Efficient

use of weights built into the GoogLeNet architecture (e.g.

inception modules with low-dimensional embeddings) may

explain the more modest compression result compared to

AlexNet.

Similar to AlexNet, Bayesian optimization usually

converges to good pruning-quantization hyperparameters

within 20-30 iterations; we omit the visualization due to

space constraints.

4.3. ResNet on ImageNet

Finally, we performed experiments with ResNet-50. We

trained the compressed network for 250K iterations with a

batch size of 24, initial learning rate of 1e-4, and a 1/10

multiplier on the learning rate after 100K iterations. For

Bayesian optimization, we set λ to 10 and the maximum

number of iterations (i.e. candidate evaluations) to 50.

Table 3 shows the full layerwise statistics. Similar to

the AlexNet and GoogLeNet experiments, CLIP-Q learns to

prioritize the later layers containing more parameters. Over-

all, CLIP-Q compresses ResNet-50 from 102.5 MB to 6.7

MB, or a 15× compression rate, while preserving the accu-

racy of the uncompressed network on ImageNet.

4.4. Comparison to stateoftheart methods

Table 4 shows a comparison of CLIP-Q with state-of-

the-art network compression algorithms. “∆ Accuracy”

refers to the change in network accuracy after compression.

We report deltas to fairly treat small variations in training

across papers that can produce different uncompressed net-

works as starting points. For deep compression [16], the

bracketed numbers are after post-processing by Huffman

coding, a lossless data compression technique.

Without any post-processing, CLIP-Q produces the

smallest compressed AlexNet model at 4.8 MB. This re-

7878

Layer p b Original Compressed Rate

conv1/7x7 s2 0.15 7 38 KB 9.1 KB 4×

conv2/3x3 reduce 0.09 7 17 KB 4.5 KB 4×

conv2/3x3 0.28 7 443 KB 88 KB 5×

inception 3a/1x1 0.43 7 49 KB 8.9 KB 6×

inception 3a/3x3 reduce 0.23 7 74 KB 16 KB 5×

inception 3a/3x3 0.41 4 443 KB 50 KB 9×

inception 3a/5x5 reduce 0.07 8 12 KB 4.3 KB 3×

inception 3a/5x5 0.29 5 51 KB 7.8 KB 7×

inception 3a/pool proj 0.30 7 25 KB 5.4 KB 5×

inception 3b/1x1 0.26 6 132 KB 24 KB 6×

inception 3b/3x3 reduce 0.27 8 132 KB 31 KB 4×

inception 3b/3x3 0.39 3 886 KB 81 KB 11×

inception 3b/5x5 reduce 0.36 5 33 KB 4.8 KB 7×

inception 3b/5x5 0.23 3 308 KB 32 KB 10×

inception 3b/pool proj 0.11 6 66 KB 13 KB 5×

inception 4a/1x1 0.33 5 369 KB 53 KB 7×

inception 4a/3x3 reduce 0.25 5 185 KB 28 KB 7×

inception 4a/3x3 0.27 3 720 KB 72 KB 10×

inception 4a/5x5 reduce 0.40 8 31 KB 7.0 KB 4×

inception 4a/5x5 0.40 3 77 KB 7.3 KB 11×

inception 4a/pool proj 0.20 5 123 KB 20 KB 6×

inception 4b/1x1 0.34 5 328 KB 47 KB 7×

inception 4b/3x3 reduce 0.53 5 230 KB 26 KB 9×

inception 4b/3x3 0.35 3 904 KB 86 KB 10×

inception 4b/5x5 reduce 0.01 5 49 KB 9.3 KB 5×

inception 4b/5x5 0.38 3 154 KB 15 KB 11×

inception 4b/pool proj 0.46 4 131 KB 14 KB 9×

inception 4c/1x1 0.53 6 263 KB 35 KB 8×

inception 4c/3x3 reduce 0.38 5 263 KB 36 KB 7×

inception 4c/3x3 0.43 3 1.2 MB 107 KB 11×

inception 4c/5x5 reduce 0.35 6 49 KB 8.4 KB 6×

inception 4c/5x5 0.26 3 154 KB 16 KB 10×

inception 4c/pool proj 0.06 3 131 KB 16 KB 8×

inception 4d/1x1 0.43 6 230 KB 35 KB 7×

inception 4d/3x3 reduce 0.24 5 295 KB 45 KB 7×

inception 4d/3x3 0.38 3 1.5 MB 142 KB 10×

inception 4d/5x5 reduce 0.31 5 66 KB 9.7 KB 7×

inception 4d/5x5 0.34 3 205 KB 20 KB 10×

inception 4d/pool proj 0.28 3 131 KB 13 KB 10×

inception 4e/1x1 0.50 4 542 KB 55 KB 10×

inception 4e/3x3 reduce 0.33 4 339 KB 41 KB 8×

inception 4e/3x3 0.58 3 1.8 MB 150 KB 12×

inception 4e/5x5 reduce 0.49 5 68 KB 8.3 KB 8×

inception 4e/5x5 0.32 3 410 KB 41 KB 10×

inception 4e/pool proj 0.32 3 271 KB 26 KB 10×

inception 5a/1x1 0.45 3 853 KB 75 KB 11×

inception 5a/3x3 reduce 0.47 4 533 KB 56 KB 9×

inception 5a/3x3 0.39 3 1.8 MB 177 KB 10×

inception 5a/5x5 reduce 0.37 3 107 KB 9.9 KB 11×

inception 5a/5x5 0.27 3 410 KB 42 KB 10×

inception 5a/pool proj 0.28 4 426 KB 53 KB 8×

inception 5b/1x1 0.24 3 1.3 MB 131 KB 10×

inception 5b/3x3 reduce 0.36 3 640 KB 59 KB 11×

inception 5b/3x3 0.71 3 2.7 MB 178 KB 15×

inception 5b/5x5 reduce 0.06 3 160 KB 19 KB 8×

inception 5b/5x5 0.25 3 615 KB 65 KB 9×

inception 5b/pool proj 0.37 3 426 KB 40 KB 11×

loss3/classifier 0.45 3 4.1 MB 357 KB 11×

Overall 28.0 MB 2.8 MB 10×

Table 2. Layerwise compression statistics for GoogLeNet on Im-

ageNet (p: pruning rate, b: bits per weight). Original top-1 accu-

racy: 68.9%. Compressed top-1 accuracy: 68.9%.

Layer p b Original Compressed Rate

conv1 0.31 8 38 KB 9.7 KB 4×

res2a branch1 0.64 8 66 KB 9.6 KB 7×

res2a branch2a 0.01 6 16 KB 3.8 KB 4×

res2a branch2b 0.55 5 147 KB 17.0 KB 9×

res2a branch2c 0.14 6 66 KB 13.0 KB 5×

res2b branch2a 0.49 6 66 KB 9.1 KB 7×

res2b branch2b 0.40 7 147 KB 26.6 KB 6×

res2b branch2c 0.32 4 66 KB 8.1 KB 8×

res2c branch2a 0.06 7 66 KB 16.1 KB 4×

res2c branch2b 0.09 5 147 KB 25.6 KB 6×

res2c branch2c 0.35 4 66 KB 7.9 KB 8×

res3a branch1 0.68 6 524 KB 50.9 KB 10×

res3a branch2a 0.37 5 131 KB 18.1 KB 7×

res3a branch2b 0.37 3 590 KB 54.4 KB 11×

res3a branch2c 0.54 4 262 KB 25.2 KB 10×

res3b branch2a 0.38 5 262 KB 35.9 KB 7×

res3b branch2b 0.62 3 590 KB 42.1 KB 14×

res3b branch2c 0.52 3 262 KB 21.9 KB 12×

res3c branch2a 0.70 5 262 KB 21.4 KB 12×

res3c branch2b 0.68 4 590 KB 45.3 KB 13×

res3c branch2c 0.63 6 262 KB 29.9 KB 9×

res3d branch2a 0.47 5 262 KB 32.3 KB 8×

res3d branch2b 0.43 5 590 KB 77.8 KB 8×

res3d branch2c 0.60 6 262 KB 31.3 KB 8×

res4a branch1 0.38 4 2.1 MB 238 KB 9×

res4a branch2a 0.62 3 524 KB 36.7 KB 14×

res4a branch2b 0.57 3 2.4 MB 183 KB 13×

res4a branch2c 0.53 3 1.0 MB 84.2 KB 12×

res4b branch2a 0.75 3 1.0 MB 55.3 KB 19×

res4b branch2b 0.85 4 2.4 MB 104 KB 23×

res4b branch2c 0.73 3 1.0 MB 59.1 KB 18×

res4c branch2a 0.58 3 1.0 MB 77.4 KB 14×

res4c branch2b 0.71 3 2.4 MB 143 KB 16×

res4c branch2c 0.62 3 1.0 MB 73.0 KB 14×

res4d branch2a 0.74 3 1.0 MB 56.8 KB 18×

res4d branch2b 0.82 4 2.4 MB 117 KB 20×

res4d branch2c 0.65 3 1.0 MB 71.3 KB 15×

res4e branch2a 0.64 3 1.0 MB 71.0 KB 15×

res4e branch2b 0.85 3 2.4 MB 91.4 KB 26×

res4e branch2c 0.43 3 1.0 MB 92.5 KB 11×

res4f branch2a 0.53 3 1.0 MB 84.2 KB 12×

res4f branch2b 0.80 3 2.4 MB 114 KB 21×

res4f branch2c 0.40 3 1.0 MB 94.1 KB 11×

res5a branch1 0.73 3 8.4 MB 466 KB 18×

res5a branch2a 0.30 3 2.1 MB 202 KB 10×

res5a branch2b 0.84 3 9.4 MB 372 KB 25×

res5a branch2c 0.73 3 4.2 MB 231 KB 18×

res5b branch2a 0.43 3 4.2 MB 367 KB 11×

res5b branch2b 0.62 3 9.4 MB 694 KB 14×

res5b branch2c 0.91 3 4.2 MB 104 KB 40×

res5c branch2a 0.53 3 4.2 MB 333 KB 13×

res5c branch2b 0.86 3 9.4 MB 344 KB 27×

res5c branch2c 0.78 3 4.2 MB 203 KB 21×

fc1000 0.74 4 8.2 MB 513 KB 16×

Overall 102.5 MB 6.7 MB 15×

Table 3. Layerwise compression statistics for ResNet-50 on Ima-

geNet (p: pruning rate, b: bits per weight). Original top-1 accu-

racy: 73.1%. Compressed top-1 accuracy: 73.7%.

7879

∆ Accuracy Network Size

AlexNet on ImageNet

Uncompressed – 243.9 MB

Data-Free Pruning [47] (CaffeNet) -2.2% 159 MB

Deep Fried Convnets [57] -0.3% 68 MB

Less Is More [60] -0.6% 57 MB

Dynamic Network Surgery [13] -0.2% 1 13.8 MB

Circulant CNN [3] -0.4% 12.7 MB

Quantized CNN [53] -1.4% 12.6 MB

Binary-Weight-Networks [41] +0.1% 7.6 MB

Deep Compression [16] +0.0% 8.9 (6.9) MB

[16] + Weighted-Entropy Quantization [38] -0.8% 8.3 (6.5) MB

CLIP-Q +0.7% 4.8 MB

GoogLeNet on ImageNet

Uncompressed – 28.0 MB

Weighted-Entropy Quantization [38] +0.2% 4.4 MB

CLIP-Q +0.0% 2.8 MB

ResNet-50 on ImageNet

Uncompressed – 102.5 MB

ThiNet [34] -1.9% 49.5 MB

Weighted-Entropy Quantization [38] -1.8% 16.0 MB

CLIP-Q +0.6% 6.7 MB

Table 4. Network compression performance compared with state-of-the-art algorithms

sult extends the previous best compressed AlexNet result,

Deep Compression + Weighted-Entropy Quantization, by

1.7 MB while obtaining 1.5% higher accuracy. In terms of

compression rate, CLIP-Q improves on the previous best

compression rate (37.5×) by 35% relative. On GoogLeNet,

CLIP-Q obtains a state-of-the-art compressed network size

of 2.8 MB, improving on the previous best compression rate

(6.4×) by 57% relative. On ResNet-50, CLIP-Q obtains a

139% relative improvement in the state-of-the-art compres-

sion rate while obtaining 2.4% higher accuracy.

5. Conclusion

We have presented a new method for deep network com-

pression that combines weight pruning and quantization in

a single learning framework, makes flexible pruning and

quantization decisions that adapt to the changing network

structure over time, and performs pruning and quantization

in parallel with network fine-tuning. CLIP-Q obtains state-

of-the-art compression rates of 51× for AlexNet, 10× for

GoogLeNet, and 15× for ResNet-50, improving upon pre-

viously reported compression rates by 35%, 57%, and 139%

relative, respectively.

Limitations and future work. We have focused on

compression performance in this work because practical

test-time speedups are often dependent on the software

implementation of basic network operations and on hard-

ware details. For example, generalized convolution is often

implemented in modern deep learning frameworks by re-

shaping filter and patch matrices and performing large ma-

trix multiplications using highly optimized BLAS libraries.

This design has inspired acceleration methods that reduce

the size of those large matrices by eliminating entire rows

and columns via interpolation at test time or structured

pruning at training time [11, 28, 52]. Unstructured pruning

can benefit from specialized hardware engines for practical

test-time acceleration [15]. Practical speed-ups on mobile

or embedded devices will require careful consideration of

these details.

In addition, recent work has shown that smaller network

models are not necessarily more energy efficient because

energy consumption is also determined by the pattern of

memory accesses [55]. Making deep networks more acces-

sible to low-power devices will require us to consider the

energy efficiency of network structures. It will be interest-

ing to see whether our purning-quantization hyperparame-

ter prediction framework, which currently considers com-

pression rate and accuracy, can incorporate an estimate of

energy consumption using hardware models.

Acknowledgements

This work was supported by the Natural Sciences and

Engineering Research Council of Canada.

1estimated using Caffe AlexNet model accuracy

7880

References

[1] B. Chang, L. Meng, E. Haber, F. Tung, and D. Begert. Multi-

level residual networks from dynamical systems view. In In-

ternational Conference on Learning Representations, 2018.

1

[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, , and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected CRFs. In International

Conference on Learning Representations, 2015. 1

[3] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary,

and S.-F. Chang. An exploration of parameter redundancy in

deep networks with circulant projections. In IEEE Interna-

tional Conference on Computer Vision, 2015. 3, 8

[4] F. Chollet. Xception: Deep learning with depthwise separa-

ble convolutions. In IEEE Conference on Computer Vision

and Pattern Recognition, 2017. 3

[5] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect:

Training deep neural networks with binary weights during

propagations. In Advances in Neural Information Processing

Systems, 2015. 2

[6] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection

via region-based fully convolutional networks. In Advances

in Neural Information Processing Systems, 2016. 1

[7] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Fre-

itas. Predicting parameters in deep learning. In Advances in

Neural Information Processing Systems, 2013. 2

[8] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.

Exploiting linear structure within convolutional networks for

efficient evaluation. In Advances in Neural Information Pro-

cessing Systems, 2014. 3

[9] X. Dong, J. Huang, Y. Yang, and S. Yan. More is less: a

more complicated network with less inference complexity.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, 2017. 1, 3

[10] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang,

D. Vetrov, and R. Salakhutdinov. Spatially adaptive compu-

tation time for residual networks. In IEEE Conference on

Computer Vision and Pattern Recognition, 2017. 1, 3

[11] M. Figurnov, A. Ibraimova, D. Vetrov, and P. Kohli. Per-

foratedCNNs: acceleration through elimination of redundant

convolutions. In Advances in Neural Information Processing

Systems, 2016. 1, 3, 8

[12] J. R. Gardner, M. J. Kusner, Z. Xu, K. Q. Weinberger, and

J. P. Cunningham. Bayesian optimization with inequality

constraints. In International Conference on Machine Learn-

ing, 2014. 5

[13] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for

efficient DNNs. In Advances in Neural Information Process-

ing Systems, 2016. 1, 2, 8

[14] Y. Guo, A. Yao, H. Zhao, and Y. Chen. Network sketching:

exploiting binary structure in deep CNNs. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2017. 2

[15] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,

and W. J. Dally. EIE: Efficient inference engine on com-

pressed deep neural network. In ACM/IEEE International

Symposium on Computer Architecture, 2016. 8

[16] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quanti-

zation and Huffman coding. In International Conference on

Learning Representations, 2016. 1, 2, 3, 4, 5, 6, 8

[17] S. Han, H. Mao, E. Gong, S. Tang, W. J. Dally, J. Pool,

J. Tran, B. Catanzaro, S. Narang, E. Elsen, P. Vajda, and

M. Paluri. DSD: Dense-sparse-dense training for deep neu-

ral networks. In International Conference on Learning Rep-

resentations, 2017. 2

[18] B. Hassibi and D. G. Stork. Second order derivatives for net-

work pruning: optimal brain surgeon. In Advances in Neural

Information Processing Systems, 1992. 2

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conference on Computer

Vision and Pattern Recognition, 2016. 1, 2, 5

[20] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv:1503.02531, 2015. 3

[21] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko.

Learning to reason: End-to-end module networks for visual

question answering. In IEEE International Conference on

Computer Vision, 2017. 1

[22] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and

K. Weinberger. Multi-scale dense networks for resource ef-

ficient image classification. In International Conference on

Learning Representations, 2018. 3

[23] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In IEEE Conf.

on Computer Vision and Pattern Recognition, 2017. 1

[24] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.

Deep networks with stochastic depth. In European Confer-

ence on Computer Vision, 2016. 1

[25] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. SqueezeNet: AlexNet-level accu-

racy with 50x fewer parameters and <0.5mb model size.

arXiv:1602.07360, 2016. 3

[26] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions. In

British Machine Vision Conference, 2014. 3

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, 2012.

1, 2, 5

[28] V. Lebedev and V. Lempitsky. Fast ConvNets using group-

wise brain damage. In IEEE Conference on Computer Vision

and Pattern Recognition, 2016. 8

[29] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain dam-

age. In Advances in Neural Information Processing Systems,

1990. 2

[30] X. Li, Z. Liu, P. Luo, C. C. Loy, and X. Tang. Not all pixels

are equal: Difficulty-aware semantic segmentation via deep

layer cascade. In IEEE Conference on Computer Vision and

Pattern Recognition, 2017. 1

[31] J. Liu, Y. Wang, and Y. Qiao. Sparse deep transfer learning

for convolutional neural network. In AAAI Conference on

Artificial Intelligence, 2017. 2

[32] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single shot multibox detector. In

European Conference on Computer Vision, 2016. 1

7881

[33] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In IEEE Conference on

Computer Vision and Pattern Recognition, 2015. 1

[34] J.-H. Luo, J. Wu, and W. Lin. ThiNet: A filter level prun-

ing method for deep neural network compression. In IEEE

International Conference on Computer Vision, 2017. 8

[35] M. Malinowski, M. Rohrbach, and M. Fritz. Ask your neu-

rons: A neural-based approach to answering questions about

images. In IEEE International Conference on Computer Vi-

sion, 2015. 1

[36] H. Noh, P. H. Seo, and B. Han. Image question answering

using convolutional neural network with dynamic parame-

ter prediction. In IEEE Conference on Computer Vision and

Pattern Recognition, 2016. 1

[37] T. Ojala, M. Pietikainen, and D. Harwood. A comparative

study of texture measures with classification based on feature

distributions. Pattern Recognition, 29(1):51–59, 1996. 2

[38] E. Park, J. Ahn, and S. Yoo. Weighted-entropy-based quan-

tization for deep neural networks. In IEEE Conference on

Computer Vision and Pattern Recognition, 2017. 2, 4, 8

[39] T. Pohlen, A. Hermans, and M. Mathias. Full-resolution

residual networks for semantic segmentation in street scenes.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, 2017. 1

[40] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes

for Machine Learning. MIT Press, 2006. 5

[41] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.

XNOR-Net: ImageNet classification using binary convolu-

tional neural networks. In European Conference on Com-

puter Vision, 2016. 2, 4, 8

[42] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: unified, real-time object detection. In IEEE

Conference on Computer Vision and Pattern Recognition,

2016. 1

[43] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. FitNets: hints for thin deep nets. In Interna-

tional Conference on Learning Representations, 2015. 3

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. arXiv:1409.0575, 2014. 5

[45] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015. 1

[46] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian

optimization of machine learning algorithms. In Advances in

Neural Information Processing Systems, 2012. 5

[47] S. Srinivas and R. V. Babu. Data-free parameter pruning for

deep neural networks. In British Machine Vision Conference,

2015. 2, 8

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In IEEE Conference on

Computer Vision and Pattern Recognition, 2015. 1, 2, 3,

5

[49] F. Tung, S. Muralidharan, and G. Mori. Fine-pruning: Joint

fine-tuning and compression of a convolutional network with

Bayesian optimization. In British Machine Vision Confer-

ence, 2017. 1

[50] K. Ullrich, E. Meeds, and M. Welling. Soft weight-sharing

for neural network compression. In International Conference

on Learning Representations, 2017. 2, 4

[51] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. de Fre-

itas. Bayesian optimization in high dimensions via random

embeddings. In International Joint Conference on Artificial

Intelligence, 2013. 4

[52] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances in

Neural Information Processing Systems, 2016. 8

[53] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quan-

tized convolutional neural networks for mobile devices. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2016. 2, 8

[54] F. Xu, V. N. Boddeti, and M. Savvides. Local binary convo-

lutional neural networks. In IEEE Conference on Computer

Vision and Pattern Recognition, 2017. 2

[55] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-

efficient convolutional neural networks using energy-aware

pruning. In IEEE Conference on Computer Vision and Pat-

tern Recognition, 2017. 2, 8

[56] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked

attention networks for image question answering. In IEEE

Conference on Computer Vision and Pattern Recognition,

2016. 1

[57] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola,

L. Song, and Z. Wang. Deep fried convnets. In IEEE Inter-

national Conference on Computer Vision, 2015. 3, 8

[58] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. In International Conference on Learning

Representations, 2016. 1

[59] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient

and accurate approximations of nonlinear convolutional net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition, 2015. 3

[60] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: towards

compact CNNs. In European Conference on Computer Vi-

sion, 2016. 8

7882

