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Abstract

We introduce a method for efficiently crowdsourcing

multiclass annotations in challenging, real world image

datasets. Our method is designed to minimize the number of

human annotations that are necessary to achieve a desired

level of confidence on class labels. It is based on combin-

ing models of worker behavior with computer vision. Our

method is general: it can handle a large number of classes,

worker labels that come from a taxonomy rather than a flat

list, and can model the dependence of labels when workers

can see a history of previous annotations. Our method may

be used as a drop-in replacement for the majority vote algo-

rithms used in online crowdsourcing services that aggregate

multiple human annotations into a final consolidated label.

In experiments conducted on two real-life applications we

find that our method can reduce the number of required an-

notations by as much as a factor of 5.4 and can reduce the

residual annotation error by up to 90% when compared with

majority voting. Furthermore, the online risk estimates of

the models may be used to sort the annotated collection and

minimize subsequent expert review effort.

1. Introduction

Multiclass crowdsourcing is emerging as an important

technique in science and industry. For example, a grow-

ing number of websites support sharing observations (pho-

tographs) of specimens from the natural world and facilitate

collaborative, community-driven identification of those ob-

servations. Websites such as iNaturalist, eBird, Mushroom

Observer, HerpMapper, and LepSnap accumulate large col-

lections of images and identifications, often using majority

voting to produce the final species label. Ultimately, this in-

formation is aggregated into datasets (e.g. GBIF [33]) that

enable global biodiversity studies [29]. Thus, the label ac-

curacy of these datasets can have a direct impact on science,

conservation and policy. Thanks to the recent dramatic im-

provements in our field [16, 8, 30, 9], observations collected

by these websites can be used to train classification services

(e.g. see merlin.allaboutbirds.org and inaturalist.org), help-

ing novices label their observations. The result is an even

larger collection of observations, but with potentially nois-
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Figure 1: iNaturalist Community Identification. A user uploads im-

age xi (top-left) with an initial species prediction zi1 = Great Egret (GE),

one out of 1.5k North American bird species. Later, two additional users

(potentially alerted that a GE has been spotted) come along and, after in-

specting the image and the previous identifications, contribute their subjec-

tive identifications of the bird species zi2 = GE and zi3 = GE, agreeing

with the uploader. Finally, a fourth user provides a different identification

zi4 = Snowy Egret (SE). In the plot below the images, two models (red,

green) integrate the information differently, with the y axis representing

likelihood of SE vs. GE. Majority voting (yellow arrow) simply tallies the

vote, and GE is the chosen answer after four votes. Our model (blue ar-

row) continuously analyzes the users’ skills across other observations and

is therefore capable of updating the likelihood of the predicted label much

more frequently. Knowing that the fourth user is highly skilled on these

taxa, our model overrides previous users and predicts SE. The underlying

ground truth answer is indeed SE. In this work we design and compare sev-

eral models that estimate user skill and use it to weigh votes appropriately.

(View on iNat: https://www.inaturalist.org/observations/4599411)

ier labels as the number of people taking photos and sub-

mitting observations far outpaces the speed at which experts

can verify them. The benefits of a simple algorithm like ma-

jority vote are lost when the skill of the people contributing

labels is uncertain. Thus, there is need for improved meth-
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ods to integrate multiple identifications into a final label.

Figure 1 shows a real example of a user’s observation on

iNaturalist, a sequence of identifications from the commu-

nity, and how the current species label is computed using

majority voting. The structure of these interactions present

three challenges that have not been tackled by prior work

on combining multiclass annotations [41, 13, 35, 42, 40,

32, 39]. (1) iNaturalist has a tree structured taxonomy of

labels rather than a flat list, allowing users to provide la-

bels at varying depths of the taxonomy depending on their

confidence. (2) Identifiers get to see the history of previous

identifications for an observation, so their identification is

not independent of previous identifiers. (3) The number of

species under consideration is huge, currently at ∼130k but

potentially reaching 8M [22].

We propose a new method for aggregating multiple mul-

ticlass labels. Our method is based on models of worker be-

havior and can replace majority vote in websites like iNat-

uralist, and in more traditional data labeling services (e.g.

Amazon Mechanical Turk). We show that our models are

more accurate than majority voting (reducing error by 90%

on data from iNaturalist) and when combined with a com-

puter vision system can drastically reduce the number of

labels required per image (e.g. by a factor of 5.4 on crowd-

sourced data). Our main contribution is a method for multi-

class annotation tasks that (1) can be used in online crowd-

sourcing, (2) can handle large numbers of classes, (3) can

handle a taxonomy of labels allowing workers to respond

at coarser levels than leaf nodes, (4) can handle mutually

dependent worker labels.

2. Related Work

Kovashka et al. [15] provide a thorough review of crowd-

sourcing techniques for computer vision. The Dawid-Skene

(DS) model [5] is the standard probabilistic model for multi-

class label inference from multiple annotations. That model

assumes each worker has a latent confusion matrix that cap-

tures the probability of annotating a class correctly (the di-

agonal entries) and the probability of confusing two classes

(the off diagonal entries). The DS model iteratively infers

the reliability of each worker and updates the belief of the

true labels, using Expectation-Maximization as the infer-

ence algorithm. Alternate inference algorithms for the DS

model are based on spectral methods [7, 4, 12, 13, 14, 40],

belief propagation [20, 23], expectation maximization [20,

40], maximum entropy [41, 42], weighted majority vot-

ing [19, 17] and max-margin [32]. Alternatives to the DS

model have also been proposed [28, 10, 37, 36, 26, 31,

11, 39, 2, 3]. Further work based on active learning tack-

les noisy labelers [21], and task allocation to minimize the

monetary cost of dataset construction [13, 14, 27].

Multiclass tasks, as opposed to binary tasks, are explored

by [41, 13, 35, 42, 40, 32, 39, 3]. Zhou et al. use entropy

maximization to model both worker confusions and task

difficulties for multiclass [41] and ordinal [42] data. Simi-

larly, Chen et al. [3] use max-margin techniques to further

improve results for ordinal tasks. Karger et al. [13] use an

iterative algorithm by converting k-class tasks into k − 1
binary tasks but makes assumptions on the number of items

and workers. Vempaty et al. [35] also convert k-class tasks

into binary tasks, but take a coding theoretic approach to

estimate labels. Zhang et al. [40] use spectral methods to

initialize the EM inference algorithm of the Dawid-Skene

model, while Tian et al. [32] fuse a max-margin estimator

and the Dawid-Skene model. Zhang et al. [39] create prob-

abilistic features for each item and use a clustering algo-

rithm to assign them their final labels, however they do not

produce an estimate of worker skill. All of the previous ap-

proaches assume that annotations are independent. We dif-

ferentiate our work by handling both independent and de-

pendent annotations collected by sites like iNaturalist. Fur-

thermore, we explore the challenges of “large-scale” multi-

class task modeling where the number of classes is nearly

10× larger than the prior art has explored. Our work also

handles taxonomic modeling of the classes and non-leaf

node worker annotations. See Table 2 for a performance

comparison of our model to prior art.

Final label quality between independent and dependent

crowdsourcing tasks is studied by Little et al. [18], but with-

out modeling workers. The work of Branson et al. [2] is

the closest to ours, as we adapt their framework to multi-

class annotation, which they did not investigate. Further-

more, we explore taxonomic multiclass annotations to re-

duce the number of parameters. Additionally, we develop

models that do not depend on the assumption that worker

annotations are independent, and we are thus able to handle

mutually dependent annotations where each worker can see

previous labels.

3. Multiclass Online Crowdsourcing

Given a set of worker annotations Z for a dataset of im-

ages X , the probabilistic framework of Branson et al. [2]

jointly models worker skill W , image difficultly D, ground

truth labels Y , and computer vision system parameters θ. A

tiered prior system is used to make the system more robust

by regularizing the per worker skill and image difficulty pri-

ors. Alternating maximization is used for parameter esti-

mation. The Bayesian risk R(ȳi) (see Eq.1 from [2]) can

be computed for each predicted label, providing an intuitive

online stopping criteria (i.e. the model can “retire” images

as soon as their risk is below a threshold τǫ). In this work,

we extend this framework by implementing multiple mod-

els of worker skill for the task of multiclass annotation for

independent and dependent worker labels. For our exper-

iments we removed the image difficulty part of the frame-

work and focused solely on modeling workers and their la-
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Name Interpretation Model Expression # Params # Params

For Birds

Flat Single Bi-

nomial

Probability of being

correct is the same

for all species

z = y is binomial with the

same parameters regardless of

y

p(z|y) =

{

m if z = y

(1 − m)p(z) otherwise
1 1

Flat Per Class

Binomial

Probability of be-

ing correct for each

species separately

For each value y = c, z = y

is binomial

p(z|y) =

{

M(y) if z = y

(1 − M(y))p(z) otherwise
C 1,572

Flat Per Class

Multinomial

Confusion probabil-

ity over each pair of

species

For each value y = c, z is

multinomial

p(z|y) = M(y, z) C2 2,471,184

Taxonomic

Single Bino-

mial

Probability of being

correct is the same

for each species in a

genus

zl = yl|zl−1 = yl−1 is bi-

nomial with the same parame-

ters regardless of yl

p(z|y) =
∏

l
p(zl|yl)

p(zl|yl) =

{

m
yl−1 if zl = yl

(1 − m
yl−1 )p(z

l) otherwise

|N | − C 383

Taxonomic

Per Class

Binomial

Probability of be-

ing correct for each

species separately

For each value yl = c, zl =
yl|zl−1 = yl−1 is binomial

p(z|y) =
∏

l
p(zl|yl)

p(zl|yl) =

{

M
yl−1 (y

l) if zl = yl

(1 − M
yl−1 (y

l))p(z) otherwise

|N | 1955

Taxonomic

Per Class

Multinomial

Confusion probabil-

ity for each pair of

species in a genus

For each value yl = c,

zl|zl−1 = yl−1 is multino-

mial

p(z|y) =
∏

l
p(zl|yl)

p(zl|yl) = M
yl−1 (y

l, zl)

∑

n∈N

|children(n)|2 22,472

Table 1: Different options for modeling worker skill given a taxonomy of classes. N is the set of nodes in the taxonomic tree, C is the number of leaf

nodes (i.e. class labels). The last column shows the number of resulting parameters when modeling the 1,572 species of North American birds and their

taxonomy from the iNaturalist database, for a single worker. Multinomial models have significantly more parameters but can model commonly confused

classes. Taxonomic methods have the benefit of supporting non-species-level human responses, modeling skill at certain taxa, and reducing the number of

parameters for multinomial models.

bels. Section 3.1 constructs worker skill models when the

labels Z are independent and Section 3.2 constructs worker

skill models when the labels Z are dependent.

3.1. Independent Labels

Let xi be the ith image, which contains an object with

class label yi ∈ {1, . . . , C} (e.g., species). Suppose a set of

workers Wi independently specify their guess at the class of

image i, such that for each j ∈ Wi, zij is worker j’s guess at

yi. In this situation, identifiers from Figure 1 would not get

to observe preceding users’ guesses. Let wj be some set of

parameters encoding worker j’s skill at predicting classes.

In this notation, if the class yi is unknown, we can estimate

the probability of each possible class given the set Zi =
{zij}j∈Wi

of worker guesses:

p(yi|Zi) =
p(yi)

∏

j∈Wi
p(zij |yi, wj)

∑C

y=1 p(y)
∏

j∈Wi
p(zij |y, wj)

(1)

where p(yi) is the prior class probability and p(zij |yi, wj) is

a model of imperfect human guesses. Sections 3.1.1-3.1.2

discuss possible models for p(zij |yi, wj), which are also

summarized in Table 1.

3.1.1 Flat Models

Flat Single Binomial: One simple way to model worker

skills is with a single parameter that captures the worker’s

probability of providing a correct answer, regardless of the

class label. We assume that the probability of worker be-

ing correct mj follows a Bernoulli distribution, with other

responses having probability proportional to class priors:

p(zij |yi, wj) =

{

mj if zij = yi

(1−mj)p(zij) otherwise
(2)

To prevent over fitting in low data situations, we place a

beta prior Beta(nβp
c, nβ(1 − pc)) on mj , where nβ is the

strength of the prior. pc represents the probability of any

worker providing a correct label, and is estimated by pool-

ing all worker annotations together. We also place a beta

prior Beta(nβp, nβ(1 − p)) on pc, with p acting as our

prior belief on worker performance. Estimating the worker

skills is done by counting the number of times their re-

sponse agrees with the predicted label, weighted by the

prior strength:

mj =
nβp

c +
∑

i∈Ij
1[zij = ȳi, |Wi| > 1]− 1

nβ +
∑

i∈Ij
1[ȳi, |Wi| > 1]− 2

(3)

where 1[·] is the indicator function, Ij are the images la-

beled by worker j, and ȳi is our current label prediction for

image i. The pooled prior pc is estimated similarly.

Flat Per Class Binomial: Rather than learning a single

skill parameter m across all classes, we can learn a sepa-

rate binomial model for each value of y, resulting in a skill

vector Mj for each worker:

p(zij |yi, wj) =

{

Mj(yi) if zij = yi

(1−Mj(yi))p(zij) otherwise
(4)
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Similar to the single binomial model, we employ a

tiered prior system by adding a per class beta prior

Beta(nβp
y, nβ(1−py)) on Mj(y). We place a generic beta

prior Beta(nβp, nβ(1− p)) on py to encode our prior belief

that a worker is correct on any class. Estimating the worker

skill parameters Mj(y) and the pooled priors py for class y

is done in the same way as the single binomial model.

Flat Per Class Multinomial: A more sophisticated model

of p(zij |yi, wj) could assume wj encodes a C × C confu-

sion matrix Mj , where an entry Mj(m,n) denotes person

j’s probability of predicting class n when the true class is

m. Here, p(zij |yi, wj) = Mj(yi, zij); the model is assum-

ing p(zij |yi = c, wj) is a multinomial distribution with pa-

rameters µ
c
j = [Mj(c, 1), ...,Mj(c, C)] for each value of

c. We will place Dirichlet priors Dir(nβα
c) on µ

c
j , where

nβ is the strength of the prior, and α
c is estimated by pool-

ing across all workers. We will also place a Dirichlet prior

Dir(nβα) on α
c, with α acting as a global hyper-parameter

that provides the likelihood of any worker labeling a class

correctly. Because the Dirichlet distribution is the conju-

gate prior of the multinomial distribution, the computation

of each entry k from 1 . . . C in the skill vector µ
c
j for a

single worker j and each class c is done by counting agree-

ments:

µc
j,k =

nβα
c
k +

∑

i∈Ij
1[zij = k, ȳi = k, |Wi| > 1]− 1

nβα
c
0 +

∑

i∈Ij
1[ȳi = k, |Wi| > 1]− C

(5)

Where αc
0 =

∑

k α
c
k. The pooled worker parameters αc are

estimated in a similar way.

3.1.2 Taxonomic Models

Multinomial models are useful because they model com-

monly confused classes, however they have far more pa-

rameters than the binomial models. These models quickly

become intractable as the total number of classes C gets

large. For example, if there are 104 classes, we would be

attempting to estimate a matrix Mj with 108 entries for

each worker j. This is statistically and computationally in-

tractable. However, when the number of classes gets large

there often exists a taxonomy used to organize them (e.g.

the Linnaean taxonomy for biological classification). We

can use this taxonomy to reduce the number of parameters

in a multinomial model.

Taxonomic Per Class Multinomial: We will assume a

taxonomy of classes that is L levels deep, and associate a

confusion matrix with each node in the taxonomy (e.g., if

we know the genus of an observation from iNaturalist, as-

sume each worker has a confusion matrix among species

within that genus). For the taxonomic model, let yli de-

note the node in the taxonomy at level l that class yi be-

longs to, such that y0i is the root node and yLi is the leaf

node (i.e., species label). Similarly, let zlij denote the node

in the taxonomy at level l that class zij belongs to. In

this model, p(zlij |y
l
i, wj , y

l−1
i = zl−1

ij ) = M
y
l−1

i

j (yli, z
l
ij),

where M
y
l−1

i

j is a confusion matrix associated with node

yl−1
i in the taxonomy; the assumption is that for each value

of yli, z
l
ij is multinomial with a vector M

y
l−1

i

j (yli, :) of pa-

rameters of size equal to the number of child nodes. The

term yl−1
i = zl−1

ij denotes the condition that the parent node

classification is known. Suppose, however, that worker j

is wrong about both the species and genus. We must also

model p(zlij |y
l
i, wj , y

l−1
i 6= zl−1

ij ). In our model we assume

that worker j predicts each class zlij with some probability

irrespective of the true class (assumes p(zlij |y
l
i, wj , y

l−1
i 6=

zl−1
ij ) = N

z
l−1

ij

j (zlij) is multinomial with a parameter for

each possible child node). The taxonomic model results in

the following values that can be plugged into Equation 1:

p(zij |yi, wj) =

L
∏

l=1

p(zlij |y
l
i, wj), (6)

p(zlij |y
l
i, wj) =







M
y
l−1

i

j (yli, z
l
ij) if yl−1

i = zl−1
ij

N
z
l−1

ij

j (zlij) otherwise
(7)

Note that in totality, for each node n in the taxonomy, we

have associated a confusion matrix M
n
j with a row for each

child of n, and a vector of probabilities Nn
j with an entry for

each child. If the taxonomy is relatively balanced, this is far

fewer parameters than the flat multinomial model (linear in

the number of classes rather than quadratic). To make esti-

mating worker parameters more robust, we will again make

use of a tiered system of priors (e.g., Dirichlet priors on

all multinomial parameters) that are computed by pooling

across all workers at each node. However, if this is still too

many parameters, we can fall back to modeling the proba-

bility that a person is correct as a binomial distribution with

a parameter per child node (i.e. the taxonomic per class

binomial model), or even just one parameter for all chil-

dren (i.e. the taxonomic single binomial model), assuming

other class responses zlij 6= yli have probability proportional

to their priors. See Table 1 for an overview of all models.

3.1.3 Taxonomic Predictions

Thus far, we have assumed that a worker always predicts a

class of the finest possible granularity (i.e., species level).

An alternate UI can allow a worker to predict an internal

node in the taxonomy if unsure of the exact class, i.e. ap-

plying the “hedging your bets” [6] method to human clas-

sifiers. In Figure 1, this would be akin to one of the iden-

tifiers specifying the family Ardeidae, which includes both

Snowy Egret and Great Egret. Let level(zij) be the level of

this prediction. Note that zlij is valid only for l ≤ level(zj).
The taxonomic model in Section 3.1.2 works after an update
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of Equation 6 to p(zij |yi, wj) =
∏level(zij)

l=1 p(zlij |y
l
i, wj).

This works even if different workers provide different lev-

els of taxonomic predictions.

3.2. Dependent Labels

In Section 3.1 we assumed each worker independently

guesses the class of image i. We now turn to the situa-

tion described in Figure 1: a user submits an observation

xi and an initial identification zi,j1
i
, where jti denotes the

tth worker that labeled image i. A notification of the ob-

servation is sent to users that have subscribed to the taxa

zi,j1
i

or to that particular geographic region (the rest of the

community is not explicitly notified but can find the ob-

servation when browsing the site). Each subsequent iden-

tifier jti , t > 1 can see the details of the observation xi

and all identifications made by previous users Ht−1
i =

{zi,j1
i
, zi,j2

i
, ..., zi,jt−1

i
}. Users can assess the experience of

a previous identifier j by viewing all of their observations

Xj and all of their identifications Zj . Additionally, users

are able to discuss the identifications through comments.

In this setting, we can adapt Equation 1 to

p(yi|Zi) = p(yi|H
|Wi|
i )

=
p(yi)

∏|Wi|
t=1 p(zi,jt

i
|yi, H

t−1
i , wjt

i
)

∑C

y=1 p(y)
∏|Wi|

t=1 p(zi,jt
i
|y,Ht−1

i , wjt
i
)

(8)

There are many possible choices for modeling

p(zi,jt
i
|yi, H

t−1
i , wjt

i
). The simplest option as-

sumes each worker ignores all prior responses; i.e.,

p(zi,jt
i
|yi, H

t−1
i , wjt

i
) = p(zi,jt

i
|yi, wjt

i
). In practice,

however, worker jti ’s response will probably be biased

toward agreeing with prior responses Ht−1
i , making a

prediction combining both evidence from analyzing prior

responses and from observing the image itself. The

weight of this evidence should increase with the number

of prior responses and could vary based on worker jti ’s

assessment of other worker’s skill levels. In our model, we

assume that worker jti weights each possible response zi,jt
i

(worker jti ’s perception of the class of image i) with a term

pjt
i
(Ht−1

i |zi,jt
i
) (worker jti ’s perception of the probability

of prior responses given that class). p(zi,jt
i
|yi, H

t−1
i , wjt

i
)

can then be expressed as:

p(zi,jt
i
|yi, H

t−1
i , wjt

i
) =

p(zi,jt
i
, Ht−1

i |yi, wjt
i
)

p(Ht−1
i |yi, wjt

i
)

=
p(zi,jt

i
|yi, wjt

i
)pjt

i
(Ht−1

i |zi,jt
i
, wjt

i
)

∑

z p(z|yi, wjt
i
)pjt

i
(Ht−1

i |z, wjt
i
)

(9)

where p(zi,jt
i
|yi, wjt

i
) is modeled using a method de-

scribed in Section 3.1. Worker jti might choose to treat

each prior response as independent sources of information

pjt
i
(Ht−1

i |zi,jt
i
, wjt

i
) =

∏t−1
s=1 pjti (zi,j

s
i
|zi,jt

i
, w

jti
js
i
) where

we have used the notation w
j
k to denote parameters for

worker j’s perception of worker k’s skill. Alternatively,

worker j may choose to account for the fact that earlier re-

sponses were also biased by prior responses using similar

assumptions as we made in Equation 9, resulting in a recur-

sive definition/computation of pjt
i
(Ht−1

i |zi,jt
i
, wjt

i
) =



















p
jt
i
(z

i,j
t−1

i

|z
i,jt

i
,w

jt
i

j
t−1

i

)p
j
t−1

i

(Ht−2

i
|z

i,j
t−1

i

,w
j
t−1

i

j
t−2

i

)

∑

z
p
jt
i
(z|z

i,jt
i
,w

jt
i

j
t−1

i

)p
j
t−1

i

(Ht−2

i
|z,w

j
t−1

i

j
t−2

i

)

if t > 1

pjt
i
(zi,jt−1

i
|zi,jt

i
, w

jti

j
t−1

i

) if t = 1

(10)

The last choice to make is how to model probabilities of the

form pj(zk|zj , w
j
k) (i.e. worker j’s perception of worker k’s

responses)? One model that keeps the number of parame-

ters low is a binomial distribution: worker j assumes other

workers are correct with probability ρj ; when they are in-

correct, they respond proportionally to class priors:

pj(zk|zj , w
j
k) =

{

ρj if zk = zj

(1− ρj)p(zj) otherwise
(11)

Here, ρj is a learned parameter expressing worker j’s trust

in the responses of other workers.

4. Taking Pixels into Account
Rather than relying on class priors p(yi) we can make

use of a computer vision model with parameters θ that can

predict the probability of each class occurring in each image

xi ∈ X . This results in an update to equation 1, changing

p(yi) to p(yi|xi, θ). We use a computer vision model sim-

ilar to the general purpose binary computer vision system

trained by Branson et al. [2]. We extract “PreLogit” fea-

tures φ(xi) from an Inception-v3 [30] CNN for each image

i, and use these features (fixed for all iterations) to train

the weights θ of a linear SVM (using a one-vs-rest strat-

egy), followed by probability calibration using Platt scal-

ing [25]. We use stratified cross-validation to construct

training and validation splits that contain at least one sam-

ple from each class. This results in probability estimates

p(yi|xi, θ) = σ(γ θ · φ(xi)), where γ is the probability cal-

ibration scalar from Platt scaling, and σ(·) is the sigmoid

function. Fine-tuning a CNN on each iteration would lead

to better performance [1, 24, 38], but is out of scope.

5. Experiments
We evaluate the proposed models on data collected from

paid workers through Amazon Mechanical Turk (MTurk)

and from non-paid citizen scientists who are members of the

Cornell Lab of Ornithology (Lab of O) or iNaturalist (iNat).

We follow a similar evaluation protocol to [2] and use Al-

gorithm 1 from that work to run the experiments. For mod-

els that assume worker labels are independent, we simu-

late multiple trials by adding worker labels in random order.
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Method Label Error Rate (%)

[7], [4] 27.78

Majority Vote 24.07

Flat Multinomial,[5], [36],[13] 11.11

Flat Multinomial-CV, [32], [40]* 10.19

Table 2: Label error rates of different worker skill models on the binary

Bluebird dataset [36] after receiving all 4,212 annotations. Our methods

(Flat Multinomial, and Flat Multinomial-CV) are competitive with other

methods. *[40] mistakenly reported 10.09.

For lesion studies, we simply turn off parts of the model by

preventing those parts from updating. The tag prob-worker

means that a global prior is computed across all workers and

per worker skill model was used, the tag online means that

online crowdsourcing was used (with risk threshold param-

eter τǫ = .02), and the tag cv means that computer vision

probabilities were used instead of class priors.

Bluebirds To gauge the effectiveness of our model against

prior work, we run our models on the binary bluebird

dataset from [36]. This dataset has a total of 108 images

and 39 MTurkers labeled every image for a total of 4,212

annotations. Table 2 has the final label error rates of dif-

ferent worker skill models when all annotations are made

available. Our offline, flat multinomial models are compet-

itive with other offline methods.

NABirds This experiment was designed to test our models

in a traditional dataset collection situation where labeling

tasks are posted to a crowdsourcing website and responses

are collected independently. We constructed a labeling in-

terface that showed workers a sequence of 10 images and

asked them to classify each image into one of 69 different

bird species by using an auto complete box or by browsing

a gallery of representative photos for each species. We used

998 images, all sampled from either shorebird or sparrow

species, from the the NABirds dataset [34]. We collected

responses from both MTurkers and citizen scientists from

the Lab of O (CTurkers). Figure 3a shows the contribu-

tion of annotations from the workers. We had a total of 86

MTurkers provide 9,391 labels and a total of 202 CTurkers

provide 5,300 labels. For these experiments we made the

gallery of example images (3 to 5 images per species) avail-

able to the computer vision system during training. This

ensured that we could construct at least 3 cross validation

splits when calibrating the computer vision probabilities in

the early stages of the algorithm.

All models were initialized with uniform class priors, a

probability of 0.5 that an MTurker will label a class cor-

rectly, and a probability of 0.8 that a CTurker will label a

class correctly. This means the global Dirichlet priors (used

in the multinomial models) had a value of 0.8 at the true

class index and 0.003 otherwise for the CTurkers. These are

highly conservative priors. For each of our three flat models

we conducted three experiments: using MTurk data only,

using CTurk data only, and using both MTurk and CTurk

data together (“Combined” in the plots). Figure 2 shows

the results. First we note that when a computer vision sys-

tem is utilized in an online fashion (prob-worker-cv-online)

we see a significant decrease in the average number of la-

bels per image to reach the same performance as majority

vote using all of the data (e.g. a 5.4× decrease in the single

binomial combined setting). In the offline setting (prob-

worker-cv), the computer vision models decrease the final

error compared to majority vote (e.g. 25% decrease in error

in the single binomial combined setting). When consider-

ing our probabilistic model without computer vision (prob-

worker) the single binomial model consistently achieved the

lowest error, followed by the binomial per class model and

then the multinomial model. This is not unexpected as we

anticipated the larger capacity models to struggle with the

sparseness of data (i.e. on average we had 0.75 labels per

class per worker in the combined setting). However, the

fact that they approach similar performance to the single bi-

nomial model highlights the usefulness of our tiered prior

system and the ability to pool data across all of the work-

ers. Our global prior initializations are purposefully on the

conservative side, however in a real application setting, a

user of this framework can initialize the priors using do-

main knowledge or a small amount of ground truth data.

Figure 2c shows the dramatic effect of using more infor-

mative priors in the combined setting (prob-worker-cv and

prob-worker in the Combined-Prior setting). These models

were initialized with priors that were computed on a small

held out set of worker annotations with ground truth labels

and achieved the lowest error (0.03, for prob-worker-cv, a

79% decrease from majority vote) on the dataset.

Figure 3b shows the predicted mj values learned by the

single binomial model plotted against the empirical ground

truth in the combined setting. We can see that the model’s

predictions correlate well with the empirical estimates, with

increasing precision as the number of annotations increases

(size of the dots). To further investigate the worker skills we

constructed a simple 2 level taxonomy and placed the shore-

birds and sparrows in their own flat subtrees. By running

our taxonomic binomial model we are able to learn a skill

for each group separately, rendered in Figure 3c. We can

see that both MTurkers and CTurkers have a higher prob-

ability of predicting shorebirds correctly than sparrows. In

real applications we can use these skill estimates to direct

images to proficient labelers.

iNaturalist This experiment was designed to test our mod-

els in a classification situation that mimics the real world

scenario of websites like iNat, see Figure 1. We obtained

a database export from iNat and cleaned the data using the

following three steps: (1) We select observations and iden-

tifications from a subset of the taxonomy (e.g. species of
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Figure 2: Crowdsourcing Multiclass Labels with MTurkers and CTurkers: These figures show results from our flat models on a dataset of 69 species

of birds with labels from Amazon Mechanical Turk workers (MTukers) and citizen scientists (CTurkers). Each model was run on a dataset that consisted

of: just MTurkers (squares), just CTurkers (triangles) or a combination of the two (circles). When our full framework is used (prob-worker-cv-online, green

lines) we can achieve the same error as majority vote (red lines) with much fewer labels per image. When we use our framework in an offline setting

(prob-worker-cv and prob-worker, orange and blue curves) we can achieve a lower error than majority vote with the same number of labels. When initialized

with generic priors, the single binomial model achieves the lowest error, followed by the per class binomial and the multinomial model. However, if domain

knowledge is used to initialize the global priors to more reasonable values, the multinomial model can achieve impressively low error (the star lines in (c)).
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Figure 3: MTurker and CTurker Worker Analysis: Figure (a) shows the contribution of labels per worker from MTurkers and CTurkers. On average we

have less than one label from each worker for each of the 69 classes, emphasizing the need to pool data across workers for use as priors. Figure (b) shows the

predicted probability of a worker providing a correct label mj plotted against the empirical ground truth probability for the single binomial prob-worker-cv

model from 2a. The size of each dot is proportional to the number of annotations that worker contributed to the dataset. Solid lines mark the priors. We can

see that the model’s predictions correlate well with the empirical ground truths. Figure (c) shows the predicted worker skill for correctly labeling the species

of a sparrow vs correctly labeling the species of a shorebird. These skill estimates came from a taxonomic binomial model with one subtree corresponding

to sparrows and the other corresponding to shorebirds. In real applications we can use these skill estimates to direct images to proficient labelers.

birds). (2) For each observation, we keep only the first

identification from each user (i.e. we do not allow users to

change their minds). (3) To facilitate experiments, we keep

all observations that have a ground truth label at the species

level (i.e. leaf nodes of the taxonomy). For the experiments

presented below, after performing the previous steps, we se-

lected a subset of 30 species of birds and 1000 observations

from each species to analyze. In this 30k image subset we

have 5,643 workers that provided a total of 98,849 labels,

Figure 4c shows the distribution of worker annotations. The

taxonomy associated with these 30 species consisted of 44

nodes with a max depth of 3. For these experiments we did

not utilize a computer vision system. Class priors were ini-

tialized to be uniform, skill priors were initialized assuming
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Figure 4: iNaturalist Birds Figures (a) and (b) show the errors achieved on a dataset of 30 bird species from iNaturalist for the single binomial and

multinomial models respectively. Each model was evaluated in several configurations: “prob-worker” assumes a flat list of species. “prob-worker-tax”

takes advantage of a taxonomy across the species, allowing workers to provide non-leaf node annotations and reducing the number of parameters in the

multinomial model from 900 to 167. “prob-worker-dep” assumes a flat list of species, but models the dependence between the worker labels. “prob-worker-

tax-dep” uses a taxonomy across the species and models the dependence between worker labels. All models did at least as well as majority vote, with

dependence modeling providing a significant decrease in error. The lowest error was achieved by the multinomial prob-worker-tax-dep model that was

capable of modeling species confusions and label dependencies, decreasing error by 90% compared to majority vote. Figure (c) shows the distribution of

labels per worker, emphasizing a long tail of worker contributions. Figure (d) shows the predicted probability of error (1 − mj) for each worker plotted

against the empirical ground truth probability of error for the single binomial prob-worker-dep model, with the radius of a dot proportional to the number

of annotations contributed by that worker. The solid blue line is the global prior value. More active identifiers are less likely to make errors and our model

skill estimates correlate well with the empirical ground truths.

that iNat users are 80% correct. Worker labels are added to

the images sequentially by their time stamp, so only a single

pass through the data is possible.

Figures 4a and 4b show the results for our single bino-

mial and multinomial models respectively. For each model

we used flat and taxonomic (-tax) versions, and we turned

on (-dep) and off label dependence modeling, for a total

of 4 variations of each model. We can see that all of our

models are at least as good as majority vote. Adding de-

pendence modeling to the flat models provides a significant

decrease in error: a 59% decrease for the flat single bino-

mial model, and a 85% decrease for the flat multinomial

model. The taxonomic single binomial model (with 14 pa-

rameters per worker) did slightly worse than the flat sin-

gle binomial model (with 1 parameter per worker). How-

ever, the taxonomic multinomial model (with 167 parame-

ters per worker) decreased error by 36% compared to the flat

multinomial model (with 900 parameters per worker). Fi-

nally, adding dependence modeling to the taxonomic mod-

els provided a further decrease in error, with the taxonomic

multinomial model performing the best and decreasing er-

ror by 90% over majority vote, corresponding to 28 total

errors. While a majority of those errors were true mis-

takes, an inspection of a few revealed errors in the ground

truth labels of the iNat dataset. Figure 1 is actually an ex-

ample of one of those mistakes. Further, the observation

(https://tinyurl.com/ycu92cas) associated with the second

“riskiest” image (using the computed Bayes risk of the pre-

dicted label R(ȳi)) turned out to be another mistake, advo-

cating the use of these models as a way of sorting the ob-

servations for expert review. Figure 4d shows the predicted

probability of a worker labeling incorrectly (1−mj) for the

flat single binomial model with dependence modeling from

Figure 4a. We can see that the model’s skill predictions cor-

relate well with the empirical ground truth skills.

6. Conclusion

We introduced new multiclass annotation models that

can be used in the online crowdsourcing framework of

Branson et al. [2]. We explored several variants of a worker

skill model using a variety of parameterizations and we

showed how to harness a taxonomy to reduce the number of

parameters when the number of classes is large. As an addi-

tional benefit, our taxonomic models are capable of process-

ing worker labels from anywhere in the taxonomy rather

than just leaf nodes. Finally, we presented techniques for

modeling the dependence of worker labels in tasks where

workers can see a prior history of identifications. Our mod-

els consistently outperform majority vote, either reaching a

similar error with far fewer annotations or achieving a lower

error with the same number of annotations. Future work in-

volves modeling “schools of thought” among workers and

using their skill estimates to explore human teaching.
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