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Abstract

Convolutional neural networks (CNNs) have massively

impacted visual recognition in 2D images, and are now

ubiquitous in state-of-the-art approaches. CNNs do not

easily extend, however, to data that are not represented by

regular grids, such as 3D shape meshes or other graph-

structured data, to which traditional local convolution op-

erators do not directly apply. To address this problem, we

propose a novel graph-convolution operator to establish

correspondences between filter weights and graph neigh-

borhoods with arbitrary connectivity. The key novelty of

our approach is that these correspondences are dynami-

cally computed from features learned by the network, rather

than relying on predefined static coordinates over the graph

as in previous work. We obtain excellent experimental re-

sults that significantly improve over previous state-of-the-

art shape correspondence results. This shows that our ap-

proach can learn effective shape representations from raw

input coordinates, without relying on shape descriptors.

1. Introduction

In recent years, deep learning has dramatically improved

the state of the art in several research domains including

computer vision, speech recognition, and natural language

processing [13]. In particular, convolutional neural net-

works (CNNs) have now become ubiquitous in computa-

tional solutions to visual recognition problems such as im-

age classification [8], semantic segmentation [34], object

detection [21], and image captioning [32]. CNNs also ex-

tend beyond 2D visual information, and easily generalize to

other data that come in the form of regular rectangular grids.

This has been demonstrated with for instance 1D convolu-

tion for audio signal [18] and 3D convolution over space

and time for video signal [28].

Of particular interest beyond 2D image understanding

are 3D shape models for which two main categories of rep-

resentations can be considered. Extrinsic or Eulerian rep-

Figure 1. Three examples of texture transfer from a reference

shape in neutral pose (left) using shape correspondences predicted

by FeaStNet (multi-scale architecture, without refinement).

resentations are based on parametrizations external to the

shape, the most common being voxel grids. Such represen-

tations enable standard CNNs to be applied over 3D grids,

but lack invariance to even the most basic transformations of

the shape. A simple rigid transformation of the shape can

lead to significant changes in the 3D grid representation.

Moreover, discretizing space instead of shapes tends to be

inefficient, in particular with moving and deforming objects

for which a significant part of the space grid can be empty,

resulting in representations with poor shape resolutions [7],

or requiring special data structures to handle sparse inputs

and/or outputs [22, 26]. On the other hand, intrinsic or La-

grangian representations, for example 3D meshes or vol-

umetric quantizations, are robust to many shape transfor-

mations and describe 3D entities more efficiently with dis-

cretizations that are attached to shapes and not to the sur-

rounding space. CNNs are, however, not readily extended

to such representations with irregular structures represented

as graphs where nodes can have a varying number of neigh-

bors. The challenge is to define convolution-like operators

over irregular local supports which can be used as layers in

deep networks for prediction tasks such as shape correspon-

dence over 3D meshes, see Figure 1.

A number of architectures that generalize beyond data
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organized in regular grids have been recently proposed

[2, 4, 5, 9, 11, 12, 14, 15, 20, 25]. Some of these tech-

niques generalize beyond 3D shape data to other domains

where data can be organized into graph structures, includ-

ing for instance social networks or molecular graphs [4, 11].

The existing approaches come however with several limita-

tions. Spectral filtering approaches [4, 5, 9, 11] rely on the

eigen-decomposition of the graph Laplacian. Unfortunately

this decomposition is often unstable, making the generaliza-

tion across different shapes difficult [15]. Local filtering ap-

proaches [2, 14, 15] on the other hand, rely on possibly sub-

optimal hard-coded local pseudo-coordinates over the graph

to define filters. Other approaches rely on point-cloud rep-

resentations [12, 20] which cannot leverage surface infor-

mation encoded in meshes, or need ad-hoc transformations

of mesh data to map it to the unit sphere [25].

In this paper we present FeaStNet, a deep neural network

based on a novel graph convolution operator which, un-

like previous work, does not rely on static pre-defined local

pseudo-coordinate systems over the graph, but instead uses

the learned features of the preceding network layer to dy-

namically determine the association between filter weights

and the nodes in a local graph neighborhood. Excellent ex-

perimental results on the FAUST 3D shape correspondence

benchmark validate our approach, and significantly improve

over recent state-of-the-art approaches. Figure 1 shows sev-

eral examples of texture transfer using correspondences pre-

dicted with our model. Importantly, these results were ob-

tained with the raw 3D shape coordinates as input instead

of 3D shape descriptors as traditionally used for shape cor-

respondence estimation. They demonstrate that FeaStNet

learns better local shape properties than existing engineered

3D descriptors. Additional results on shape part labeling

over point clouds are comparable to the state of the art, and

illustrate that our approach generalizes to 3D data without

explicit surface information.

2. Related work

In this section we briefly review related work on graph-

convolutional networks, other deep learning approaches to

process 3D shapes, and CNNs with data-adaptive filters.

Graph-convolutional networks. Existing approaches

to generalize convolutional networks to irregular graph-

structured data can be divided into two broad categories:

spectral filtering methods and local filtering methods. Spec-

tral methods build on a mathematically elegant approach to

develop convolution-like operators using the spectral eigen-

decomposition of the graph Laplacian [4, 5, 9, 11]. Any

function defined over the graph nodes, e.g . features, can be

mapped, by projection on the eigenvectors of the Laplacian,

to the spectral domain where filtering consists of scaling the

signals in the eigenbasis. While successful with noise-free

data such as synthetic 3D shape models, spectral techniques

are less suitable for acquired real shapes since global de-

compositions are unstable across different graphs, encoding

for instance different shape meshes in various poses.

In an effort to better generalize across graphs, a num-

ber of techniques follow a strategy based on local graph

filtering [2, 14, 15, 16, 24]. These methods differ in how

they establish a correspondence between filter weights and

nodes in local graph neighborhoods. Niepert et al . [16]

rely on a heuristic ordering of the nodes, and then apply

1D CNNs. The geodesic CNN model of Masci et al . [14]

extracts local patches on meshes which are convolved with

filters expressed in polar coordinates. The orientation am-

biguity of filters is dealt with by means of angular max-

pooling, i.e . filters are applied in all possible orientations,

and the maximum responses are retained. Boscani et al . [2]

proposed the anisotropic CNN model which further extends

the geodesic CNN model by using an anisotropic patch-

extraction method, exploiting the maximum curvature di-

rections to orient patches. Monti et al . [15] also param-

eterize local patches of the graph using fixed local polar

pseudo-coordinates around each node. They learn filter

shapes by estimating the means and variances of Gaussians

that associate filter weights to the local pseudo-coordinates.

Simonovsky & Komodakis [24] use edge labels, which

play a similar role as the local pseudo coordinates, as in-

put to a filter-generating subnetwork. Our work is related,

though instead of relying on hand-designed local pseudo-

coordinates, we learn the mapping between local graph

patches and filter weights using the features in the previous

network layer.

Deep networks for 3D shape data. Besides spectral and

local filtering approaches on graphs, a number of other tech-

niques have been developed to handle 3D shape data in

deep neural networks. Sinha et al . [25] use a spherical

parametrization, filling holes in the mesh when needed, to

map shapes onto octahedra. These octahedra are cut and

unfolded to square images, which can then be processed us-

ing regular CNNs. Wei et al . [30] render depth maps of

shapes, and process them with conventional CNNs to learn

features that can be matched to establish shape correspon-

dence. Contrary to these approaches which transform 3D

shape input data into 2D images that are fed to conventional

CNNs, we propose instead a novel graph convolution that

can directly process irregular graph-structured data.

Recently, two architectures have been proposed to pro-

cess point cloud data. Klokov & Lempitsky [12] propose

a deep network based on kd-trees over 3D point clouds,

sharing parameters across the tree based on the depth and

direction of splits. Qi et al . [19, 20] combine local per-

point processing layers, with max-pooling layers to process

3D point clouds. By construction, these approaches ignore

the surface information available in mesh data, and require
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sufficiently dense sampling to avoid artifacts due to spatial

proximity of points that are geodesically remote.

Data-adaptive convolutional networks. The convolu-

tional layers in a conventional CNN multiply together ac-

tivations of the preceding feature map and learned filter

weights, and sum the results to obtain the output as a linear

function of the input, after which a point-wise non-linearity

is applied. In spatial transformer networks [10] and dy-

namic filter networks [3], a subnetwork, which takes the

preceding feature map as input, replaces a standard convo-

lutional layer with a data-adaptive transformation. In the

former, a localization subnetwork computes the parameters

of a spatial transformation, e.g . cropping or re-sizing, which

is used to spatially re-sample the preceding feature map be-

fore convolution. In the latter, a subnetwork is used to gen-

erate the convolutional filters that will be applied to the pre-

ceding feature maps. Our approach is related in the sense

that we use a subnetwork to associate elements of a local

“patch” of the graph to the filter weights.

3. Graph convolutions using dynamic filters

In this section we briefly revisit conventional CNNs, and

then present our graph-convolutional network. We also

compare the number of parameters and computational cost

of our network with those of conventional CNNs.

3.1. Reformulating convolutional CNN layers

A convolutional CNN layer maps D input feature maps

to E output feature maps. The parameters are commonly

represented as a set of D×E filters Fd,e, each of size h×w
pixels, with d ∈ {1, . . . , D} and e ∈ {1, . . . , E}. The com-

putations in the convolutional layer to compute one of the

E output channels can be described as convolving each of

the D input channels with the corresponding filters, sum-

ming the D convolution results and adding a constant bias

to compute the output feature map.

An equivalent but less common representation, is useful

to develop extensions for irregular graph-structured data.

We rearrange the convolutional filter weights in a set of

M = h×w weight matrices Wm ∈ IRE×D. Each of these

weight matrices is used to project input features x ∈ IRD

to output features y ∈ IRE . The result of the convolution

at a pixel is obtained by summing for each of the M neigh-

bors the projection of its feature vector with the Wm corre-

sponding to its relative position, considering pixel i a neigh-

bor of itself. See Figure 2 for an illustration. The activation

yi ∈ IRE of pixel i in the output feature map is written as

yi = b+

M
∑

m=1

Wmxn(m,i), (1)

where b ∈ IRE denotes a vector of bias terms, and n(m, i)
gives the index of the neighbor in the m-th relative position

w.r.t. pixel i. For example, the indices n(1, i), . . . , n(9, i)
may refer to the pixels in a 3×3 patch centered at pixel i.

3.2. Generalization to non­regular input domains

In the case of CNNs for regular inputs, e.g . pixel grids,

there is a clear one-to-one mapping between the weight ma-

trices Wm ∈ IRE×D and the neighbors at relative positions

m ∈ {1, . . . ,M} w.r.t. the central pixel of the convolution.

The main challenge in the case of irregular data graphs is to

define this correspondence between neighbors and weight

matrices. We propose to establish this correspondence in

a data-driven manner, using a function over features com-

puted in the preceding layer of the network, and learning

the parameters of this function as a part of the network.

Instead of assigning each neighbor j of a node i to a sin-

gle weight matrix, we use a soft-assignment qm(xi,xj) of

the j-th neighbor across all the M weight matrices. Given

these soft-assignments, we generalize Eq. (1) and define the

function that maps the features from one layer to the next as

yi = b+

M
∑

m=1

1

|Ni|

∑

j∈Ni

qm(xi,xj)Wmxj , (2)

where qm(xi,xj) is the assignment of xj to the m-th weight

matrix, and Ni is the set of neighbors of i (including i), and

|Ni| its cardinal.

We define the weights using a soft-max over a linear

transformation of the local feature vectors as

qm(xi,xj) ∝ exp
(

u⊤
mxi + v⊤

mxj + cm
)

, (3)

with
∑M

m=1 qm(xi,xj) = 1, and um, vm and cm
are the parameters of the linear transformation. The

weights involved in the update of node i sum to 1 re-

gardless of the number of neighbors of a node, since
∑

j∈Ni

1
|Ni|

∑M

m=1 qm(xi,xj) =
∑

j∈Ni

1
|Ni|

= 1. There-

fore, our formulation is robust to variations in the degree of

the nodes. Instead of using a single linear transformation of

the features in Eq. (3), more general transformations may

be used, such as a multi-layer sub-network. Conventional

CNNs over grid-graphs are recovered if ∀i|Ni| = M , and

the assignments are binary, i.e . qm(xi,xj) ∈ {0, 1}, based

on the relative position of neighbors w.r.t. node i. In Fig-

ure 2 we illustrate the computations in a standard grid CNN

and in our graph convolutional network.

In our experiments, Ni contains vertex i and all vertices

connected to i by an edge, i.e . the first ring around vertex

i. Our approach, however, enables using larger neighbor-

hoods, e.g . up to ring k ≥ 2 or or all vertices up to a certain

geodesic distance. This is analogous to filters with larger

spatial support in conventional CNNs. Importantly, and in

contrast to standard CNNs, the above formulation decou-

ples the neighborhood size |Ni| from the number of weight
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Figure 2. Left: Illustration of a standard CNN, representing the parameters as a set of M = w × h weight matrices, each of size D × E.

Each weight matrix is associated with a single relative position in the input patch. Right: Our graph convolutional network, where each

node in the input patch is associated in a soft manner to each of the M weight matrices based on its features using the weight qm(xi,xj).

matrices M , and thus the number of parameters. As a con-

sequence, filters with larger supports do not necessarily in-

crease the number of parameters. Rather than relying on di-

lation [34] or weight-sharing for large filters, our approach

learns the mapping between weights and neighbors.

Translation invariant assignments in feature space. As

a special case, we can set um = −vm in Eq. (3), which re-

sults in qijm ∝ exp
(

u⊤
m(xj − xi) + cm

)

, and leads to trans-

lation invariance of the weights in the feature space. This is

of particular interest in applications where the input features

include spatial coordinates, in which case it is natural to im-

pose translation invariance on the assignment function. Our

experimental results confirm the positive effect of transla-

tion invariance when using raw spatial 3D coordinates as

input features for shape meshes.

Assignment by Mahalanobis distance in feature space.

Another interesting case occurs when considering a Ma-

halanobis distance to determine the assignments weights

qm(xi,xj). The Mahalanobis distance, parameterized by a

positive definite matrix Σ, between reference points zm and

a centered version of the neighbor features xij = xj − xi,

is given by

dΣ(xij , zm) = (xij − zm)⊤Σ(xij − zm) (4)

= −2x⊤
ijΣzm + z⊤mΣzm + x⊤

ijΣxij . (5)

The soft-assignments based on the Mahalanobis distances

fit the form of Eq. (3) with cm = z⊤mΣzm, um = −2Σzm,

and vm = −um. These soft-assignments may be inter-

preted as the posterior assignments of the neighbor’s cen-

tered feature vectors xij over the components of a Gaussian

mixture model in feature space with means zm and shared

covariance matrix Σ−1.

This mixture model interpretation of the soft-

assignments highlights the connection between our

approach and that of Monti et al . [15]. In the latter, a

similar formulation is used in which centers zm are learned

along with covariance matrices Σm. This mixture is, how-

ever, defined over a-priori defined local pseudo-coordinates

xij over the graph, e.g . local polar coordinates over a mesh,

rather than learned features as in our formulation.

Using this formulation, we can also recover conventional

CNNs over pixel grids as a special case by letting the pixel

coordinates be part of the feature vectors x, having the Ma-

halanobis distance depend only on these coordinates, and

placing the centers zm precisely on the relative positions of

the neighboring pixels. Multiplying the Mahalanobis dis-

tances by a large constant will recover the hard-assignments

used in the standard CNN model of Eq. (1).

3.3. Complexity analysis

The weight matrices Wm are common between a con-

ventional CNN and our approach, and contain MDE pa-

rameters. The only additional parameters in our approach

w.r.t. a conventional CNN are the vectors um,vm, which

contain 2MD parameters. Thus the total number of param-

eters increases only by a factor (E + 2)/E = 1 + 2/E,

ignoring bias terms which contribute very few parameters.

To efficiently evaluate the activations, we first multiply

all feature vectors xi with the weight matrices Wm and

weight vectors um, and vm. This takes O(NMDE) oper-

ations, where N is the number of nodes in the graph. Let K
denote the average number of neighbors of each vertex, we

can then compute the weights in Eq. (3) and the activations

in Eq. (2) in O(NMKE) operations. The total computa-

tional cost is thus O(NME(K +D)).
The cost of a convolutional layer in a conventional CNN

is O(NMED), c.f . Eq. (1). The computational cost of our

approach is thus comparable, provided the number of neigh-

bors K is comparable or smaller than the number of features

D, as is typically the case in practice.

4. Experimental evaluation

We evaluate our approach on 3D shape correspondence

between 3D meshes. In addition, we present results on part

labeling of point cloud data, where we apply our model on

ad-hoc neighborhood graphs.

4.1. 3D shape correspondence

Experimental setup. We follow the experimental setup

in [2, 14, 15] based on the FAUST human shape dataset [1].
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Figure 3. Our multi-scale graph convolution architecture.

This dataset consists of 100 watertight meshes with 6,890

vertices each, corresponding to 10 shapes in 10 different

poses each. The shape correspondence problem, between a

given reference shape and any other shape, is formulated as

a vertex labeling problem where the label set consists of all

the 6,890 vertices on the reference shape. The first 80 shape

meshes are used as training data, and the last 20 meshes

are used as test data, corresponding to the 10 poses of two

shapes not seen during training. Exact ground-truth corre-

spondence is known, and the first shape in the first pose is

used as reference. The output of the last soft-max layer at

each vertex gives a probability distribution over the corre-

sponding point on the reference shape.

Unless specified otherwise, we follow the network ar-

chitecture of [14], which is similar to the ones used

in [2, 15]. It consists of the following sequence of lin-

ear layers (1×1 convolutions) and graph convolutions:

Lin16+Conv32+Conv64+Conv128+Lin256+Lin6890; the

numbers indicate the amount of output channels of each

layer. In addition we developed a multi-scale architecture

with pooling and unpooling layers inspired by U-Net [23],

which increases the field of view without losing spatial res-

olution. Following Defferrard et al . [5], we use the Graclus

algorithm [6] to define max-pooling over the graph. Given

a graph with edge weights wij and degrees di =
∑

j wij ,

this greedy clustering algorithm merges in each step the

unmarked nodes that maximize the local normalized cut

wij(d
−1
i +d−1

j ), and then marks these nodes as visited. For

simplicity we set all initial edge weights equal to 1. The

coarsened graph has approximately two times fewer nodes,

and the weights in the coarsened graph are set to the sum of

the corresponding weights before coarsening. This process

is repeated to construct a binary tree over the nodes. This

induces a complete ordering which can be used to apply

standard 1-dimensional max-pooling layers, as well as frac-

tionally strided convolution upsampling layers. Our multi-

scale architecture is illustrated in Figure 3.

The models are trained using the standard cross-entropy

classification loss. We use learning rate of 10−2, and a

Translation inv. yes no

XYZ 86% 28%

SHOT 63% 58%

Table 1. Shape correspondence accuracy using different input fea-

tures, with and without translation invariance, M = 9 in all cases.

XYZ SHOT XYZ SHOT

Figure 4. Geodesic errors on two test shapes estimated using

single-scale architecture with XYZ and SHOT feature inputs.

weight decay of 10−4. As input features over the mesh we

either use the 544-dimensional SHOT descriptor [27] used

in earlier work, or the raw 3D XYZ vertex coordinates. The

accuracy is defined as the number of vertices for which the

correspondence prediction is exact, but we also evaluate the

number of correspondence predictions within a certain tol-

erance on the error in terms of geodesic distance.

Results. In Table 1 we evaluate our single-scale model us-

ing the XYZ coordinates and the SHOT descriptor as input,

and with and without translation invariance in our model.

For both descriptors translation invariance improves results.

As expected translation invariance is more important in the

case of raw XYZ inputs, since the coordinates have no built-

in translation invariance while the SHOT descriptor is in-

variant to the absolute position of the local shape. With

translation invariance, the XYZ inputs clearly outperform

the SHOT descriptor, demonstrating that our model can

learn shape features that outperform state-of-the-art hand-

crafted shape descriptors. Unless specified otherwise, we

use XYZ inputs and translation invariance in the remaining

experiments. In Figure 4 we visualize geodesic correspon-

dence errors for both descriptors, clearly showing superior

results using the raw XYZ coordinate input.

We evaluate the impact of the number of weight matri-

ces M in Figure 5. We observe that the performance quickly

improves from M = 2 to M = 8, after which the improve-

ments are smaller. This shows that the internal features

learned by our model are effective to steer the graph con-

volutions and to successfully assign different weight matri-

ces across a graph neighborhood. We use M = 32 for the

remaining experiments.

In Table 2, we present the accuracy obtained with FeaSt-
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Figure 7. Visualization of correspondence errors in terms of the geodesic distance to the groundtruth correspondence on three test shapes,

using (from left to right) the single-scale architecture (w/o refinement) and multi-scale architecture without and with refinement.

Method Input Accuracy

Logistic Regr. SHOT 39.9%

PointNet [19] SHOT 49.7%

GCNN [14], w/o refinement SHOT 42.3%

GCNN [14], w/ refinement SHOT 65.4%

ACNN [2], w/o refinement SHOT 60.6%

ACNN [2], w/ refinement [17] SHOT 62.4%

MoNet [15], w/o refinement SHOT 73.8%

MoNet [15], w/ refinement [29] SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%

FeaStNet, w/ refinement [29] XYZ 92.2%

FeaStNet, multi scale, w/o refinement XYZ 98.6%

FeaStNet, multi scale, w/ refinement [29] XYZ 98.7%

FeaStNet, multi scale, w/o refinement SHOT 90.9%

Table 2. Correspondence accuracy on the FAUST dataset of our

model and recent state-of-the-art approaches.

2 4 8 16 32 64
50

60

70

80

90

M (Number of weight matrices)

A
cc

u
ra

cy

Figure 5. Accuracy as a function of the number of weight matrices

for the FAUST dataset, using the single scale architecture.

Net using the single-scale and multi-scale architecture, and

compare to state-of-the-art methods. We also evaluate our

best model (translation invariant multi-scale architecture)

using SHOT descriptors, and obtain an accuracy signif-
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FeaStNet

Figure 6. Fraction of geodesic shape correspondence errors within

a certain distance. Dashed curves show results without refinement.

icantly above previous state of the art. Accuracies for

[2, 14, 15] are directly taken from the corresponding pa-

pers, and for PointNet we trained a model using the publicly

available code. For sake of direct comparability, we evalu-

ate the quality of the correspondences directly predicted by

our model, and after post-processing them with the refine-

ment algorithm of Vestner et al . [29] which was also used

by Monti et al . [15]. Using our models we obtain excellent

correspondence predictions. Our multi-scale architecture,

which allows to use more contextual information across the

mesh, predicts 98.6% of the correspondences without any

error. In Figure 6 we plot the percentage of correspon-

dences that are within a given geodesic distance from the

ground truth on the reference shape. Figure 7 visualizes

the geodesic correspondence errors using our single-scale

and multi-scale architectures, and the effect of refinement.

While refinement has only a marginal effect on the accu-

racy, it does in certain cases correct some of the rare rela-

tively large errors. The correspondences predicted by our

multi-scale network improve significantly over the previous

state-of-the-art results of Monti et al . [15].
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Figure 8. Left: Accuracy as a function of standard deviation of Gaussian noise added to FAUST test shapes. Right: Texture transfer on

test shapes with various levels of additive Gaussian noise using our multi-scale FeaStNet architecture (trained with noisy data).

To evaluate the robustness of our models, we add Gaus-

sian noise to each vertex of the shapes, where we use a

locally adaptive standard deviation proportional to the lo-

cal average inter-vertex distance. We visualize the results

of multi-scale FeaStNet model on these new shapes in Fig-

ure 8. The blue curve demonstrates how the predictive per-

formance deteriorates as the noise increases, when training

on noise-free data. The red curve is obtained when also us-

ing noisy training data, using noise levels 0.01, 0.05, 0.1,

0.15 and 0.2. Adding noise to the training data can be seen

as a form of data augmentation, and makes the model sig-

nificantly more robust.

In Figure 9, we show activations of some randomly se-

lected features learned across some layers our single-scale

model. Across the layers the features become more pose

invariant and more localized as required by the task.

4.2. Part labeling

Experimental setup. To validate our approach on graphs

that are less clean than the ones in the FAUST dataset, we

test it on the ShapeNet part benchmark [33]. The dataset

consists of 16,881 shapes from 16 categories, labeled with

50 parts in total. Ground-truth labels are available on points

sampled from the original shapes, but not on the original

meshes themselves. Therefore, we apply our model on k-

nearest neighbor graphs over the labeled 3D points. We fol-

low the standard experimental protocol [12, 19, 31, 33], and

report the mean intersection over union (mIoU) metric per

category and across all shapes.

For each class a subset of the part labels is used, and

the category labels are know for test shapes. Therefore, we

train the model with a cross-entropy loss over the part la-

bels corresponding to the category of each sample. We use

k = 16 neighbors to construct the graph, and use M = 16
weight matrices. Our architecture consists of the following

layers: Lin16-Conv32-Conv64-Conv128-Lin512-Lin2048-

MaxPool. We concatenate the features from all the layers

Figure 10. Part labeling results on ShapeNet. On each row we

show three test shapes with accurate labeling, and one shape with

the worst labeling in that category. Best viewed in color.

with the global max-pooled features, and feed them to two

linear layers (Lin1024-Lin50) to get the final output.

Results. The results in Table 3 show that we obtain results

that are comparable to the state of the art. This demon-

strates that our approach is not only effective on clean mesh

graphs, but is also directly applicable to nearest neighbor

graphs constructed from point clouds. We show results with

number of nearest neighbors k = 16 as we did not observe
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Figure 9. Visualization of activations of randomly selected features across first and last layers of our single-scale FeaStNet architecture

using coordinates (xyz) as input. The first four columns show different features on a single shape, while the last four columns show another

random feature across different shapes.

overall aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table

plane phone bike board

Number of shapes 16,881 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

Wu [31] - 63.2 - - - 73.5 - - - 74.4 - - - - - - 74.8

Yi [33] 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3

PointNet [19] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

Kd-network [12] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

FeaStNet (this paper) 81.5 79.3 74.2 69.9 71.7 87.5 64.2 90.0 80.1 78.7 94.7 62.4 91.8 78.3 48.1 71.6 79.6

Table 3. Part labeling accuracy in mIoU on the ShapeNet part dataset of our model and recent state-of-the-art approaches.

much difference when varying k. In particular, we obtained

mIoU of 79.9% (k = 4), 80.8% (k = 8), 81.5% (k = 16),

80.9% (k = 32). We provide part labeling results on sev-

eral test shapes from seven categories in Figure 10. The

failure cases mostly concern atypical shapes, e.g . for table

and chair, and cases where the boundary between object la-

bels is poorly estimated, e.g . for bag, guitar and gun.

5. Conclusion

We presented FeaStNet, a novel graph-convolutional

architecture which is based on local filtering and applies

to generic graph structures, both regular and irregular. The

main novelty is that our architecture determines local filters

dynamically based on the features in the preceding layer of

the network. The network thus learns features that are (i)

effective to shape the local filters, and (ii) informative for

the final prediction task. We obtain results that significantly

improve over the state-of-the-art for 3D mesh correspon-

dence on the FAUST dataset, and results comparable to the

state of the art for part labeling on the ShapeNet dataset

where we apply our model on k-nearest neighbor graphs

over point clouds. In the future we plan to extend our

architecture to model other properties of 3D shapes, such

as appearance or motion patterns. The TensorFlow-based

implementation to replicate our experiments can be found

at: https://github.com/nitika-verma/FeaStNet
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