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Abstract

Light-field imaging is based on images taken on

a regular grid. Thus, high-quality 3D reconstruc-

tions are obtainable by analyzing orientations in

epipolar plane images (EPIs). Unfortunately, such data

only allows to evaluate one side of the object. Moreover, a

constant intensity along each orientation is mandatory for

most of the approaches. This paper presents a novel method

which allows to reconstruct depth information from data

acquired with a circular camera motion, termed circular

light fields. With this approach it is possible to determine

the full 360° view of target objects. Additionally, circular

light fields allow retrieving depth from datasets acquired

with telecentric lenses, which is not possible with linear

light fields. The proposed method finds trajectories of 3D

points in the EPIs by means of a modified Hough transform.

For this purpose, binary EPI-edge images are used, which

not only allow to obtain reliable depth information, but

also overcome the limitation of constant intensity along

trajectories. Experimental results on synthetic and real

datasets demonstrate the quality of the proposed algorithm.

1. Introduction

Three dimensional geometry reconstruction is one of the

most important tasks in computer vision and image process-

ing. Depth data plays a crucial role in industrial applications

(e.g., automatic optical inspection), the game and movie

industry, as well as common consumer products. Active

systems, such as structured light, laser scanners, or time-

of-flight cameras are often costly and/or time consuming.

Differently, passive systems like multi-view stereo [21, 10]

or structure from motion are more attractive, considering

the simple hardware required and the possibility to achieve

high-quality 3D reconstructions.

Passive systems based on light fields have been widely

developed. A light field is a densely sampled image se-

quence, where an object is acquired from different views.

Figure 1. The proposed algorithm processes data generated from

a circular camera motion, retrieving the depth from sinusoidal tra-

jectories of 3D points in the EPIs. The resulting depth maps can

be used to generate a point cloud and a mesh of the target scene.

When all images are stacked on top of each other, form-

ing an image volume, one slice through this volume is called

epipolar plane image. EPIs give information about the mo-

tion parallax of the image points, which are moving with

specific trajectories, depending on the camera motion, see

Figure 1 for the circular case. In contrast to light fields, clas-

sic multi-view stereo algorithms do not make use of the re-

dundancy contained in a densely sampled image sequence.

In fact, these algorithms often have a view selection [11]

which leads to discarding images due to the small baseline.

Furthermore, optical flow algorithms normally use two or

just few images to compute the depth [15, 3], hence they are

less robust than light fields. One of the most popular types

of light fields are the so called linear light fields, which are

a collection of images captured along a linear path. With

this type of data, scene points trace straight lines on the

EPIs, whose slopes are inversely proportional to the dis-

tance of the points. The main disadvantage of linear light

fields is that they are restricted to linear camera movements.

In this way only one side of the scene can be reconstructed.

To have the complete 3D shape, the target object has to be

recorded from four different sides, and then the results have

to be merged. This constraint makes the acquisition proce-

dure long and tedious. Moreover, most of the light field al-

gorithms strongly rely on the Lambertian hypothesis, which

means that an EPI-line should have constant intensity.

Linear light field algorithms are generally developed for

data acquired with standard perspective lenses. However,
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for certain applications, e.g., precise measurement tasks in

optical inspection, telecentric lenses are better suited. This

particular type of lens allows to obtain an orthographic pro-

jection. Therefore, two identical objects will look the same

even if one is closer to the camera than the other. Thus, a

linear light field acquired with a telecentric lens would lead

to EPIs where all the lines have the same slope, making it

impossible retrieving any depth information.

To overcome all these issues, we propose a new approach

to extract 3D information from circular light fields. A cir-

cular light field acquires the scene by rotating the object in

front of the camera (or vice versa). In this way it is possi-

ble to reconstruct the full 360° shape with just one continu-

ous acquisition. With this setup, every captured scene point

corresponds to a curved trajectory in the EPI. Variations of

the depth lead to sine shaped curves with different ampli-

tudes and phase offsets, as will be explained in Section 3.

It will be shown that circular light fields can be used to re-

trieve depth information even from datasets acquired with

a telecentric lens. The proposed algorithm uses a coarse

EPI-slope map, generated with the local structure tensor,

together with a binary edge map of the EPI, to extract trajec-

tories by using an adapted version of the Hough transform.

The result, is a set of highly accurate depth maps of the tar-

get scene from all sides. Since the Hough transform uses

binarized EPIs to retrieve trajectories, it is possible to get

rid of the Lambertian hypothesis and process datasets with

strong intensity changes along the EPI-curves. In fact, even

if a trajectory is only partially visible or its intensity satu-

rates because of a specular reflection, the Hough transform

can still recover the full curve. In order to apply circular

light fields to both perspective and telecentric lenses, two

slightly different versions of the algorithm are proposed.

Our method is based on [22, 23], were we introduced

a new approach for linear light fields which retrieves EPI-

lines with a combined structure tensor and Hough trans-

form.

2. Related Work

Although the term light field was already introduced in

1936 by Gershun [12] as the multi-dimensional function

(later called plenoptic function [1]) describing all the in-

formation available from the scene’s reflected light, light

fields were introduced into computer graphics only in 1996

by both Gortler et al. [14] and Levoy et al. [19] for an im-

age base rendering application. In order to acquire light

fields, the plenoptic function is simplified to a 4D subspace,

termed the Lumigraph [14]. With this representation, the

ray space of the light field can be parametrized by the two

points of intersection of a ray with two parallel planes, so

that the light field can be considered as a collection of views,

where the focal points of the cameras lie in a 2D plane. The

first attempt to extract depth from EPIs was the work of

Bolles [2], where salient lines were derived by finding zero

crossings and then by merging collinear segments. Crimin-

isi et al. [5] proposed to extract EPI-regions by using photo-

consistency. More recently, Wanner [24, 25], and later on

Diebold [7], used the structure tensor to estimate the lo-

cal slope of each pixel in the EPI, obtaining a coarse depth

map which is then refined by means of a global optimiza-

tion. Unfortunately, structure tensor methods provide only

a local evaluation of EPIs’ orientations. This can be a prob-

lem especially in noisy datasets, where using all the avail-

able information, i.e., the full EPI-line, helps to increase the

quality of the final reconstruction. Additionally, global opti-

mization tends to smooth depth discontinuities by averaging

between foreground and background disparities.

An approach which takes advantage of the whole trajec-

tory was proposed by Feldmann et al. [8, 9], who used the

intensity constancy as a measure to determine valid paths.

In their work the 3D space is discretized into voxels and

then, for each hypothetical 3D point, the algorithm seeks

in the image volume if the corresponding path exists. This

method was also adapted to the case of a camera which ro-

tates around the target scene. Crispell et al. [6], and later on

Lanman et al. [18], retrieve EPI-trajectories in circular light

fields only on depth discontinuities instead of texture edges.

They use a contour tracking approach which is not robust to

specularities and cannot deal with EPIs having many close

trajectories. Similarly to [8], Kim et al. [17] proposed a

method for linear light fields which computes depth esti-

mates around the scene’s highly textured areas by testing

all the possible disparity hypotheses and choosing the one

that leads to the best color constancy along the EPI-line.

This approach was later applied to circular camera motion

by Yücer et al. [27], to segment the target object and com-

pute the visual hull. Then, they extended their approach to

estimate the depth also in concave areas by analyzing the

local gradient directions in the image volume [26]. Unfor-

tunately, the main limitation of these methods is the restric-

tion to Lambertian surfaces.

3. Circular Light Fields

EPI analysis was extended to the case of circular camera

movements by Feldmann et al. [8]. The acquisition setup is

composed of a fixed camera and an object rotating around

a point M aligned with the camera’s optical center C, as

shown in the left side of Figure 2. In this section, the im-

age formation of circular light fields is explained, for both

orthographic and perspective camera projection models.

3.1. Orthographic Camera

The simplest camera projection is the orthographic pro-

jection, which can be obtained through a telecentric lens.

Let P = [X,Y, Z]
⊤

be an arbitrary 3D point, assuming a
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Figure 2. Orthographic camera: left, xz-plane showing the projec-

tion in the image plane IP of the points P1 and P2 rotating with a

phase θ around M ; right, trajectories of the two points in the EPI

(xθ-plane), the dots indicate the points of maximum amplitude.

sensor with square pixels, its projection into image coordi-

nates (x, y) is expressed as





x
y
1



 =





m 0 0 xc

0 m 0 yc
0 0 0 1













X
Y
Z
1









, (1)

where m is the telecentric lens magnification divided by the

pixel pitch σ, and (xc, yc) denotes the sensor’s principal

point.

The left side of Figure 2 shows the xz image plane

of an orthographic camera and two points P1 and P2 ro-

tating with two different radii RP1
and RP2

around the

rotation center M , with a phase θ. The points have, respec-

tively, a phase offset φP1
and φP2

. From Figure 2 it is pos-

sible to define the X , Z components of the generic point P

in polar coordinates as

X = R · sin (θ + φ) (2a)

Z = RM −R cos (θ + φ) , (2b)

where R is the point’s radius, θ ∈ [0, 2π] is the ro-

tation’s phase, and RM is the distance between the

center of rotation M and the camera optical center C. On

the right side of Figure 2 the corresponding trajectories of

the points P1 and P2 projected onto the image plane are

shown. The trajectory of a point P can be derived from

Equations 1 and 2 as

x = A · sin (θ + φ) + xc (3a)

y = H + yc, (3b)

where A = m · R is the trajectory’s amplitude in pixel,

and H = m · Y is the point’s height in pixel. It is impor-

tant to note that y only depends on the height Y of the 3D

point (due to the depth independence of the orthographic

projection). Consequently, in the orthographic case, the full

trajectory of a rotating 3D point is imaged in one EPI. An

example of such a circular light field in shown in Figure 3.

From Equations 3 it can be seen that any scene point is

simply defined by its radius R and its phase offset φ. With

Figure 3. Example of circular light field acquired with a telecentric

lens: left, first image; right, EPI corresponding to the coordinate

y∗ highlighted by the dashed line.

this parametrization, Feldmann et al. [8] defined two occlu-

sion rules:

1. All the points in the quadrants I and IV will occlude

those in the quadrants II and III if their projection rays

are equal;

2. In the quadrants I and IV all the points with a larger ra-

dius will occlude those with a smaller one if their pro-

jection rays are equal. Vice versa, for the quadrants II

and III, points with a smaller radius will occlude those

with a larger one.

Points moving in the quadrants I and IV correspond to

curves with positive slope ( δx
δθ

> 0), whereas points moving

in the quadrants II and III lead to curves with negative slope

( δx
δθ

< 0).

3.2. Perspective Camera

With a standard lens, a perspective projection is ob-

tained. The pinhole camera model defines the projection of

the 3D point P = [X,Y, Z]
⊤

into image coordinates (x, y)
as





x
y
1



 =





f 0 xc 0
0 f yc 0
0 0 1 0













X
Y
Z
1









. (4)

In this case, due to the projection’s depth dependency, the

sinusoidal trajectories of Section 3.1 are slightly distorted.

If the generic 3D point P is again considered, its trajectory

can be derived from Equations 2 and 4 as

x = f ·
R sin (θ + φ)

RM −R cos (θ + φ)
+ xc (5a)

y = f ·
Y

RM −R cos (θ + φ)
+ yc, (5b)

where f is the focal length. Figure 4 shows the trajec-

tories’ x components for different rotation radii, and the y
components for different rotation radii and Y coordinates,

as a function of the rotation phase θ. For the perspective

case, the trajectory of a point does not completely lie in the

xz-plane, as it was in the orthographic projection, but is also

moving in the y-direction during the rotation.
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Figure 4. Perspective camera: left, trajectories with increasing ra-

dius in the xθ-plane, the dots indicate the points of maximum

amplitude; right, trajectories with increasing radius and different

height Y in the yθ-plane.

4. Hough Transform for Orthographic Camera

The Hough transform is an elegant method for estimating

parametrized line segments (e.g., lines, circles, parabolas,

and ellipses) in an image. This approach has the advantage

of being robust against noise and unaffected by occlusions

or gaps in the trajectory. In practice, Hough transform finds

curves in a binary image, which we obtain with a Canny

edge detector. For a circular light field, the orthographic

projection case of Equations 3 can be correctly solved by

analyzing a single EPI. On the contrary, the perspective pro-

jection case of Equations 5 can have only an approximated

solution by analyzing EPI like slices, due to the fact that a

point changes its y-coordinate during the rotation. In the

following, we describe the general Hough transform algo-

rithm for orthographic circular light fields. The perspective

circular approximation will be explained in the next section.

4.1. Hough Space Generation

With the parametrization of Equation 3a each EPI-

trajectory t (i.e., a 3D point) can be associated with a pair

(At, φt). The (A, φ) plane is termed Hough space (H). The

occlusion ordering rule 1 imposes that two Hough spaces

have to be computed in order to identify the trajectories: a

Hough space H1 for trajectories in the quadrants (I, IV),

and a Hough space H2 for the ones in quadrants (II, III).

The two Hough spaces are discretized into cells and ini-

tially populated with zeros. This discretization depends on

the chosen sensor and the acquired images. Specifically,

a sensor with resolution Nx × Ny pixel yields to ampli-

tudes A ∈ [0, 1, ..., Nx/2]. On the other hand, the phase

offsets are determined by the number of images N , and are

φ ∈ [0, 2π/N, ..., 2π]. In fact, each image corresponds to

a rotation angle of 2π/N , which defines the phase resolu-

tion. Now that the Hough spaces are defined, each non-zero

point i of the EPI binary image has to vote. This means

it increments by 1 the cell having coordinates (Ai, φi) in

the correct Hough space. In order to determine if an edge

point is related to H1 or H2, i.e., the trajectory point is in the

(I, IV) or (II, III) quadrants, the local slope of the EPI-image

is computed with the structure tensor: points with positive

slope belong to the quadrants (I, IV), whereas points with

negative slope belong to the quadrants (II, III).

In the voting procedure, for each edge point in the EPI bi-

nary image, its coordinates (xi, θi) identify a rotation phase

θi and a point coordinate xi, i.e., the amplitude of the pos-

sible trajectory at θi. From these two values it is possible to

invert Equation 3a and derive the trajectory’s phase offset φ
with

φ =















arcsin

(

xi − xc

Ai

)

− θi if
δx

δθ
> 0

arccos

(

xi − xc

Ai

)

− θi +
π

2
otherwise.

(6)

This equation has to be solved for all the possible trajec-

tory’s amplitudes Ai ∈ [1, ..., xi] (with xi ≤ Nx/2), and

each resulting pair (Ai, φi) determines the cell in the Hough

space which has to be incremented. Once all the edge points

have been processed, cells whose values are local maxima

or peaks define the parameters for the trajectories in the EPI.

4.2. Trajectories Determination

Since the 3D points can have different radii, the cor-

responding EPI-trajectories will also have different ampli-

tudes. This leads, in the EPI binary image, to a set of sinu-

soidal curves with a different number of points: less points

for small amplitude curves, more points for large amplitude

ones. Consequently, in the Hough spaces, the local max-

ima corresponding to larger amplitudes A will have a higher

cell value than local maxima corresponding to smaller am-

plitudes. Moreover, EPI-points with large amplitude can

be fitted to more curves than points with small amplitude.

Therefore, the noise in the Hough space increases with large

A, as can be seen in Figure 5 left. In order to correctly detect

all these local maxima, each one of the two Hough spaces

has to be post-processed. The first step consists of remov-

ing the low frequencies by subtracting from H its low-pass

filtered version. Then, the result is rescaled by multiply-

ing it with a weighting matrix W which gives more weight

to small amplitudes and reduces high amplitudes. All the

columns of W have the same weighting vector: an exponen-

tial function e−0.001 ∗ [1, 2, ..., Amax]
⊤

was chosen. Even-

tually, thanks to the post-processing, it is possible to apply

a global threshold (Otsu’s method) to identify all the local

maxima. The Hough space H1 for the EPI of Figure 3 and

the corresponding post-processed space are shown in Fig-

ure 5.

4.3. Trajectories Propagation

Each one of the identified local maxima is a pair (A, φ)
which defines a trajectory that will be propagated in the EPI.

For this task, the occlusion ordering rules of Section 3.1
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Figure 5. Orthographic Hough transform: left, the Hough space

H1 for the EPI of Figure 3; right, the corresponding post-

processed space (rescaled between 0 and 1) for the local maxima

detection.

are fundamental. To ensure the visibility of the foreground

points, all the pairs (A, φ) from H1 are sorted in descend-

ing order of amplitude A, whereas the pairs from H2 are

sorted in ascending order of amplitude (see rule 2). For

each trajectory, defined by a pair (Ai, φi), its x-coordinates

are computed with Equation 3a. Then, an occlusion visibil-

ity range, based on the rules defined in Section 3.1, is used

to determine the phase locations θ, i.e., the EPI vertical co-

ordinates, where the trajectory is visible. This range differs

from H1 to H2, and is defined as

π

2
< θ + φi <

3

2
π for H1

0 < θ + φi <
π

2
∧

3

2
π < θ + φi < 2π for H2.

(7)

For example, the point P1 in Figure 2 has φP1
= 0 and a

visibility range equal to
[

π
2
, 3

2
π
]

, i.e., the quadrants II and

III.

In order to take into account already propagated trajec-

tories, and avoid new ones to overwrite them, an EPI bi-

nary mask is introduced. Moreover, to prevent propagation

in wrong areas, trajectories from H1 (H2) are only propa-

gated where the EPI-slopes are positive (negative). Eventu-

ally, the remaining portion of the trajectory can be written

in the EPI, and in parallel into the EPI-mask. These steps

are repeated for all the pairs (A, φ). The first propagated

trajectories are the ones related to points belonging to the

quadrants (I, IV), i.e., H1. Then, also the trajectories from

H2 are propagated (see rule 1). The propagation procedure

is summarized in Algorithm 1.

foreach (Ai, φi) ∈ H do

compute the trajectory coordinates (xi, θi);
remove occluded coordinates;

remove masked coordinates;

remove wrong slope coordinates;

propagate the remaining trajectory portion;

end

Algorithm 1: Trajectory propagation for the space H .

Figure 6. The input EPI-edge image (Canny) and the results of the

orthographic Hough transform: EPI-amplitude, EPI-phase, and

EPI-depth image. Note that the depth of a trajectory changes along

the trajectory itself, since the 3D point is moving in space, whereas

amplitude and phase are constant for each trajectory.

4.4. EPI-Depth Generation

Once all the trajectories have been propagated, it is

straightforward to compute the depth map. In fact, any 3D

point P, which corresponds to a trajectory with parameters

(A, φ), has a depth Z, with respect to the origin C, defined

by Equation 2b, with R = m · A. The results of the

orthographic Hough transform for the EPI of Figure 3 right

are shown in Figure 6.

By applying the described steps to all the EPIs of the im-

age volume, the final output is a set of sparse depth images

of the target scene, one for each rotation angle θ.

5. Hough Transform for Perspective Camera

When a standard perspective camera is considered,

Equations 5 show that a trajectory is not confined in a sin-

gle EPI, but also moves in the yθ-plane, leading to a curve

through the whole 3D image volume. The y-shift increases

with the distance between a 3D point and the horizontal

plane through the camera’s optical center, where there is

no shift. Therefore, in order to find a trajectory, a 3D search

in the full image volume should be performed, as described

by Feldmann et al. [8]. In this section, the Hough transform

approach is adapted to the perspective projection case. In

order to continue using EPI like slices, we propose an ap-

proximate solution which neglects the y-shift. Even though

the full trajectory is not available, a portion of it is always

visible in the EPI. One of the advantages of the Hough trans-

form is that even a portion of a curve can be retrieved if it

has enough support. Therefore, it is possible to reconstruct

the EPI-trajectories and achieve good results even with this

approximation.
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5.1. Hough Space Generation

As in the orthographic case, the discretization of the

Hough spaces depends on the chosen sensor and the ac-

quired images. In this case, the relation between amplitude

A in pixel and radius R in meters is defined in [9] as

R = 2 ·
RM tan

(

1/
(

2FOV
))

·A
√

4
(

tan
(

1/
(

2FOV
)))2

·A2 +N2
x

, (8)

where FOV = 2arctan ((σ ∗Nx) /2f) is the field

of view. With this formula it is possible to associate

the correct radius value to each trajectory’s amplitude

A ∈ [0, 1, ..., Nx/2].
In the perspective case, the behavior of a trajectory is

determined by Equation 5a. Therefore, in the voting pro-

cedure this equation has to be solved in order to find the

trajectory’s phase offset φ from the EPI binary image point

(xi, θi). We chose to invert the equation by means of a look-

up table. The trajectories determination via local maxima

detection follows the same procedure used for the ortho-

graphic case in Section 4.2.

5.2. Trajectories Propagation

Once a trajectory is determined, its amplitude A (radius

R) and phase offset φ are used to compute its coordinates

through the EPI. The propagation procedure is similar to the

one described in Section 4.3, with two differences:

1. The x-coordinates are computed with Equation 5a;

2. The trajectories are no longer perfect sines. As can be

seen in Figure 4, three-dimensional points with larger

radius R deviate more from the ideal sinusoidal curve.

The phase of the maximum amplitude, which deter-

mines the occlusion visibility range is

φmax = arccos (R/RM ) . (9)

From this peak it is possible to determine the segments

where the trajectory is visible and can be propagated.

The remaining steps are the same as in Algorithm 1. Even-

tually, the depth maps are computed by projecting every 3D

point into each camera’s image plane, taking into account

the perspective projection.

6. Experiments and Results

To evaluate the quality of the reconstruction, tests with

both synthetic and real datasets were performed. The re-

sult of the proposed algorithm are a set of depth images,

one for each rotation angle θ, which can be converted into

a point cloud and eventually into a mesh. To this end,

we used the Poisson Surface Reconstruction of [16]. The

same meshing procedure was employed to generate meshes

from the point cloud obtained with two publicly available

multi-view algorithms. The first is the patch based method

Clustering Views for Multi-view Stereo (CMVS) from Fu-

rukawa and Ponce [11], which has an optimized view se-

lection that discards some images due to the small base-

line. The second is the Multi-View Environment (MVE)

from Goesele et al. [13], which computes per-image depth

maps, later merged in 3D space.

6.1. Synthetic Datasets

In order to evaluate the robustness with respect to spec-

ular surfaces, synthetic circular light fields of a Buddha’s

head were generated with Blender [4]. For both telecen-

tric and perspective lenses two datasets were generated by

setting the surface to Lambertian and specular. All the

datasets are composed of 720 images (i.e., one image each

0.5◦) with a resolution of 1001 × 1001 pixel, and pixel

pitch σ = 6µm. The focal length for the perspective cam-

era is f = 18 [mm], whereas the telecentric camera has a

magnification of 0.1. A visual comparison of the obtained

meshes is presented in Figure 7. In the Lambertian case,

our method yields to the best meshes, which are less noisy

than MVE and have more details than CMVS. In the spec-

ular datasets, CMVS and MVE have more problems, due to

the non-Lambertian surface. On the contrary, we are still

able to obtain very good reconstructions, with much less

noise, especially in the Buddha’s face. This is due to the

way the voting procedure of the Hough transform uses all

the available images to find the EPI-trajectories, which can

be retrieved even if they are only partially visible. Note

that in the perspective case our method is using an approx-

imated model (we are ignoring the y-shift), whereas MVE

and CMVS assume the right pinhole model. Table 1 shows

the root-mean-square error (RMSE) [20] of the meshes in

percentage, normalized by the extent of the bounding box.

Dataset Ours CMVS MVE

Telecentric Lambertian 0.49 0.59 0.56

Telecentric Specular 0.45 0.91 0.72

Perspective Lambertian 0.54 0.62 0.59

Perspective Specular 0.56 0.91 0.81

Table 1. BUDDHA synthetic datasets: RMSE of the meshes in per-

centage. Our method outperforms the others and is not affected by

specular surfaces.

6.2. Real Datasets

Real datasets were acquired both with a telecentric lens

(Zeiss Visionmes 105/11) for the orthographic case, and a

standard lens (Zeiss Makro-planar 2/100 ZF.2) for the per-

spective one. Calibration was performed for both the lenses,

in order to remove distortion and determine the correct rota-
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Figure 7. BUDDHA synthetic datasets: mesh comparison of our method with CMVS [11] and MVE [13] (the colors encode the error in

millimeters, with respect to the ground truth mesh). Our results are always less noisy and more precise. Note the strong intensity variations

in the EPI-trajectories for the specular case.

tion center. We used a pco.edge 5.5 camera with a resolution

of 2560× 2160 pixel and a pixel pitch of σ = 6.5µm. Test

objects were placed on a high precision rotation stage, and

light fields composed of N = 720 images were acquired.

Figure 8 presents the results for the CAT dataset in the or-

thographic and perspective case. In the latter, the MVE re-

construction is not available since the algorithm failed with

this dataset. However, it can be seen that our approach pro-

duces a result comparable to CMVS. In the dataset acquired

with the telecentric lens we achieve the best reconstruction.

In the same way, for the SEAHORSE dataset our approach

outperforms the others in the orthographic case presented at

the top of Figure 9. The reconstructions from data acquired

with the standard lens, presented in the bottom of Figure 9,

show again three similar results, meaning that our approx-

imation is comparable to the other two algorithms. Even-

tually, we tested the robustness of our algorithm against

non-Lambertian surfaces by reconstructing a drill bit, ac-

quired with the telecentric lens. This is a highly specular

and challenging metallic part. Nevertheless, we can pre-

cisely reconstruct the object and correctly retrieve the EPI-

trajectories even with strong intensity variations, as can be

seen in Figure 10. In order to further appreciate the robust-

ness to specular surfaces of the proposed algorithm, Fig-

ure 11 shows a frame of the circular light field, as well as an

EPI. In this image the non-Lambertian effects of the metal-

lic surface are visible, with two clear specular peaks due to

the two main lights used to illuminate the scene. This type

of data cannot be correctly resolved by classical multi-view

algorithms which try to find correspondences between the

views, assuming color constancy. However, our approach

is able to determine these correspondences in the form of

trajectories. Some of these are highlighted in the EPI, and

the correspondent intensity values are plotted in Figure 11

(c). For simplicity, we report the intensity of the grayscale

EPI, rescaled between 0 and 255. Also from this plot the

two specular peaks are clearly distinguishable.

7. Conclusion

We introduced a novel method to recover depth informa-

tion from circular light fields even in presence of specular

reflections. Two variants were presented: one for images
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Figure 8. CAT datasets acquired with telecentric and perspective

lenses: mesh comparison of our method with CMVS [11] and

MVE [13]. Note: for the perspective case also the point cloud of

our approach is presented, and only the CMVS mesh is available.

Figure 9. SEAHORSE datasets (telecentric and perspective): mesh

comparison of our method with CMVS [11] and MVE [13].

acquired with telecentric cameras and the other for stan-

dard perspective lenses. Differently from classic linear light

fields, with circular light fields it is possible to reconstruct

the full 360° view of the target scene with just one contin-

uous acquisition. Additionally, they allow retrieving depth

even from image sequences acquired with telecentric lenses,

a task which is not possible with simple linear motion. In

this way, also setups that require telecentric optics can be

used to make 3D reconstruction from images without hav-

ing to change the lens or placing an additional perspective

camera. Our method also overcomes the limitation to Lam-

Figure 10. DRILL BIT dataset acquired with a telecentric lens:

with our approach we are able to correctly identify EPI-trajectories

even in presence of specular reflections, and consequently obtain

a precise 3D reconstruction.

Figure 11. Trajectories analysis for the DRILL BIT telecentric

dataset: first light field frame (a), and the EPI corresponding to the

y-coordinate highlighted by the yellow dashed line (b). The corre-

spondent grayscale intensity values of five trajectories are plotted

in (c). These trajectories have similar intensity behaviours, with

two specular peaks, due to the two main illumination units.

bertian surfaces of state-of-the-art algorithms, by using the

Hough transform of binarized EPIs. This leads to a very ro-

bust estimation of the EPI-trajectories, which can be found

in presence of specular reflections, noise, or even wiggles

due to some imprecisions in the calibration or in the rota-

tion mechanism. The robustness against specular surfaces

makes our approach suitable to many tasks in industrial op-

tical inspection. Besides 3D reconstruction, an example of

application is material classification based on BRDF esti-

mation. In fact, the intensity variation along each trajectory

can be used to associate the material properties to a specific

BRDF.
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