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Abstract

Rigid Point Cloud Registration (PCReg) refers to the

problem of finding the rigid transformation between two

sets of point clouds. This problem is particularly impor-

tant due to the advances in new 3D sensing hardware, and

it is challenging because neither the correspondence nor

the transformation parameters are known. Traditional lo-

cal PCReg methods (e.g., ICP) rely on local optimization

algorithms, which can get trapped in bad local minima in

the presence of noise, outliers, bad initializations, etc. To

alleviate these issues, this paper proposes Inverse Compo-

sition Discriminative Optimization (ICDO), an extension of

Discriminative Optimization (DO), which learns a sequence

of update steps from synthetic training data that search the

parameter space for an improved solution. Unlike DO,

ICDO is object-independent and generalizes even to un-

seen shapes. We evaluated ICDO on both synthetic and real

data, and show that ICDO can match the speed and outper-

form the accuracy of state-of-the-art PCReg algorithms.

1. Introduction

Rigid Point Cloud Registration (PCReg) refers to the

problem of finding the rigid transformation between two

or more point clouds without correspondence (Fig. 1a).

PCReg algorithms are fundamental to 3D data process-

ing, especially nowadays with the ever increasing access to

3D sensors (e.g., iPhone X, Kinect, LIDAR). Applications

of PCReg span 3D reconstruction, pose estimation, track-

ing, etc. Many successful approaches formulate PCReg as

an optimization problem and solve it with local optimiza-

tion algorithms. Unfortunately, these local methods tend to

get trapped in bad local optima without a good initialization.

To achieve robustness against local optima, several au-

thors proposed different formulations and algorithms. A

major class of successful algorithms relies on determinis-

tic annealing strategies [16, 20, 7]. In short, these algo-

rithms first optimize a coarse, non-robust cost function with
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Figure 1. Rigid Point Cloud Registration (PCReg) with ICDO. (a)

The goal of PCReg is to estimate rigid transformation parameter

that registers two point clouds together. (b) ICDO learns an inverse

composition update rule that searches for the solution from PCReg

examples. The learned update rule of ICDO generalizes to shapes

that are not even in the training set.

a small number of local optima, then continually increase

the robustness by modifying the cost function. One issue

with annealing approaches is that they require a schedule

for such modification, i.e., how fast and to what shape the

cost should be modified. Setting this schedule is not triv-

ial. With an improper schedule, the optimization might take

longer than necessary or even skip the correct solution to a

different optimum altogether.

Recently, Discriminative Optimization (DO) [38] has

been proposed as a learning-based technique to solve

PCReg. DO searches for a solution by mapping a feature

vector to a parameter update vector, where the maps are

learned from a set of training data. Although it was shown

to be very robust, DO has a significant limitation: the fea-

tures and the maps are object-specific, i.e., they only work

for the particular object they were trained on. This limits the
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usefulness of DO because it cannot be efficiently applied

to problems that only register each point cloud once, e.g.,

merging point clouds for reconstruction. Meanwhile, a gen-

eral framework for deriving feature vectors for DO has been

proposed, allowing DO to solve other computer vision prob-

lems, such as camera calibration and image denoising [37].

At first glance, it seems this framework can be applied to

solve object-independent PCReg. However, the dimensions

of the derived feature is exponential in the dimensions of the

point clouds, rendering it impractical even for 3D PCReg.

In this work, we reformulate DO to solve object-

independent PCReg. We modify the feature derivation

in [37] to represent the interaction between any two 3D

point clouds1 such that the feature’s dimensions are inde-

pendent of the point cloud’s dimensions. This allows us

to train a single set of maps and use it to register arbitrary

shapes, including unseen ones. Since our update rule is the

inverse composition operation, we call our approach Inverse

Composition Discriminative Optimization (ICDO). We also

show that ICDO can be interpreted as learning an annealing

schedule, allowing fast convergence compared with other

annealing-based local PCReg algorithms while maintaining

high accuracy.

2. Previous Work

Rigid Point Cloud Registration (PCReg): PCReg al-

gorithms can be classified into two classes. (i) Local ap-

proaches use local search algorithms that search around the

current estimated parameters. They are typically fast but

can get trapped in local optima without good initializations.

(ii) Global approaches search the whole configuration space

using globally optimal algorithms, such as branch-and-

bound [40, 8], or formulate the problem with a convex re-

laxation [23, 5]. They do not require any initialization but

are generally slower than local algorithms. Rather than us-

ing just points, there are also algorithms that use other in-

formation, e.g., colors [24, 29], lines [9, 6], planes [22, 28],

and local features from point clouds [41, 21, 15, 13]. For

these algorithms, their optimization module may be either

local [9, 24, 29, 22, 41], global [15, 6, 28], RANSAC-

based [21, 13], or their combinations. Since ICDO is a local

algorithm, we will focus our review in this class.

Local PCReg approaches generally rely on local search

algorithms. Different techniques are used depending on

how the rotation is parametrized. One major class directly

uses rotation matrix, and alternately solve for the parame-

ter (with Procrustes analysis [36]) and the correspondence

weights. These methods include ICP [3, 10] and their vari-

ants [32, 2]. While ICP uses binary weights, many algo-

rithms use the Gaussian of the distance between the points

as weights, e.g., Robust Point Matching (RPM) [16], EM-

1We focus on 3D PCReg. The 2D case can be derived in a similar way.

ICP [18], and Coherent Point Drift (CPD) [26]. More re-

cently, [17] models PCReg as objects moving under a grav-

itational field. Rather than using rotation matrix, another

class of methods relies on other parametrization, e.g., axis-

angle or quaternion, and uses gradient-based techniques to

solve for the parameter. LM-ICP [14] minimizes robust cost

functions with the Levenberg-Marquardt algorithm. Kernel

Correlation (KC) [34] and Gaussian Mixture Registration

(GMR) [20] minimize the L2 distance between the Gaus-

sian mixtures of the point clouds. We note that the algo-

rithms that rely on Gaussian functions require setting their

widths. They either estimate such widths in each itera-

tion [26, 18] or use deterministic annealing [16, 18, 20].

Discriminative Optimization (DO): DO [38] was pro-

posed as a learning-based approach for local PCReg. It

learns an update rule as a linear mapping from a feature

vector to an update parameter2:

xτ = xτ−1 −Dτh(xτ−1) (1)

where xτ ∈ R
p is the transformation parameter in step

τ = 1, . . . ; h : Rp → R
f extracts features from the point

clouds at xτ ; and {Dτ} ⊂ R
f×p, which map the feature to

an update vector, are learned from training data and are spe-

cific to a single shape. The concept of DO is similar to cas-

caded regression [12] and supervised descent [39], which

are widely used in face alignment. Recently, a framework

for deriving feature functions based on gradient descent has

been proposed [37], and DO was further applied to im-

age denoising and camera pose estimation. Note that while

some works use learning-based techniques for PCReg (e.g.,

support vector regression [7] and deep neural network [13]),

they are used to learn new shape representations, not for the

estimation of parameters.

In this work, we build upon DO and extend it in sev-

eral ways. (i) Instead of the summation rule in (1), ICDO

uses inverse composition as the update rule. Learning-based

composition rules have been used for image-based pose es-

timation and tracking [12, 35], but they have not been ap-

plied to PCReg. (ii) Unlike DO which is shape-specific,

ICDO generalizes across different shapes, even those not

included in the training data. (iii) We show how to derive

the feature function with much smaller dimensions than the

framework in [37]. (iv) We also show that the learned maps

can be interpreted as an annealing schedule, avoiding the

need to manually set one like in previous PCReg methods.

3. Inverse Composition DO (ICDO)

In this section, we introduce our PCReg algorithm

called Inverse Composition Discriminative Optimization

2Bold capital letters denote a matrix X, bold lower-case letters a col-

umn vector x, non-bold letters a scalar x. 0n,1n ∈ R
n are the vector of

zeros and ones. Vector xi denotes the ith column of X. Bracket subscript

[x]i denotes the ith element of x. ‖x‖ denotes ℓ2-norm
√
x⊤x.
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(ICDO). We first describe our motivation from gradient-

based PCReg and inverse composition PCReg, then we de-

scribe how to combine them with the DO framework [37]

to solve shape-independent PCReg. We provide the inter-

pretation of ICDO, its computational complexity, and im-

plementation details at the end of the section.

3.1. Motivation: Gradient­based PCReg

Given two point clouds represented by the matrices M ∈
R

3×NM for the model shape and S ∈ R
3×NS for the scene

shape, the goal of 3D rigid PCReg is to find a transformation

parameter x such that the transformed scene is similar to the

model: T (S,x) ∼ M. Here, we consider x = [r⊤, t⊤]⊤,

where r parametrizes rotation such that R(r) is a rotation

matrix (e.g., r can be an axis-angle vector, a quaternion, or

a rotation matrix itself); t ∈ R
3 is a translation vector; and

T transforms a point cloud as

T (S,x) = R(r)S+ t1⊤
NS
. (2)

To solve PCReg, many works formulate it as an opti-

mization problem. For example, the ICP algorithm solves

minimize
pij∈{0,1},x

NM∑

i=1

NS∑

j=1

pij‖mi − T (sj ;x)‖2, (3)

where pij ∈ {0, 1} denote correspondences. We can see

the cost function of (3) is not continuous, so ICP requires to

alternate between solving for x and pij . On the other hand,

KC [34] and GMR [20] propose to solve

minimize
x

−
NM∑

i=1

NS∑

j=1

exp(−(1/σ)‖mi − T (sj ;x)‖2), (4)

where σ controls the width of the Gaussian function. The

cost function in (4) is continuous and differentiable, allow-

ing gradient-based algorithms, such as gradient descent, to

solve PCReg. One problem with (4) is that it is not easy

to set σ: If σ is too large then the cost function could be

too coarse and disregard details of the shapes, while a small

σ could lead to a large number of local minima [20]. To

handle this issue, GMR uses deterministic annealing, i.e.,

it initializes with large σ then reduces it as the problem is

solved. This scheduling can be difficult to set, and may lead

to more computation time than necessary.

More generally, instead of using a Gaussian with specific

widths, we may consider a generalization of (4):

minimize
x

NM∑

i=1

NS∑

j=1

ψ(‖mi − T (sj ;x)‖), (5)

where ψ is a 1D penalty function. We can see that other

functions can be used in place of the Gaussian, but this

makes it more complicated to select a function ψ and how

to modify it to obtain a robust PCReg algorithm. In this

work, we tackle this issue by learning from training data.

Specifically, our algorithm learns to search for the solution

of PCReg, where each step imitates the gradient descent on

a ψ which is not expressed explicitly. We will show that

our algorithm can be interpreted as learning the annealing

of ψ from the training data, bypassing the need to manually

design and modify it. Before we describe our algorithm, we

look at the inverse composition operation, which we will

use to update our parameters.

3.2. Inverse composition PCReg

Our algorithm is based on the inverse composition (IC)

framework [1]. For PCReg, The composition operation

can be described as follows. Two parameter vectors x1 =
[r⊤1 , t

⊤
1 ]

⊤ and x2 = [r⊤2 , t
⊤
2 ]

⊤ are composed as

x1 ⊕ x2 =

[
R−1(R(r2)R(r1))

R(r2)t1 + t2

]

, (6)

where R−1 reverts a rotation matrix back to its parametriza-

tion. We also define (x)−1 to be the inverse of x: x1⊕x2⊕
(x2)

−1 = x1. In terms of transformation T , we can see that

T (S,x1 ⊕ x2) = T (T (S,x1),x2). (7)

With the above notation, we compare IC with the for-
ward composition (FC). Consider (5) with a differentiable
ψ, and let x and x+ denote the current and the next esti-
mates, resp. FC operates by alternately computing (i) the
gradient that transforms T (S;x) towards M and (ii) the FC
update (we disregard the step size in ∆x):

∆x = −

NM
∑

i=1

NS
∑

j=1

∂T (sj ;x⊕ x̃)

∂x̃

∂ψ(‖mi − T (sj ;x⊕ x̃)‖)

∂T (sj ;x⊕ x̃)

∣

∣

∣

∣

∣

x̃=0

(8)

x+ = x⊕∆x. (9)

In contrast, IC alternately computes (i) the gradient that
transforms M towards T (S;x) and (ii) the IC update:

∆x = −

NM
∑

i=1

NS
∑

j=1

∂T (mi; x̃)

∂x̃

∂ψ(‖T (mi; x̃)− T (sj ,x)‖)

∂T (mi; x̃)

∣

∣

∣

∣

∣

x̃=0

(10)

x+ = x⊕ (∆x)−1
, (11)

where 0 denotes the identity transformation parameter.

Similar to image alignment [1], we see that FC requires re-

computing
∂T (sj ;x⊕x̃)

∂x̃
at every iteration as it depends on x,

while IC’s
∂T (mi;x̃)

∂x̃
is constant at x̃ = 0. The IC frame-

work allows
∂T (mi;x̃)

∂x̃
to be computed only once, leading to

less computation than FC. In this work, we rely on an up-

date similar to IC, but instead of using the gradient of ψ in

∆x, we will learn the update from training data.
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3.3. Learning and performing update steps

In order to learn the update step under the IC update rule,

we follow the DO framework from [37], which is based on

mapping a feature vector to an update vector. First, we de-

scribe our update rule, followed by how to learn the maps

and apply them to solve PCReg.

Update rule: Given an initialization x0 = 0, the two

point clouds denoted as θ = (M,S), and a function h that

extracts features from the point clouds, ICDO updates the

estimated parameter at step τ using the IC operation

xτ = xτ−1 ⊕ (Dτh(xτ−1; θ))
−1, (12)

where Dτ , τ = 1, 2, . . . are matrices that map the feature

function h(xτ−1; θ) to an update vector ∆x. This update

rule differs from the additive update rule of DO. Another

major difference lies in the fact that the features and the

maps of DO are shape-specific, while here we will show

how to derive a shape-independent function h in Sec. 3.4.

Next, we describe how we learn the maps.
Learning update maps: Suppose we are given a train-

ing set {(xk
∗, θ

k)}Kk=1, where θk = (Mk,Sk) contains the

two point clouds of the kth training instance, and xk
∗ is the

ground truth registration parameter satisfying T (Sk;xk
∗) ∼

Mk. At step τ , we wish to learn a map Dτ such that the up-

dated xk
τ , k = 1, . . . ,K in (12) move towards xk

∗ . Similar
to [37], this is done using the following regularized linear
least-squares regression:

Dτ = argmin
D̃

1

K

K
∑

k=1

‖((xk
∗)

−1⊕x
k
τ−1)−D̃h(xk

τ−1; θ
k)‖22+λ‖D̃‖2F .

(13)

Here, ((xk
∗)

−1 ⊕ xk
τ−1) is the difference between xk

τ−1 and

xk
∗ under the IC operation. After a map is learned, we up-

date the training instances using the update rule (12). We re-

peat this process until a terminating criteria is reached, e.g.,

a maximum number of maps. Alg. 1 shows a pseudocode

for training ICDO.

Solving PCReg: The pseudocode for solving PCReg

with ICDO is summarized in Alg. 2. Suppose we trained

a total of T maps. We first perform the update using (12)

until step T , then we continue using DT to update until

a termination criteria is reached, e.g., the update is small.

However, we found that many times using DT to update

causes the parameter to bounce around the correct solution

without converging to it. This behavior resembles subgradi-

ent method with constant step size [4], which may not con-

verge to a minimum. To alleviate this issue, we attempted to

scale the update with 1/(τ − T ) and 1/
√
τ − T for τ > T

but we found that the updates diminished too fast, leading

to a premature termination. The strategy that we found ef-

fective is to use ∆x from the average of the updates from

the current and the previous iterations (line 6 in Alg. 2).

This strategy resembles the momentum approach [27] used

frequently in first-order optimization.

3.4. From gradient to features

In this section, we describe how to derive the feature

function h based on the gradient of (5). We parametrize

rotation with the axis-angle vector in R
3, but the derivation

can also be used with other parametrizations. The steps to

derive h is similar to those in [37]. First, we define a cost

function (without an explicit expression) that penalizes reg-

istration residuals. Then, we take the cost’s derivative and

represent it as an inner product between two functions. Fi-

nally, we discretize the functions into a feature vector h and

a matrix D, allowing us to learn D from training data. The

details are as follows.

Define g to be the following residual function

gij(x̃;x) = T (mi; x̃)− T (sj ;x), (14)

where x is the current parameter estimate. To update x un-

der IC, we consider the following optimization problem

minimize
x̃∈R6

J(x̃) =

NM∑

i=1

NS∑

j=1

ψ(‖gij(x̃;x)‖), (15)

for some 1D function ψ. Next, we compute ∆x = −∂J(x̃)
∂x̃

at x̃ = 06. For simplicity, we consider a single term (i, j):

∆xij , − ∂

∂x̃
ψ(‖gij(x̃;x)‖)

∣
∣
∣
∣
x̃=06

= −
[

−[mi]×
I3

]
gij(06;x)

‖gij(06;x)‖
︸ ︷︷ ︸

=wij

∂ψ(‖gij(x̃;x)‖)
∂‖gij(x̃;x)‖

∣
∣
∣
∣
x̃=06

(16)

We can see that only the rightmost term is dependent on ψ.

Since we assume we do not have access to ψ, we will learn

this term from training data using the algorithm in Sec. 3.3.

To do so, we need to express ∆x as Dh(x). This is done

by replacing the term with a function ϕ : R → R, then

factorizing it as a convolution with Dirac delta function δ:

∆xij = −wijϕ(‖gij(06;x)‖) (17)

= −wij

∫

V

ϕ(v)δ(v − ‖gij(06;x)‖)dv, (18)

where V = R. Consider only an element l of ∆xij , we see

[∆xij ]l = −
∫

V

[wij ]lϕ(v)δ(v − ‖gij(06;x)‖)dv. (19)

We can see that (19) is an inner product between −ϕ(v) and

[wij ]lδ(v − ‖gij(06;x)‖). This is similar to [Dh]l, which

can be considered as the inner product between h and row l
of D. Following this connection, we will express the prod-

uct between ϕ(v) and [wij ]lδ(v−‖gij(06;x)‖) as a matrix-

vector product [Dh]l. To do so, we discretize the space V
into q boxes, leading to (19)’s discretized counterpart:

[∆xij ]l ≈ −ϕ
⊤[wij ]leγ( q

r
‖gij(06;x)‖), (20)
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where γ : R → {0, 1, . . . , q} rounds up any number in

[0, q], or returns 0 otherwise; r ∈ R controls the discretiza-

tion range; δ is discretized into the standard basis vector

eβ ∈ {0, 1}q (We define e0 = 0q); and ϕ is discretized into

a vector ϕ ∈ R
q . With these discretizations, we can put

everything back to the full ∆x as

∆x =

NM∑

i=1

NS∑

j=1

∆xij ≈ Dh(x; θ), (21)

D = −I6 ⊗ϕ
⊤ (22)

hr,q(x; θ) =

NM∑

i=1

NS∑

j=1

6⊕

l=1

[wij ]leγ( q
r
‖gij(06;x)‖), (23)

where ⊗ is the Kronecker product, and
⊕

is vector con-

catenation. We can see that (21) factorizes ∆x in (16) into

a product of two terms: D ∈ R
6×6q which contains the un-

known ϕ, and hr,q : R6 × (RNM × R
NS ) → R

6q which

contains the known information about the two point clouds.

This factorization allows us to use h as the feature function

to learn the update maps with the algorithm in Sec. 3.3.

Our derivation of the feature function differs from that

in [37]. If we follow [37], we will consider ψ̂(gij(x̃;x))

with ψ̂ : R3 → R instead of ψ(‖gij(x̃;x)‖) with ψ : R →
R. Using ψ̂ would allow learning an anisotropic penalty

instead of an isotropic one in ψ, but the feature h of ψ̂ will

have the dimension of 6q3 for 3D cases. This is much larger

than 6q of (23), which is independent of the point cloud’s di-

mension. Moreover, the maps learned from ψ̂ would require

a much larger number of training data to prevent overfitting.

3.5. Intrepreting ICDO

We can see from Sec. 3.4 that h is derived such that

Dh approximates the negative gradient of an unknown ψ
from (15). Thus, we can interpret ICDO as imitating gra-

dient descent on (15). In addition, we can also make the

following more specific interpretations of ICDO. (i) Sam-

pling on a gradient field: Since h is a weighted sum of

the discretized Dirac delta (23) and D contains the gradi-

ent field ϕ of ψ (22), we can interpret Dh as performing a

weighted sampling from the gradient field. (ii) Annealing:

In practice, different Dτ are used in each step τ . This al-

lows ICDO to learn how such gradient field changes with

τ , similar to an annealing schedule (empirical analysis pro-

vided in Sec. 4.1). (iii) Predetermined step sizes: While

many gradient-based algorithms use line search to estimate

step sizes, ICDO directly incorporates them into Dτ . Thus,

we can interpret ICDO as using predetermined (by training)

step sizes, similar to the subgradient method where the step

sizes are set in advance (e.g., to decay in each step [33, 4]).

Algorithm 1 Training ICDO

Input: {(xk
∗, θ

k)}Kk=1, T , λ, r0, q, α
Output: {Dτ}Tτ=1

1: Initialize xk
0 := 0, ∀k; and r := r0

2: for τ = 1 to T do

3: Compute h̃k := hr,q(x
k
τ−1; θ

k), ∀k from (23)

4: Compute Dτ with (13)

5: Compute xk
τ := xk

τ−1 ⊕ (Dτ h̃
k)−1, ∀k

6: Compute r := r0/α
τ

7: end for

Algorithm 2 Solving PCReg with ICDO

Input: θ, {Dτ}Tτ=1, r0, q, α
Output: x

1: Initialize x := 0; τ := 1; and r := r0
2: while not converge do

3: Compute h̃ := hr,q(x; θ) with (23)

4: Compute ∆x := Dmin(τ,T )h̃

5: if τ > T then

6: Compute ∆x := (∆x+∆x−)/2
7: end if

8: Compute x := x⊕ (∆x)−1

9: Compute ∆x− := ∆x

10: Compute r := r0/α
τ

11: Compute τ := τ + 1
12: end while

3.6. Computational complexity

We can see that the most demanding step of ICDO is the

computation of the feature h, which is O(NMNS) due to

the pairwise residual gij . This is equivalent to straightfor-

ward implementations of other PCReg algorithms, as they

all require computing the pairwise distances. However, ICP

can use kd-tree to find the nearest neighbors, which reduce

the complexity to O(NM logNS). Similarly, Gaussian-

based approaches, such as CPD, KC, and GMR, can use fast

Gauss transform (FGT) [19] to compute their correlation,

which reduces the complexity to O(NM + NS). Unfortu-

nately, the function learned by ICDO can be more general

and we do not know of a way to improve its complexity.

3.7. Implementation details

Normalization: PCReg algorithms are generally sen-

sitive to variations in the point clouds, e.g., density and

scale. These issues are further complicated by the fact that

ICDO is learning-based, thus normalization is very impor-

tant. First, we remove the mean of M from both M and

S to maintain their relative configuration. Next, we per-

form two normalizations for scale and density. (i) Scale:

Suppose that we have the registration RS + t ∼ M. If

the shapes are scaled by ρ, e.g., M̂ = ρM, we will have
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RŜ + ρt ∼ M̂: only the translation vector is scaled but

not rotation, making it harder to learn effectively. To pre-

vent this effect, we scale both M and S by
√
NM/η, where

η is the mean of M’s singular values. (ii) Density: Con-

sider θ(1) = (M,S) and θ(2) = ([M,M],S), i.e., the θ(2)’s
model density is doubled. This causes an undesirable ef-

fect that h(x, θ(2)) = 2h(x, θ(1)), meaning the update step

of θ(2) will be double that of θ(1), while the shapes are the

same. To handle this issue, we divide h in (23) by NMNS .

Speeding up computation: We found that the most time-

consuming step is the aggregation of [wij ]l into h in (23).

To reduce computation, we reduce the number of terms

in (23) by reducing the value of r in each iteration (recall

that r controls the range of discretization, see (20)). Since

we keep q constant, an additional advantage of this reduc-

tion is that the discretized boxes become finer as iteration

increases, allowing more details to be captured. Note that

we do not reduce r beyond iteration T in test, and this re-

duction does not affect the fact the ICDO learns an anneal-

ing schedule (see Fig. 2). Also, while this reduction speeds

up computation, it does not change ICDO’s complexity.

Training: We found that the training error in Alg. 1 re-

duces too fast, which causes the latter maps to have small

updates. To handle this issue, we add random rotation in

N (0, 10) degrees and translation vector with the norm in

N (0, 0.1) to the data in each training iteration, and adjust

the ground truth xk
∗ accordingly. In addition, notice that

D in (22) is block-diagonal with nonzero values only in the

elements of ϕ. In practice, we also found that the off-block-

diagonal elements have very small values. With these ob-

servations, we constrain all elements outside the diagonal

blocks to be zero when we learn the maps in (13).

Termination criteria: We terminate the algorithm when

the rotation and the total displacement in the past 5 itera-

tions amount to less than 0.5 degrees and 3 × 10−3, resp.

We also terminate if the number of iterations reaches 200.

4. Experiments

In this section, we evaluate ICDO with both synthetic

and real experiments. We begin this section by describ-

ing baseline algorithms and performance measure. Then,

we describe how we train the maps, analyze the maps, and

show that the annealing effect is inherently learned by our

algorithm. Finally, we present the comparison against other

PCReg algorithms with synthetic and real data. All experi-

ments were performed in MATLAB on a single thread of a

machine with Intel i7-4770K 3.50GHz 16GB RAM.

Baselines: We use 4 baselines.3 (i) ICP [3]. (ii)

IRLS [2], which is similar to ICP but uses the Huber func-

tion as penalty. (iii) CPD [26], which maximizes the like-

lihood that one point cloud is generated by the Gaussian

3We do not compare with DO [38] as it is shape-specific and requires 3-

4 minutes to train each shape, thus DO is impractical for our experiments.

mixture of the other. (iv) GMR [20], which minimizes L2

distance between the two Gaussian mixtures. Recall from

Sec. 2 that GMR is gradient-based and uses deterministic

annealing. This makes GMR most similar to ICDO. We ob-

tained the MATLAB codes from the authors’ websites, ex-

cept ICP which we used MATLAB’s implementation. Note

that CPD and GMR’s fast Gauss transform (FGT) is in C.

Performance measure: We use the registration error,

defined as the pointwise RMSE of the model in the ground

truth pose and the model in the estimated pose:

(1/
√

NM )‖T (M;x)− T (M;xgt)‖F , (24)

where ‖ · ‖F is the Frobenius norm, and x and xgt are the

estimated and the ground truth poses, resp.

4.1. Training and analyzing the maps Dτ

Training the maps: We generated synthetic data to train

the maps from seven 3D shapes: Bunny and armadillo from

Stanford’s 3D scan repository [11] and all 5 shapes from

the UWA dataset [25]. Each training model Mk was gen-

erated by randomly picking a shape; scaling it so that all

points are in [−1, 1]3; and randomly rotating in [0, 180] de-

grees. Next, we copied the model as the scene shape Sk,

then added a random rotation in [0, 85] degrees and transla-

tion in [−0.2, 0.2]3 to only Sk. Then, we applied the follow-

ing modifications to Mk and Sk independently: Randomly

sampling 200− 400 points; adding Gaussian noise with SD

in [0, 0.03]; and mimicking incomplete shape by randomly

sampling a 3D vector u, then removing the points where

their dot product with u are in the top 0− 30% (this is done

only either M or S but not both). No outliers were added

for the training data as we found this degraded the results.

We found λ = 10−8, r = 3, q = 100, α = 1.15, and

T = 20 work well across all experiments. We used a total

of 105 training samples, and ICDO took 96 minutes to train.

Analyzing the maps: Fig. 2a shows D5 as an example

of the learned maps. Here, ϕb
τ denotes the vector in the di-

agonal block b of map Dτ . We observe that ϕ1
τ , ϕ2

τ , and ϕ
3
τ

which map to the update in rotation r are similar, while ϕ4
τ ,

ϕ
5
τ , and ϕ

6
τ for translation t are also similar. This is because

the distribution of the data is isotropic. Since the maps of

the same type are similar, we visualize ϕ
1
τ and ϕ

4
τ of dif-

ferent τ in Fig. 2b. We can see that the peaks of the curves

move toward 0 as τ increases. Since we can interpret the

maps as imitating a gradient field (Sec. 3.4), we also show

the numerical integration of ϕ1
τ and ϕ

4
τ in Fig. 2c, where we

can see the functions squeeze closer to 0. These visualiza-

tions indicate that ICDO is learning an annealing schedule

for PCReg from training data, unlike previous works which

need to set one manually. Note that since the maps of ro-

tation and translation are different, the vector fields of the

updates cannot be integrated into a single cost function4.

4We tried to learn a shared ϕ for all rotation and translation that allows
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Figure 2. A visualization of the maps Dτ . (a) The learned matrix D5 (blue - low value, yellow - high value). (b) Plots of the diagonal

blocks ϕ1
τ and ϕ

4
τ of Dτ for different τ , where we align each element in the vectors to the residual range [0, r] they represent. Note that

the length in x-axis of each vector differs since r decreases as τ increases. (c) Numerical integration of ϕ1
τ and ϕ

4
τ from (b).

4.2. Synthetic data

We use 7 shapes (cat, centaur, dog, gorilla, gun, horse,

and wolf) from TUM 3D object in clutter dataset [31] for

testing. These shapes were selected so that they did not

overlap with those in training. The initial shapes were nor-

malized to lie in [−1, 1]3. Following [38], we tested 5 mod-

ifications: (i) Number of points from 100 to 2000 [default =

200 to 400]; (ii) Initial angle from 0◦ to 180◦ [default = 0◦

to 60◦]; (iii) Noise SD from 0 to 0.1 [default = 0 to 0.03];

(iv) Outlier ratio against the number of inliers from 0 to 2

[default = 0]; (v) Incomplete shape from 0 to 0.9 [default

= 0] (generated the same way as in training). All tests in-

cluded random translation in [0, 0.3]3. Outlier points were

randomly generated in [−1.25, 1.25]3. While one parameter

was varied, other parameters were set to the default values.

For each setting, we tested 500 pairs of point clouds sam-

pled from the 7 shapes. Unlike in training, the model and

scene points were independently sampled. Here, we con-

sider a registration successful if the registration error is less

than 0.15. We also report the computation time.

Fig. 3 shows the results of the synthetic experiment. We

can see that ICDO is comparable to the state-of-the-art al-

gorithms: It performed almost perfectly under varying num-

ber of points, noisy data, and outlier ratios. ICDO has less

success than CPD and GMR for large initial angles, while

being more successful than ICP and IRLS. GMR even has

some success with 180◦ initial angle because its scheduled

annealing can smooth the shapes enough to avoid bad op-

tima. However, a downside is GMR can also oversmooth,

leading to some failure even with 0◦ initial angle. In con-

trast, ICDO with learned annealing has more success with

lower angles and less success with high angles. Interest-

ingly, ICDO works well with outliers even it was not trained

with them. This is because ICDO (and also GMR) use a pre-

determined annealing schedule, so outliers have little effect

on its performance. In contrast, outliers can thwart CPD’s

Gaussian width estimation and create more local minima

for ICP and IRLS which use closest matches, leading to

bad registration. Under similar reasons, ICDO and GMR

are the most robust to incomplete shapes. In terms of com-

numerical integration to a cost function, but its result was not good.

(a) (b)

Figure 4. Real data examples (modified for visualization). (a)

Stanford’s dragon. (b) ETH laser registration dataset (Apartment

and Gazebo Summer).

putation time, ICDO is generally slightly slower than IRLS

and CPD while being much faster then GMR (Recall that

CPD and GMR use C code for FGT while ICDO is com-

pletely written in MATLAB, so their times are not directly

comparable). This experiment demonstrates that ICDO can

be trained and tested on different sets of shapes, while being

able to obtain competitive success and time as state-of-the-

art algorithms.

4.3. Real data

We perform experiments on two real datasets to eval-

uate ICDO. (i) Stanford’s dragon [11] and (ii) ETH laser

registration dataset [30]. Fig. 4 shows examples from the

datasets. We provide the details and results below.

Stanford’s dragon [11]: This dataset comprises 15

scans at every 24◦ of a dragon statue. Following [20, 7], we

attempted to merge scans at ±24◦,±48◦,±72◦,±96◦, with

a total of 30 pairs for each angle. A registration is success-

ful if q⊤qgt > 0.99 where q and qgt are the estimated and

the ground truth unit quaternions, resp. Each point cloud

was downsampled to 2000 points. The result is presented in

Table 1. The results of the baselines were taken from SVR

paper [7], which improves GMR by learning the weight of

each Gaussian. We can see that ICDO is second to SVR

while outperforming ICP, CPD, and GMR, illustrating the

robustness of our approach against methods which consider

all point as having equal weights. Our implementation took

7.7 seconds to register each pair on average.

ETH laser registration dataset [30]: This dataset con-

sists of 3D laser scans from 8 outdoor and indoor environ-

ments. Each environment has 31 to 45 scans (total 275), and

contains dynamic objects such as people and furniture dis-

placement, which can be considered as outliers. The scans

were recorded sequentially as the scanner traversed the en-
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Figure 3. Results for synthetic data experiment over different modifications. (Top) Success rate. (Bottom) Computation time.

Table 1. Successful registration on Stanford’s dragon.

Pose ICP CPD GMR SVR ICDO

±24◦ 28 26 29 30 30

±48◦ 19 18 20 29 26

±72◦ 13 14 13 16 15

±96◦ 1 3 2 4 0

vironments. In this experiment, we merge consecutive scans

in both forward and backward directions (total 534 pairs).

We preprocessed each point cloud by using a box grid filter

(MATLAB’s pcdownsample) at 10cm interval to make

the density more uniform, then subsampled to 1000 points.

Fig. 5 shows the cumulative error plots in terms of the

absolute registration error (in meters) and the relative reg-

istration error. The latter is defined as the registration er-

ror divided by the largest distance between any two model

points. We can see that ICDO achieved the best result in

both measures. Recall that ICDO was trained with synthetic

data synthesized from 7 shapes, which have no similarity to

the data in this section. This demonstrates the potential of

ICDO as a robust learning-based PCReg algorithm which

can generalize to different classes of objects. In terms of

the average computation time, we have ICP at 0.06s, IRLS

at 0.35s, CPD at 1.62s, GMR at 18.66s, and ICDO at 2.14s.

5. Conclusion

We proposed Inverse Composition Discriminative Op-

timization (ICDO) for Point Cloud Registration (PCReg).

ICDO learns a set of maps from a feature vector to an update

vector, which is inversely composed with the previous esti-

mates. We also derived a feature function where its dimen-

sion is independent of the dimension of the point cloud, and
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Figure 5. Results of ETH laser registration dataset in cumulative

plots. (Left) Absolute registration error. (Right) Relative error.

show that it can learn to register arbitrary shapes even when

learned with different ones. We also show that ICDO is es-

sentially learning annealing schedule, avoiding the need to

set it manually. Our experiments show that ICDO can match

or outperform state-of-the-art algorithms in both synthetic

and real data.

A downside of ICDO is that its complexity is quadratic

in the number of points, making it unsuitable for large point

clouds. This issue may be resolved by subsampling, or

learning the weights to reduce the number of relevant points

like in [7]. In addition, since ICDO is similar to subgradient

method (Sec. 3.5), its convergence can be slow [4]. Finding

a way to estimate step sizes, similar to line search, could

lead to a fewer number of iterations required to converge.
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