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Abstract

We present a simple and effective method for 3D hand

pose estimation from a single depth frame. As opposed to

previous state-of-the-art methods based on holistic 3D re-

gression, our method works on dense pixel-wise estimation.

This is achieved by careful design choices in pose param-

eterization, which leverages both 2D and 3D properties of

depth map. Specifically, we decompose the pose parameters

into a set of per-pixel estimations, i.e., 2D heat maps, 3D

heat maps and unit 3D directional vector fields. The 2D/3D

joint heat maps and 3D joint offsets are estimated via multi-

task network cascades, which is trained end-to-end. The

pixel-wise estimations can be directly translated into a vote

casting scheme. A variant of mean shift is then used to ag-

gregate local votes while enforcing consensus between the

the estimated 3D pose and the pixel-wise 2D and 3D estima-

tions by design. Our method is efficient and highly accurate.

On MSRA and NYU hand dataset, our method outperforms

all previous state-of-the-art approaches by a large margin.

On the ICVL hand dataset, our method achieves similar ac-

curacy compared to the nearly saturated result obtained

by [5] and outperforms various other proposed methods.

Code is available online1.

1. Introduction

Vision-based hand pose estimation has made signifi-

cant progress in recent years. The increased performance

can be attributed to two dominating trends: depth imag-

ing and deep learning. First of all, hand pose estimation

techniques have shifted almost entirely to using only depth

inputs[34, 32, 28, 53] since commodity depth sensors such

as the MS Kinect and Intel Realsense have become widely

available. As a 2.5D source of information, depth signifi-

cantly resolves much of the ambiguities present in monocu-

lar RGB input. Secondly, deep learning has fundamentally

transformed the way that vision problems are being solved.

1https://github.com/melonwan/denseReg

The use of deep neural networks has become the norm for

hand pose estimation[44, 26, 52, 11].

In standard hand pose estimation pipelines, depth maps

are almost always treated as images. This is especially

true for deep learning-based approaches, which heavily rely

on the machinery of (2D) convolutional neural networks

(CNNs). One line of work for 3D hand poses estimation is

holistic regression, that is aiming to directly map the depth

images to 3D pose parameters such as joint angles or 3D co-

ordinates. It bypasses having to solve for intermediate rep-

resentations such as 2D coordinates and is able to capture

global constraints and correlations among different joints.

However, regressing from highly disparate domains such as

image and pose is a very challenging learning task. Fur-

thermore, holistic regression cannot generalize to combina-

tions of local evidence such as different individual finger

poses and suffers from translational variance and sensitivity

to hand bounding box locations.

CNNs have been successfully applied to 2D body pose

estimation[24, 45, 48]; in particular, fully convolutional net-

works (FCNs) can perform pixel-wise joint detection very

accurately [24, 48]. This is formulated as a pixel-wise clas-

sification of each pixel being the location of a joint. As

such, a second line of work in pose estimation tries to cre-

ate analogous networks for detecting joints in 2D. Through

pixel-wise classification, joint detection can exploit local

patterns more explicitly than holistic regression, helping the

network to learn better feature maps. The 2D detections

and 3D regression can then be combined with a multi-task

setup [33, 31, 18, 43], either by feeding the 2D detection

heat map as an input to a 3D regression network, or by shar-

ing the feature maps between detection and holistic regres-

sion. However, there is no guarantee that the regressed 3D

joints, if they were to be projected back to 2D, will be in

consensus with the original 2D detection heat-map. More-

over, by design, the aforementioned drawbacks of holistic

regression are still not eliminated with this line of work.

Other works in 2D detection apply inverse kinematics and

use a model-based optimization; however, the severe self-

occlusion of the hand creates ambiguities which are diffi-
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cult to resolve and as such, suffers from accuracy problems

which are otherwise not present in body pose estimation.

Despite all the drawbacks of working in 2D, we do not

want to directly solve a discrete volumetric detection prob-

lem with a 3D CNN. This becomes very parameter-heavy

and as a result, severely limits the working resolution[12,

30, 22]. Moreover, as input depth maps are only 2.5D, 3D

CNNs struggle to resolve the ambiguities caused by the self-

occlusion common in hand poses.

At the core of the problem is the mismatch between 2.5D

depth data and traditional CNNs, be it in 2D or 3D. By

treating depth maps as a 2D image, we can leverage the

advances of CNNs, but we still under-utilize the informa-

tion present. Yet we also want to avoid converting depth

information to a volumetric representation due to the com-

putational overhead and the associated ambiguities. To that

end, we propose a combined pixel-wise detection and dense

regression method for hand pose estimation. Our proposed

method enjoys the benefits of 2D FCN-based detection such

as translational-invariance and generalization to different

finger gesture combinations. At the same time, dense re-

gression allows us to make 3D estimates and benefit from

the merits of holistic 3D regression, such as accounting

for correlations and skeleton constraints, without having to

work in the discrete volumetric domain.

We make two careful design choices in parameteriza-

tion to stabilize our training and improve regression ro-

bustness. First, we work with offsets instead of absolute

joint positions, i.e. we regress each pixel to a 3D offset

of each joint. Joint offsets have been used in previous

works[34, 38, 41, 47] and offer invariance towards transla-

tion. It also allows us to keep the original spatial resolution

in spite of pooling operations in the CNN. Secondly, we re-

parameterize the 3D offsets as a heat map and directional

unit vector, leading naturally to a joint detection and regres-

sion problem to solve for the two respectively. This form of

parameterization leverages both the 2D and the 3D geomet-

ric properties of a 2.5D depth map. For a given depth map,

we use a 2D CNN to capture local surface patterns but also

treat the depth map as a set of 3D points to arrive at a final

pose estimate in 3D.

To do so, we first extend the 2D detection heat map into

3D, i.e., value of the heat map is inversely proportional to

the 3D distance of corresponding point on the depth map to

a specific joint. In addition, we predict unit vector fields,

where each vector field corresponds to the direction from

the point on the depth map to a certain finger joint. Finally,

we also detect the joints in 2D, in the form of a projected

heat map. We aggregate all of the estimates together with

the mean shift algorithm into a global estimate with consen-

sus between the 2D and 3D estimates.

The proposed method is highly accurate and out per-

forms all previous state-of-arts on three publicly available

datasets, i.e., NYU[44], ICVL[40] and MSRA[38]. We also

compare our method against several baselines that combine

holistic regression with 2D joint detection. In these experi-

ments we observe that, unlike in the case of full body pose

estimation, those combination strategies can hardly improve

holistic regression and are less accurate than our proposed

method by a large margin. We attribute this to the depth

ambiguity caused by self occlusion, towards which our pro-

posed method is much more robust.

Our contribution can be summarized as follows:

• we formulate 3D hand pose estimation as a dense re-

gression through a pose re-parameterization that can

leverage both 2D surface geometric and 3D coordinate

properties;

• we provide a non-parametric post-processing method

aggregating pixel-wise estimates to 3D joint coordi-

nates; this post-processing explicitly handles the holis-

tic estimation and ensures consensus between the 2D

and 3D estimates;

• we implement several baselines to investigate fusion

strategies for holistic regression and 2D joint detection

in a multi-task setup; such an analysis has never car-

ried out before for hand pose estimation and provides

valuable insights to the field.

2. Related Works

Coupling 2D joint detection with 3D estimation 3D

pose estimation based on 2D observations has a long history

in computer vision. Early works [36, 51, 35] are mainly

based on low level visual cues, e.g., silhouette or optical

flow, and use generative models to resolve the depth am-

biguity. More recent works have shifted towoards mid- and

high-level features, e.g. 2D joint detection heat maps or rep-

resentations from CNNs, due to the availability of highly

accurate 2D joint detectors [24, 48]. One line of work [33,

31, 18, 43] formulates 3D pose estimation as a regression

problem and couples 2D joint detection and 3D regression

in a multi-task setup. Others [2, 23, 4, 20, 54, 44, 52, 11]

treat 3D estimation as an model-based optimization on top

of the 2D joint detections.

Our approach is similar to [33, 31, 18, 43] in that both

2D and 3D estimations are performed in a multi-task setup.

However, rather than using a holistic 3D regression, we per-

form pixel-wise 3D estimation. This type of fusion scheme

is translation invariant and can better generalize to differ-

ent combinations of finger gestures. Like many others, we

also use a post-processing, but ours is much simpler with

negligible effort when compared to the computationally ex-

pensive energy minimization of [2, 23, 20, 44, 52, 11], near-

est neighbour search [4], to employing an additional neural

network [20, 54].
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Pose Parameterization Skeleton models don’t necessar-

ily need to be parameterized with 3D joint coordinates.

Many works have modelled pose parameters in other spaces

to better exploit the skeleton structure. For example, [26,

46] learn a latent space to model the correlation among

different joints, while [50, 55, 37] parameterize pose hier-

archically, i.e., location of child joint is dependent on its

parent joint along the skeleton tree, to leverage dependen-

cies in the skeleton. [23] models skeleton as distance matrix

among different joints and [29, 3] formulate pose parame-

ters as heat maps together with offset vector fields to handle

multiple instances 2D detection. Ours is inspired by [29, 3]

whereas we work on 3D estimation.

Hand Pose Estimation We limit our discussion to deep

learning-based methods and refer the reader to [39] for a de-

tailed review of other model-based and random forest-based

methods. Deep learning-based methods fall into two camps:

two-stage approaches[44, 11, 52] with 2D joint detection

followed model-based optimization versus single-stage ap-

proaches [26, 27, 12, 46, 25, 13, 5, 6, 9] of holistic pose re-

gression. The current best-performing methods [5, 13, 25]

are all single stage, most likely due to the effective exploita-

tion of joint correlations. Our method takes the advantages

from both camps and well exploits the 2D and 3D properties

of depth maps.

Offset Regression and Hough Voting Several previous

works have successfully employed offset regression for lo-

calization and pose estimation tasks [34, 10, 38, 41, 47, 17].

Due to their local nature, they offer invariance to translation

and their compatibility for bottom-up estimation. However,

these methods typically rely on hand-crafted features, with

the exception of works on 2D localization [21, 49]. In this

work, we extend this idea by learning dense 3D offset re-

gression end-to-end.

3. Method

We leverage both the 2D and 3D properties of a depth

map to formulate hand pose estimation as a pixel-wise re-

gression problem. From a 2D perspective, we treat the

depth map as a 2D surface embedded in 3D and use a con-

volutional neural network(CNN) composed of 2D convo-

lutional layers to capture surface local geometric patterns.

From a 3D perspective, the depth map can also be regarded

as a set of 3D points. It is for this set of points that we want

to estimate offsets to the hand joints. More specifically, we

use a CNN to estimate a dense vector field of offsets for

each joint of hand. We re-parameterize the joint offset as

a 3D heat map and a directional unit vector and solve for

the two via detection and regression respectively (Sec 3.1).

The resulting network is fully convolutional and compatible

with current joint detection network architectures (Sec 3.2).

Several networks can be stacked together as intermediate

forms of supervision, with all the estimated results being

fed into the next stage to boost pose accuracy. We adopt

mean shift (Sec 3.3) to aggregate the pixel-wise regression

estimates, while enforcing the 2D projections of the final

estimated 3D joints to be in consensus with the pixel-wise

2D joint detections.

3.1. Pose Parameterization

Instead of directly regressing 3D joint coordinates from

the depth map, like most other regression-based meth-

ods [26, 27, 12, 46, 25, 13, 5, 6], we want to estimate an off-

set vector between depth points and hand joints. This makes

the estimate translation-invariant and also generalizes better

to different combinations of finger poses. However, directly

regressing the 3D offset vector field is non-ideal. First of

all, the regression for points that are far from a given hand

joint will result in offset vectors with large norms that domi-

nate the training loss. Furthermore, far away hand joints are

beyond the scope of the receptive field of the convolutional

filters anyway. As such, we decompose the 3D offset vector

into two components – a 3D heat map S, estimated via de-

tection, and a directional unit vector, V , via regression, as

follows:

Sj(p) =

{

θ − ‖p− pj‖2 ‖p− pj‖2 ≤ θ,

0 otherwise;
(1)

Vj(p) =

{

p−pj

‖p−pj‖2
‖p− pj‖2 ≤ θ,

0 otherwise.
(2)

where p ∈ R3 and pj ∈ R3 are the 3D coordinates of

a point from the depth map and of joint j respectively. θ

defines the radius of a 3D ball centered at the joint position

that establishes a candidate region(see Fig. 1) from which

we consider support. To obtain p, all pixels on the input

depth map are back projected to 3D space. For background

pixels, we set their depth to an arbitrary value. The 3D heat

map Sj(p) can be regarded a direct extension of the 2D heat

map.

In addition, we estimate the joint’s 2D projection as a

heatmap R,

Rj(p) =

{

τ − ‖Π(p)−Π(pj)‖2 ‖Π(p)−Π(pj)‖2 ≤ τ

0 otherwise
,

(3)

where Π(·) denotes the 2D perspective projection function

and τ is the radius of the candidate disk. Even though Eq. 1

and 2 are sufficient to recover the 3D joint location, the

over-complete estimation with the 2D projection adds ro-

bustness to the local estimate. The 2D projection can be

combined with the 3D joint estimate with non-parametric

methods, which we elaborate in Section 3.3.
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3.2. Network architecture

The architecture of the detection and regression network

is shown in Fig 1. We use the hourglass network[24] as the

backbone because it is highly efficient, though any other

joint detection network architecture, e.g. [48, 29] could po-

tentially be used. The 2D and 3D joint heat maps and the

unit vector fields are estimated by network cascades in a

learning multi-task manner. Specifically, for J joints, the

network first outputs 2D and 3D joint heat maps with two

separate sliding pixel-wise fully-connected layers on top of

the output feature map of the hourglass module. Since the

unit vector field Vj is correlated with the heat map esti-

mates, we concatenate the heat maps together with the hour-

glass output feature map to determine the unit vector field.

To handle the discontinuity of 3D heat map and unit vector

field regressions at surface edges, the initial depth map is

also provided via concatenation to the input of the 3D heat

map network. Similar to [8, 14], we multiply the binarized

depth map as a mask with feature map and concatenate it

with the initial feature map. This serves as the input for our

unit vector field regression component.

Following the paradigm of [24], we stack together sev-

eral modules with identical architectures to increase the

learning power. Estimates from previous modules are used

as inputs to the subsequent ones, while intermediate super-

vision is applied at the end of each module. Specifically, we

define a L2 loss over the J joints from T stacks as follows:

L =

T
∑

t=1

L
(t)
R + L

(t)
S + L

(t)
V (4)

=

T
∑

t=1

J
∑

j=1

‖R
(t)
j −R∗

j‖
2 + ‖S

(t)
j − S∗

j ‖
2 + ‖V

(t)
j − V ∗

j ‖
2,

where R∗
j , S

∗
j , V

∗
j represent the respective ground-truth 2D

heat maps, 3D heat maps and vector offsets of joint j and

Rt
j , S

t
j , V

t
j are corresponding estimates from tth stack.

3.3. Inference

During inference, we aggregate all of the pixel-wise esti-

mated evidences into holistic 3D joint coordinates with the

mean shift algorithm. By design, this process explicitly en-

sures consensus between the joint detections in 2D and 3D.

Since each joint is estimated with the same mean shift pro-

cess, we omit the joint index j in this section for simplicity.

As shown in Alg. 1, the N nearest points to the joint are se-

lected based on the estimated 3D distance. We only select

K because points with larger estimated 3D distances tend

to amplify the estimation error of offset direction and thus

degrade the recovered 3D joint position estimation.

In addition, we provide a more efficient “unweighted”

approximation to Algorithm 1 without the 2D projection

Algorithm 1 Mean-shift estimation of one joint

predefined constants:

θ ⊲ 3D distance threshold between point from D to joint

K ⊲ number of points selected as input to mean shift

σ ⊲ kernel width of mean shift kernel function

N ⊲ number of mean shift iterations

Input:

D : Rh×w → R3 ⊲ coordinates of points on input depth map

outputs from neural network:

R : Rh×w → R ⊲ 2D heat map, see Eq. 3

S : Rh×w → R ⊲ 3D heat map, see Eq. 1

V : Rh×w → R3 ⊲ 3D offset unit vector field, see Eq. 2

1: P = D + θ(1− S)⊙ V ⊲ recover the joint coordinate

2: I = topK(S) ∈ NK×2 ⊲ select top K values’ indices

3: P = P (I) ⊂ R3 ⊲ fetch estimated 3D joint coordinates

4: P2d = {Π(p)|∀p ∈ P} ⊂ R2 ⊲ 2D projection

5: W = R(P2d) ⊂ R ⊲ fetch corresponding 2D heat map

values as weights

6: p = init(W,P) ∈ R3 ⊲ Initialization

7: for n in N do

8: p←
∑

pi,wi∈(P,W ) Φ(pi−p)wipi
∑

pi,wi∈{P,W} Φ(pi−p)wi
⊲ Φ(x) = e

−
‖x‖2

2σ2

9: end for

10: Output: p

(step 4) and replace the weights with (1 + R) ⊙ S2. Table

1 shows that both strategies have nearly identical results. In

practice, we choose 5 nearest points as input to mean shift,

i.e. K=5 and the kernel width σ as 40mm based on ablative

analysis.

3.4. Implementation Details

The network is implemented with Tensorflow[1] and op-

timized using the Adam [16] with the initial learning rate

set to 0.001 and the exponential decay rate of the momen-

tum β1 = 0.5. Following [12, 25], we randomly rotate the

input depth map and change the aspect ratio for data aug-

mentation. The batch size is set as 40 and we use batch

re-normalization to accelerate training, which works better

on small training mini-batches compared to batch normal-

ization [15]. During testing, we use two network stacks and

have an average run time of 36ṁs per image (27.8ḞPS) on

a single NVIDIA Titan X GPU card.

4. Experiments

We conduct experiments on 3 publicly available datasets,

i.e. NYU[44], MSRA[38] and ICVL[40]. We choose the

NYU dataset to conduct ablation experiments and compare

against the baseline methods since it has a wider coverage

of hand poses as opposed to the other two.

2⊙ denotes element-wise multiplication
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Figure 1. Network architecture. The abbreviations C, P, R stands for convolution layer, pooling and residual module respectively. We

choose 128*128 as size of input depth map and 32*32 as the input and output resolution of hourglass module[24] with 128 feature channels

in each layer. In this paper, we use 2 stacks due to real-time performance constraint. The network estimate 2D,3D heat maps and unit

vector field for each joint, we only show the pinky tip point here. Figure is best viewed in colour.

We quantitatively evaluate our method with two metrics:

mean joint error (in mm) averaged over all joints and all

frames, and percentage of frames in which all joints are be-

low a certain threshold [42]. Qualitative results of the esti-

mated hand poses are shown in Fig. 5 and Fig. 8.

4.1. Baseline methods

In this section we analyze whether regression of 2D joint

detections helps 3D regression and how different strategies

to fuse 2D joint detections and 3D regressions impact the

final pose accuracy. In addition, we also show the influence

of choosing different 3D offset parameterizations.

Does 2D joint detection help with 3D regression? First,

we would like to find out if 2D joint detection actually is

helpful 3D holistic regression. To that end, we design two

baseline methods: directly regressing 3D joint coordinates

versus coupling 2D joint detection and 3D regression in a

multi-task setup. Specifically, for baseline 1 (coordinate

regression), the regression network follows the architecture

from Fig. 2(a) which takes a depth map as input and di-

rectly outputs 3D joint coordinates. For baseline 2 (detec-

tion+coordinate regression), we adopt a similar regression

network architecture (see Fig. 2(b)) but add an hourglass

module[24]. We feed the depth map, the feature map from

the hourglass module, and the 2D joint detection heat map

all concatenated together as input into the brown module in

Fig. 2,and train for regression. Furthermore, to ensure a fair

comparison to our proposed method, we also stack two of

such networks together for baseline 2.

As is shown in Fig. 3, there is only a minor improvement

of 0.16mm in terms of the average joint error from direct

coordinate regression to detection+coordinate regression.

Furthermore, both methods perform similarly when the er-

ror threshold is larger than 25mm. We conclude that while

2D detection may help in learning a better feature map, cou-

pling 2D detection together with 3D regression does not

solve the inherent problems of 3D regression, e.g., transla-

tion variance and inability to generalize through combining

local evidence.

Impact of fusion strategies To further explore better

strategies for fusion of 2D detection and 3D regression,

we design an alternative method using the identical net-

work architecture as detection+coordinate regression(see

Fig. 2 (b)) except for the output layer. Instead of regress-

ing (x, y, z) as per baseline 2, we regress only the z co-

ordinate, and refer to this as baseline 3 (detection+depth

regression). This output in the z axis is then combined with

the 2D detection results which are used directly as the coor-

dinates for x, y plane.

Surprisingly, detection+depth regression outperforms

detection+coordinate regression both in terms of the aver-

age joint error and the percentage of frames below the error

threshold from 20 to 50 mm (see Fig. 3). This suggests that

2D detection provides a more accurate estimate than coor-

dinate regression. We conclude that it should be beneficial

to explicitly enforce some form of consensus between the

3D estimates and the 2D detections. While the accuracy of

this baseline is still lower than our proposed approach by a

large margin (see Fig. 3), it shows that treating depth maps

as 2D images and using CNNs for holistic depth regression

is not enough to resolve the depth ambiguity in 3D hand

pose estimation.

Besides fusing the 2D detection heat maps as input for

coordinate regression, a second line of work [44, 11, 52]

conducts model-based tracking based on inverse kinematics

to recover the 3D pose. We compare against previous state-

of-the-art methods [44, 11, 52] based on such a strategy and

out-perform all of them (see Section 4.3). This validates

the effectiveness of our proposed method in handling depth

ambiguities arising from the severe self occlusions in the

hand.
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Figure 2. Baseline network architectures. (a) Direct 3D coor-

dinate regression from depth map (baseline 1); (b) Network re-

gresses 3D joint coordinates (baseline 2) or z-axis coupled 2D

joint detection (baseline 3) together with the 2D joint detection

heatmaps; (c) Regressing 3D offset vector field by masking the

loss with the 3D distance to joint (baseline 4); (d) Detailed archi-

tecture configurations. The abbreviations C, P, R, FC stands for

convolutional layer, pooling, residual module, and fully connected

layer respectively. For (b) and (c), we experiment with a stack of

2 in the same way as the proposed method for fair comparison.
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Figure 3. Comparison with baselines. We compare our approach

to four baseline methods (Sec. 4.1) on the NYU dataset[44]. Num-

ber in the parenthesis of the legend indicates the average 3D error

of the corresponding method.

Impact of offset re-parameterization We implement a

network which directly regresses the 3D offset without re-

parameterization into the 3D heatmap and directional unit-

vector as baseline 4 (mask loss)). As is shown in Fig. 2 (c),

the offset regression architecture follows exactly the same

structure as the offset unit direction regression in Fig. 1.

We use the 2D detection scores to select candidate points

as inputs to the mean shift. In this baseline, we apply a 3D

distance threshold to the loss function of the offset, as was

done in [29], and effectively masks the regression so that we

only regress a joint’s neighbour points. Ideally, this base-

line should be conducted without masking, but the training

failed completely, with the loss oscillating back and forth

without decreasing. As is shown in Fig. 3, pixel-wise dense

estimation out-performs holistic regression method and val-

idates the benefits of regressing point-wise 3D offsets.

Given the insights drawn from these baseline exper-

iments, we attribute the high accuracy achieved by our

method to the reparameterization and imposing the loss to

all points for vector field regression. Decomposing the 3D

offsets into the joint 3D heat map and offset direction and

regressing the two in a cascaded way is easier to learn than

directly regressing the offsets. Secondly, setting the offset

vector to zero for outlier points instead of excluding them

from the loss makes the estimation more robust to errors in

regression during testing.

4.2. Exploration studies

We first experiment on the number of stacked networks

and the hyperparameters of mean-shift, i.e., the number of

selected candidate points as input to the mean shift and the

kernel width. As indicated in Table 1, we find that the pro-

posed method is quite robust to the mean shift hyperparam-

eters. On the other hand, the number of network stacks is

critical to the estimation accuracy. We test only up to 2

stacks to maintain real-time performance; however, as al-

ready shown in [24, 48], adding more stacks could improve

the accuracy.

In addition, as shown in the last two rows of Table 1, the

un-weighted mean shift approximation has a similar accu-

racy as the weighted version, with only 0.09mm difference

with respect to the mean joint error. As such, we choose 2

stacks and 5 candidate points as input to mean shift, kernel

width σ = 40mm and weighted mean shift as described in

Alg. 1 in the following experiments.

4.3. Comparison to state­of­the­art

NYU Dataset The NYU hand dataset [44] contains over

72K training and 8K testing frames. Its wide coverage of

hand poses and noisy input depths make this dataset quite

challenging. Since the hand region is not cropped out, we

use an hourglass joint detector [24] with one stack to locate

the joints and take the median of estimated x and y coor-

65152



Network parameters

# Stacks T
1 2

11.20 10.21

Mean-shift parameters

# Candidates K
1 5 10 30

10.6 10.21 10.21 10.96

Kernel width σ
10mm 40mm 80mm 100mm

10.35 10.21 10.21 10.21

Weights
weighted unweighted

10.21 10.26
Table 1. Impact of hyperparameters. We report the mean 3D

error (in mm) averaged over all joints and all frames on NYU

dataset[44]. We choose 2 stacks and 5 nearest points as input to

mean shift, kernel width σ = 40mm and weighted mean shift as

described in Alg. 1 as the default parameters.

0 10 20 30 40 50 60 70 80

Max Allowed distance to GT D(mm)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
n

ta
g

e 
o

f 
fr

am
es

 w
it

h
 a

ll
 j

o
in

ts
 e

rr
o

r 
w

it
h

in
 D

Ge et. al.(CVPR 2017)

Xu et. al.(IJCV 2017)
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Figure 4. Comparison with state-of-the-art on NYU [44]. We

plot the percentage of frames in which all joints are below a thresh-

old.

dinates over all joints respectively as the center point for

cropping out the hand region. We only use view 1 for both

training and testing and evaluate on a subset of 14 joints as

in [44] to make a fair comparison.

We compare our method to the most recently proposed

methods [50, 46, 25, 12, 13, 5]. All are 3D regression-based

methods with sophisticated network architectures and sur-

pass earlier works [44, 52, 41, 7, 26, 27, 55] by a large mar-

gin. As is shown in Fig. 4 and Tab. 2, our method outper-

forms all these state-of-the-art methods with a large mar-

gin for both metrics. Specifically, according to Fig. 4, our

method significantly increases the percentage of success-

fully estimated frames by 8% (from 50% to 58%) on the

error threshold of 20mm and by 9.2% (from 70% to 79.2%)

on 30mm when compared to most accurate methods pub-

lished to date ( [5] and [25, 13, 5] respectively). We also

show qualitative results on Fig. 5. The main reasons for

the failure cases are severe self occlusions and noise in the

depth map.

Method Average 3D error

Xu et al. [50] (Lie-X) 14.5mm

Wan et al. [46] (Crossing Nets) 15.5mm

Oberweger et al.[25] (DeepPrior++) 12.3mm

Guo et al.[13] (REN) 12.7mm

Chen et al.[5] (Pose Guided) 11.8mm

Ours 10.2mm
Table 2. Comparison with state-of-the-art on NYU. We report

average 3D error on the NYU[44] dataset.

(a)

(b)

Figure 5. Qualitative results. Hand pose estimation results on

NYU dataset[44]. (a) Successful samples with largest joint error

below 20mm; (b) Failed samples (top row) and the corresponding

ground-truth(bottom row).

MSRA Dataset The MSRA hand dataset[38] contains

76.5K images from 9 subjects with 17 hand gestures. Fol-

lowing the protocol of [38], we use a leave-one-subject-

out training / testing split and average the results over

the 9 subjects. We compare our methods with state-of-art

methods[12, 38, 47, 46, 25, 13, 5]. Specifically, [47, 38] are

based on the hierarchical regression forest. Similar to our

approach, [47, 38] regress 3D offsets and aggregate local es-

timations with the mean-shift algorithm. [12, 46, 25, 13, 5]

are CNN based 3D holistic regression methods and outper-

forms other existing methods[11, 19].

Again, our method outperforms all state-of-the-art by

a large margin both in terms of percentage of successful

frames (see Fig. 6) and average joint error (see Tab. 3). As

is shown in Fig. 6, over 81% and 91% of frames have joint

errors below 20mm and 30mm. This is a huge improvement

over the most accurate existing results from [5], which has

only 60% and 81% respectively. The qualitative results is

shown in Fig. 8(b).

ICVL Dataset The ICVL hand dataset[40] has 22K

frames for training and 1.5k for testing. An additional 160k

augmented frames with in-plane rotations are provided by
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Figure 6. Comparison with state-of-the-art on MSRA[38]. We plot

the percentage of frames in which all joints are below a threshold.

Method Average 3D error

Ge et al. [12] (3D CNN) 9.5mm

Wan et al.[46] (Crossing Nets) 12.2mm

Oberweger et al.[25] (DeepPrior++) 9.5mm

Guo et al.[13] (REN) 9.8mm

Chen et al. [5] (Pose Guided) 8.6mm

Ours 7.2mm
Table 3. Comparison with state-of-art on MSRA [38]. We plot

the percentage of frames in which all joints are below a threshold.
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Figure 7. Comparison with state-of-the-art on ICVL [40]. We

plot the percentage of frames in which all joints are below a thresh-

old.

the dataset but we do not use them as we perform data aug-

mentation on the fly during training as described in Sec. 3.4.

The variance in pose is much smaller in ICVL compared to

the NYU and MSRA datasets. We compare our method

against [38, 47, 41, 46, 25, 13, 5]. [38, 47, 41] are based on

hierarchical regression forest and others [46, 25, 13, 5] on

3D holistic regression.

As is shown in Fig. 7, our method achieves similar ac-

curacy as [5] and outperforms the rest. Our method has an

average 3D error on par with [5] and better than the others.

We consider the differences between our method and [5]

as being less significant given the result is nearly saturated.

The qualitative results can be seen in Fig. 8.

Method Average 3D error

Wan et al.[46] (Crossing Nets) 10.2mm

Wan et al. [47] (Surface Normal) 8.2mm

Sun et al. [38] (Cascaded Regression) 9.9mm

Oberweger et al.[25] (DeepPrior++) 8.1mm

Guo et al.[13] (REN) 7.5mm

Chen et al. [5] (Pose Guided) 6.8mm

Ours 7.3mm
Table 4. Comparison with state-of-art on ICVL[40] dataset.

(a)

(b)

Figure 8. Qualitative results. Hand pose estimation results from

(a) ICVL[40], (b) MSRA[38].

5. Conclusion and discussion

We propose a highly accurate method for 3D hand pose

estimation from single depth map inputs. Given a depth

camera frame, we decompose 3D pose parameters into a

set of 2D/3D joint heat maps and 3D unit vector fields of

offset directions. This reparameterization allows us to con-

sider both the 2D and 3D properties of the depth map and

makes it easy to leverage fully convolutional networks. We

aggregate local estimations by a non-parametric mean shift

variant, which explicitly enforces the estimated 3D joint co-

ordinates to be in accordance with the 2D and 3D local es-

timations. Our method provides a better fusion scheme be-

tween 2D detection and 3D regression than previous state-

of-the-art and the various baselines. As future work, we

plan to further extend our method for 3D pose estimation

from RGB inputs as well as for hands grasping objects.
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