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Abstract

Weakly supervised object detection is a challenging task

when provided with image category supervision but re-

quired to learn, at the same time, object locations and ob-

ject detectors. The inconsistency between the weak supervi-

sion and learning objectives introduces randomness to ob-

ject locations and ambiguity to detectors. In this paper, a

min-entropy latent model (MELM) is proposed for weakly

supervised object detection. Min-entropy is used as a met-

ric to measure the randomness of object localization dur-

ing learning, as well as serving as a model to learn ob-

ject locations. It aims to principally reduce the variance of

positive instances and alleviate the ambiguity of detectors.

MELM is deployed as two sub-models, which respectively

discovers and localizes objects by minimizing the global

and local entropy. MELM is unified with feature learning

and optimized with a recurrent learning algorithm, which

progressively transfers the weak supervision to object lo-

cations. Experiments demonstrate that MELM significantly

improves the performance of weakly supervised detection,

weakly supervised localization, and image classification,

against the state-of-the-art approaches.

1. Introduction

Weakly supervised object detection (WSOD) solely re-

quires image category annotations indicating the presence

or absence of a class of objects in images, which sig-

nificantly reduces human efforts when preparing training

samples. Despite supervised object detection having be-

come more reliable [10, 14, 15, 25, 26, 29, 30], WSOD re-

mains an open problem, as often indicated by low detec-

tion rates of less than 50 percent for state-of-the-art ap-

proaches [12, 18, 33, 38]. Due to the lack of location an-

notations, WSOD approaches require learning latent objects

from thousands of proposals in each image, as well as learn-

ing detectors that compromise the appearance of various ob-
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Figure 1: Evolution of object locations during learning

(from top to bottom). Red boxes denote proposals of high

object probability, and green ones detected objects. It shows

that our approach reduces localization randomness and im-

proves localization accuracy. Best viewed in color.

jects in training images.

In the learning procedure of weakly supervised deep de-

tection networks (WSDDN) [6], a representative WSOD

approach, object locations evolved with great randomness,

e.g., switching among different object parts, Fig. 1. Various

object parts were capable of optimizing the learning objec-

tive, i.e., minimizing image classification loss, but experi-

enced difficulty in optimizing object detectors due to their

appearance ambiguity. The phenomenon resulted from the

inconsistency between data annotations and learning objec-

tives, i.e., image-level annotations and object-level models.

It typically requires introducing latent variables and solv-

ing non-convex optimization in vast solution spaces, e.g.,
thousands of images and thousands of object proposals for
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each image, which might introduce sub-optimal solutions

of considerable randomness. Recent approaches have used

image segmentation [12, 24], context information [19], and

instance classifier refinement [38] to empirically regularize

the learning procedure. However, the issue of quantifying

sub-optimal solutions and principally reducing localization

randomness remains unsolved.

In this paper, we propose a min-entropy latent model

(MELM) for weakly supervised object detection, motivated

by a classical thermodynamic principle: Minimizing en-

tropy results in minimum randomness of a system. Min-

entropy is used as a metric to measure the randomness of

object localization during learning, as well as serving as

a model to learn object locations. To define the entropy,

object proposals in an image are spatially separated into

cliques, where spatial distributions and the probability of

objects are jointly modeled. During the learning proce-

dure, minimizing global entropy around all cliques discov-

ers sparse proposals of high object probability, and mini-

mizing local entropy for high-scored cliques identifies accu-

rate object locations with minimum randomness. MELM is

deployed as network branches concerning object discovery

and object localization, Fig. 2, and is optimized with a re-

current stochastic gradient descent (SGD) algorithm, which

progressively transfers the weak supervision, i.e., image

category annotations, to object locations. By accumulat-

ing multiple iterations, MELM discovers multiple object re-

gions, if such exist, from a single image. The contributions

of this paper include:

(1) A min-entropy latent model that effectively discov-

ers latent objects and principally minimizes the localization

randomness during weakly supervised learning.

(2) A recurrent learning algorithm that jointly optimizes

image classifiers, object detectors, and deep features in a

progressive manner.

(3) State-of-the-art performance of weakly supervised

detection, localization, and image classification.

2. Related Work

WSOD problems are often solved with a pipelined ap-

proach, i.e., an object proposal method is first applied to

decompose images into object proposals, with which la-

tent variable learning [4, 5, 36, 37, 41, 45] or multiple in-

stance learning [2, 8, 9, 16, 42] is used to iteratively per-

form proposal selection and classifier estimation. With

the widespread acceptance of deep learning, pipelined ap-

proaches have been evolving into multiple instance learning

networks [6, 12, 17–19, 23, 28, 31, 33, 34, 38, 43, 46].

Latent Variable Learning. Latent SVM [44, 45] learns

object locations and object detectors using an EM-like op-

timization algorithm. Probabilistic Latent Semantic Anal-

ysis (pLSA) [40, 41] learns object locations in a semantic

clustering space. Clustering methods [5, 37] identify latent

objects by discovering the most discriminative clusters. En-

tropy is employed in the latent variable methods [7,27], but

not considering the spatial relations among locations and

the network fine-tuning for object detection. Various latent

variable methods are required to solve the non-convex op-

timization problem. They often become stuck in a poor lo-

cal minimum during learning, e.g., falsely localizing object

parts or backgrounds. To pursue a stronger minimum, ob-

ject symmetry and class mutual exclusion information [4],

Nesterov’s smoothing [36], and convex clustering [5] have

been introduced to the optimization function. These ap-

proaches can be regarded as regularization which enforces

the appearance similarity among objects and reduces the

ambiguity of detectors.

Multiple Instance Learning (MIL). A major approach

for tackling WSOD is to formulate it as an MIL problem [2],

which treats each training image as a “bag” and iteratively

selects high-scored instances from each bag when learn-

ing detectors. When facing large-scale datasets, however,

MIL remains puzzled by random poor solutions. The multi-

fold MIL [8, 9] uses division of a training set and cross

validation to reduce the randomness and thereby prevents

training from prematurely locking onto erroneous solutions.

Hoffman et al. [16] train detectors with weakly annotations

while transferring representations from extra object classes

using full supervision (bounding-box annotation) and joint

optimization. To reduce the randomness of positive in-

stances, a bag splitting strategy has been used during the

optimization procedure of MILinear [31].

Deep Multiple Instance Learning Networks. MIL

has been updated to deep multiple instance learning net-

works [6, 38], where the convolutional filters behave as de-

tectors to activate regions of interest on the deep feature

maps [20,22,32]. The beam search [3] has been used to de-

tect and localize objects by leveraging spatial distributions

and informative patterns captured in the convolutional lay-

ers. To alleviate the non-convexity problem, Li et al. [23]

have adopted progressive optimization as regularized loss

functions. Tang et al. [38] propose to refine instance classi-

fiers online by propagating instance labels to spatially over-

lapped instances. Diba et al. [12] propose weakly super-

vised cascaded convolutional networks (WCCN) with mul-

tiple learning stages. It learns to produce a class activa-

tion map and candidate object locations based on image-

level supervision, and then selects the best object locations

among the candidates by minimizing the segmentation loss.

Deep multiple instance learning networks [12, 18, 38]

report state-of-the-art WSOD performance, but are mis-

led by the problem of inconsistency between data annota-

tions (image-level) and learning objectives (object-level).

With image-level annotations, such networks are capable

of learning effective image representations for image clas-

sification. Without object bounding-box annotations, how-
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Figure 2: The proposed min-entropy latent model (MELM) is deployed as object discovery and object localization branches,

which are unified with deep feature learning and optimized with a recurrent learning algorithm.

ever, their localization ability is very limited. The convolu-

tional filters learned with image-level supervision incorpo-

rate redundant patterns, e.g., object parts and backgrounds,

which cause localization randomness and model ambigu-

ity. Recent methods have empirically used object segmen-

tation [12] and spatial label propagation [38] to solve these

issues. In this paper, we provide a more effective and prin-

cipled way by introducing global and local entropy as a ran-

domness metric.

3. Methodology

Given image-level annotations, i.e., the presence or ab-

sence of a class of objects in images, the learning objective

of our proposed MELM is to find a solution that disentan-

gles object samples from noisy object proposals with min-

imum localization randomness. Accordingly, an overview

of the proposed approach is presented, followed by formu-

lation of the min-entropy latent model. We finally elaborate

the recurrent learning algorithm for model optimization.

3.1. Overview

The proposed approach is implemented with an end-to-

end deep convolutional neural network, with two network

branches added on top of the fully-connected (FC) lay-

ers, Fig. 2. The first network branch, designated as the

object discovery branch, has a global min-entropy layer,

which defines the distribution of object probability and tar-

gets at finding candidate object cliques by optimizing the

global entropy and the image classification loss. The sec-

ond branch, designated as the object localization branch,

has a local min-entropy layer and a soft-max layer. The lo-

cal min-entropy layer classifies the object candidates in a

clique into pseudo objects and hard negatives by optimizing

the local entropy and pseudo object detection loss.

In the learning phase, object proposals are generated

with the Selective Search method [39] for each image.

An ROI-pooling layer atop the last convolutional layer is

used for efficient feature extraction for these proposals.

The min-entropy latent models are optimized with a recur-

rently learning algorithm, which uses forward propagation

to select sparse proposals as object instances, and back-

propagation to optimize the parameters in the object local-

ization branches. The object probability of each proposal is

recurrently aggregated by being multiplied with the object

probability learned in the preceding iteration. In the detec-

tion phase, the learned object detectors, i.e., the parameters

for the soft-max and FC layers, are used to classify propos-

als and localize objects.

3.2. MinEntropy Latent Model

Modeling. Let x ∈ X denote an image, y ∈ Y denote

the label indicating whether x contains an object or not,

where Y = {1, 0}. y = 1 indicates that there is at least

one object in the image (positive image) while y = 0 in-

dicates an image without any object (negative image). h
denoting object locations is a latent variable and H denot-

ing object proposals in an image is the solution space. θ
denotes the network parameters. The min-entropy latent

model, with object locations h∗ and network parameters θ∗

to be learned, is defined as

{h∗, θ∗} = argmin
h,θ

E(X ,Y) (h, θ)

= argmin
h,θ

Ed (h, θ) + El (h, θ)

⇔ argmin
h,θ

Ld + Ll,

(1)

where Ed (h, θ) and El (h, θ) are the global and local en-

tropy models.1 They are respectively optimized by the loss

function Ld and Ll in the object discovery and the object

localization branch, Fig. 2. (h, θ) and (X ,Y) in Eq. 1 are

omitted for short.

Object Discovery. The object discovery procedure is

implemented by selecting those object proposals which best

discriminate positive images from negative ones. Accord-

1The entropy here is Aczél and Daróczy (AD) entropy [1].
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Figure 3: Object proposal cliques. The left column is an

exemplar clique partition. The right-top shows some of

the corresponding cliques in the image. The right-bottom

shows the object confidence map of cliques.

ingly, a global min-entropy latent model Ed (h, θ), is de-

fined to model the probability and the spatial distribution of

object probability, as

Ed (h, θ) = − log
∑

c

w
Hc

p
Hc

= − log
∑

c

w
Hc

∑

h∈Hc

p (y, h; θ),
(2)

where p (y, h; θ) is the joint probability of class y and latent

variable h, given network parameters θ. It is calculated on

the object confidences s (y, φh; θ) with a soft-max opera-

tion, as

p (y, h; θ) =
exp (s (y, φh; θ))

∑

y,h exp (s (y, φh; θ))
, (3)

where φh is the feature of object proposal h and s (·) de-

notes object confidence for a proposal computed by the last

FC layer in the object discovery branch. wHc
, defined as

wHc
= 1/ |Hc|

∑

h∈Hc

(

p (y, h; θ) /
∑

y
p (y, h; θ)

)

,

(4)

measures the probability distribution of objects to all im-

age classes in a spatial clique Hc, Fig. 3. |·| calculates the

number of elements in a clique.

The spatial cliques c, c′ ∈ {1, ..., C} are the minimum

sufficient cover to an image, i.e.,
C
∪

c=1
Hc = H and ∀c 6=

c′,Hc ∩ Hc′ = ∅. To construct the cliques, the proposals

are sorted by their object confidences and the following two

steps are iteratively performed: 1) Construct a clique using

the proposal of highest object confidence but not belonging

to any clique. 2) Find the proposals that overlap with a pro-

posal in the clique larger than a threshold (0.7 in this work)

and merge them into the clique.

Eq. 2 and Eq. 3 show that minimizing the entropy

Ed (h, θ) for the positive images maximizes p (y), which

means that the learning procedure selects the proposals of

largest object probability to minimize image classification

loss. For the negative images, all of the proposals are back-

ground and are simply modeled via a fully supervised way.

Eq. 4 shows that wHc
∈ [0, 1] is positively correlated to ob-

ject confidences of the positive class in a clique, but nega-

tively correlated to confidences of all other classes. Accord-

ing to the property of entropy, minimizing Eq. 2 produces

a sparse selection of cliques in which proposals have sig-

nificant high probability to the positive class. This sparsity

of cliques with high object class confidence wHc
shows the

reduction of the randomness of selected proposals.

In the learning procedure, Ed (h, θ) is minimized by op-

timizing both the parameters in the object discovery branch

and the parameters in the convolutional layers in an end-to-

end manner. To implement this, an SGD algorithm is used,

and the loss function is defined as

Ld = yEd (h, θ)− (1− y)
∑

h

log (1− p (y, h; θ)). (5)

For positive images, y = 1, the second term of Eq. 5 is

zero and only Ed is optimized. For negative images, y = 0,

the first term of Eq. 5 is zero and the second term, image

classification loss, is optimized.

Object Localization. The proposals selected by the

global min-entropy model constitute good initialization for

object localization, but nonetheless incorporate random

false positives, e.g., objects or partial objects with back-

grounds. That is a consequence of the learning objective of

the object discovery branch selecting those object proposals

which best discriminate positive images from negative ones,

but ignoring the localization of objects. A local min-entropy

model is therefore defined for accurate object localization,

as

El (h, θ) = − log max
h∈H∗

c

wh · p (y, h; θ), (6)

where H∗
c denotes the clique of the highest average ob-

ject confidence. wh = p(y, h; θ)/
∑

y p(y, h; θ) measures

the distribution of object confidences to all image classes.

Optimizing Eq. 6 produces maximum wh and sparse ob-

ject proposals of high object probability p(y, h; θ), and de-

presses negative proposals in a clique. With optimization

results, the object proposals in a clique are classified into

either pseudo objects h∗ or hard negatives by a threshold-

ing method, as

p (y, h∗; θ) =

{

1 if p (y, h∗; θ) > τ

0 otherwise
, (7)

where τ = 0.6 is an empirically set threshold.

With pseudo objects and hard negatives, a object detector

is learned by using the loss function defined as

Ll =
∑

h∗

− log f (h∗, θl), (8)
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where f(·) denotes the object detectors with the parameters

θl of the FC layer and soft-max layer in the object localiza-

tion branch, Fig. 2.

3.3. Model Learning

In MELM, the object discovery branch learns poten-

tial objects by optimizing a min-entropy latent model us-

ing image category supervision, while the object localiza-

tion branch learns object classifiers using estimated pseudo

objects. The objective of model learning is to transfer the

image category to object locations with min-entropy con-

straints, i.e., minimum localization randomness.

Recurrent Learning. A recurrent learning algorithm

is implemented to transfer the image-level (weak) super-

vision using an end-to-end forward- and back-propagation

procedure. In a feed-forward procedure, the min-entropy

latent models discover and localize objects which are used

as pseudo-annotations for object detector learning with a

back-propagation. With the learned detectors the object lo-

calization branch assigns all proposals new object probabil-

ity, which is used to aggregate the object confidences with

an element-wise multiply operator in the next learning iter-

ation, Fig. 2. In the back-propagation procedure, the object

discovery and object localization branches are jointly opti-

mized with an SGD algorithm, which propagates gradients

generated with image classification loss and pseudo-object

detection loss. With forward- and back-propagation proce-

dures, the network parameters are updated and the classifi-

cation models and object detectors are mutually enforced.

The recurrent learning algorithm is described in Alg. 1.

Accumulated Recurrent Learning. According to Eq.

6, the object localization model also performs object discov-

ery, which may find objects different from those discovered

by the object discovery model. This work extends recurrent

Algorithm 1 Recurrent Learning

Input: Image x ∈ X , image label y ∈ Y , and region proposals

h ∈ H
Output: Network parameters θ and object detectors θl

1: Initialize object confidence s (h) = s(y, φh; θ) = 1 for all h

2: for i = 1 to MaxIter do

3: φh ← Compute deep features for all h through forward

confidence

4: φ
′

h ← φh ∗ s(h), aggregate features by object confidence

5: Object discovery:

6: H∗
c ← Optimize Ed using Eq. 2

7: Ld ← Compute classification loss using Eq. 5

8: Object localization:

9: h∗ ← Optimize El using Eq. 6

10: Ll ← Compute detection loss using Eq. 8

11: Network parameter update:

12: θ, θl ← Back-propagation by using loss Ld and Ll

13: s(h)← Update object confidence using detectors θl
14: end for

learning to accumulated recurrent learning, Fig. 4, which

accumulates different objects from both the object discov-

ery and object localization branches, and uses them to learn

object classifiers. Doing so endows this approach with the

capability to localize multiple objects in a single image but

also provides the robustness to process object appearance

diversity by using multiple detectors.

4. Experiments

The proposed MELM was evaluated on the PASCAL

VOC 2007 and 2012 datasets using mean average precision

(mAP) [13]. Following is a description of the experimen-

tal settings, and the evaluation of the effect of min-entropy

models with randomness analysis and ablation experiments.

The proposed MELM is then compared with the state-of-

the-art approaches.

4.1. Experimental Settings

MELM was implemented based on the widely used

VGG16 CNN model [35] pre-trained on the ILSVRC 2012

dataset [21]. As the conventional object detection task

[18,31], we used Selective Search [39] to extract about 2000

object proposals for each image, removing those whose

width or height was less than 20 pixels.

The input images were re-sized into 5 scales {480, 576,

688, 864, 1200} with respect to the larger side, height or

width. The scale of a training image was randomly se-

lected and the image was randomly horizontal flipped. In

this way, each test image was augmented into a total of

10 images [6, 12, 38]. For recurrent learning, we employed

the SGD algorithm with momentum 0.9, weight decay 5e-4,

and batch size 1. The model iterated 20 epochs where the

learning rate was 5e-3 for the first 15 epochs and 5e-4 for
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Figure 5: Localization, gradient, and entropy on the VOC

2007 dataset. (a) the evolution of entropy and (b) gradient.

(c) localization accuracy and (d) localization variance.

the last 5 epochs. The output scores of each proposal from

the 10 augmented images were averaged.

4.2. Randomness Analysis

Fig. 5a shows the evolution of global and local entropy,

suggesting that our approach optimizes the min-entropy ob-

jective during learning. Fig. 5b provides the gradient evolu-

tion of the FC layers. In the early learning epochs, the gra-

dient of the global min-entropy module was slightly larger

than that of the local min-entropy module, suggesting that

the network focused on optimizing the image classifiers. As

learning proceeded, the gradient of the global min-entropy

module decreased such that the local min-entropy module

dominated the training of the network, indicating that the

object detectors were being optimized.

To evaluate the effect of min-entropy, the randomness

of object locations was evaluated with localization accu-

racy and localization variance. Localization accuracy was

calculated by weighted averaging the overlaps between the

ground-truth object boxes and the learned object boxes, by

using p(y, h; θ) as the weight. Localization variance was

also defined as the weighted variance of the overlaps by

using p(y, h; θ) as the weight. Fig. 5c and Fig. 5d show

that the proposed MELM had significantly greater local-

ization accuracy and lower localization variance than WS-

DDN. This strongly indicates that our approach effectively

reduces localization randomness during weakly supervised

learning. Such an effect is further illustrated in Fig. 6, where

the object locations learned by our approach were more ac-

curate and less variant than those of WSDDN.

4.3. Ablation Experiments

Ablation experiments were used to evaluate the respec-

tive effects of the proposal cliques, the min-entropy model,

and the recurrent learning algorithm.

Baseline. The baseline approach was derived by sim-

plifying Eq. 2 to solely model the global entropy Ed(h, θ).
This is similar to WSDDN without the spatial regulariser [6]

where the only learning objective is to minimize the image

classification loss. This baseline, referred to as “LOD-” in

Tab. 1, achieved 24.7% mAP.

Clique Effect. By dividing the object proposals into

cliques, the “LOD-” approach was promoted to “LOD”.

Tab. 1 shows that the introduction of spatial cliques im-

proved the detection performance by 4.8% (from 24.7% to

29.5%). That occurred because using multiple cliques re-

duced the solution spaces of the latent variable learning,

thus readily facilitating a better solution.

Multi-Entropy Latent Model. We denoted the multi-

entropy model by “MELM-D” and “MELM-L” in Table

1, which respectively corresponded to object discovery

and object localization. We trained the min-entropy latent

model by simply cascading the object discovery and object

localization branches, without using the recurrent optimiza-

tion. Tab. 1 shows that MELM-L significantly improved the

baseline LOD from 29.5% to 40.1%, with a 10.6% margin

at most. This fully demonstrated that the min-entropy la-

tent model and the implementation of object discovery and

object localization branches were pillars of our approach.

Recurrent Learning. In Tab. 1, the proposed recurrent

learning algorithm, “MELM-D+RL” and “MELM-L+RL”,

respectively achieves 34.5% and 42.6% mAP, improving the

“MELM-L” (without recurrent learning) by 1.9% and 2.5%.

This improvement showed that with recurrent learning and

the object confidence accumulation, Fig. 2, the object dis-

covery and object localization branches benefited from each

other and thus were mutually enforced.

Accumulated Recurrent Learning. When using two

accumulated object localization modules, the MELM, re-

ferred to as “MELM-L2-ARL”, significantly improved the

mAP of the “MELM-L-RL” from 42.6% to 46.4% (+3.8%).

It further improved the mAP from 46.4% to 47.3% (+0.9%)

when using three accumulated detectors, but did not signif-

icantly improve when using four detectors.

4.4. Performance and Comparison

Weakly Supervised Object Detection. Table 2 shows

the detection results of our MELM approach and the state-

of-the-art approaches on the PASCAL VOC 2007 dataset.

MELM improved the state-of-the-art to 47.3% and respec-

tively outperformed the OICR [38]2, Self-Taught [18], and

2This work reported a higher performance (47.0%) with multiple net-

works ensemble and Fast-RCNN re-training. For a fair comparison, the

performance of OICR using a single VGG16 model is used.
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probability and the green solid boxes denote the detected objects. The yellow boxes in the first column denote ground-truth

locations. It can be seen that the objects learned by MELM are more accurate and have less randomness, which is quantified

by the localization accuracy and localization variance in the last column. Best viewed in color.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

LOD- - - - - - - - - - - - - - - - - - - - - 24.7

LOD 32.2 49.6 15.9 8.1 5.0 51.1 44.8 22.3 16.6 35.3 24.0 20.4 31.0 57.1 9.8 15.3 30.9 31.7 50.1 37.8 29.5

MELM-D 36.3 47.1 19.7 13.4 3.1 61.4 52.6 12.8 13.9 40.5 33.3 12.6 29.6 62.1 10.1 17.5 35.0 48.7 60.4 41.3 32.6

MELM-L 49.5 54.4 26.2 19.7 12.9 59.4 63.0 39.2 22.3 46.9 39.1 36.2 43.2 64.2 2.6 21.3 40.1 48.9 57.9 54.4 40.1

MELM-D+RL 37.4 56.8 27.4 13.1 4.4 59.2 52.0 25.8 20.3 41.5 33.1 21.3 32.8 60.0 10.0 11.6 35.7 43.6 57.2 47.3 34.5

MELM-L+RL 50.4 57.6 37.7 23.2 13.9 60.2 63.1 44.4 24.3 52.0 42.3 42.7 43.7 66.6 2.9 21.4 45.1 45.2 59.1 56.2 42.6

MELM-D+ARL 42.1 61.2 26.5 17.3 7.8 61.4 55.6 20.2 21.3 46.3 35.3 36.7 37.0 63.1 1.2 18.7 38.9 52.0 57.8 48.0 37.4

MELM-L1+ARL 51.3 66.9 36.1 28.1 15.5 68.6 67.1 37.3 24.8 65.2 45.1 50.7 46.9 67.5 2.1 25.3 51.3 56.4 62.9 59.0 46.4

MELM-L2+ARL 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3

Table 1: Detection average precision (%) on the PASCAL VOC 2007 test set. Ablation experimental results of MELM.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

MILinear [31] 41.3 39.7 22.1 9.5 3.9 41.0 45.0 19.1 1.0 34.0 16.0 21.3 32.5 43.4 21.9 19.7 21.5 22.3 36.0 18.0 25.4

Multi-fold MIL [9] 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2

LCL+Context [40] 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6

WSDDN [6] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

PDA [23] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

OICR [38]2 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

Self-Taught [18] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7

WCCN [12] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

MELM 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3

Table 2: Detection average precision (%) on the PASCAL VOC 2007 test set. Comparison of MELM to the state-of-the-arts.

WCCN [12] by 6.1%, 5.6%, and 4.5%. In Table 3, the

detection comparison results on the PASCAL VOC 2012

datasets are provided. MELM respectively outperformed

the OICR [38], Self-Taught [18], and WCCN [12] by 4.5%,

4.1%, and 4.1%, which were significant margins for the

challenging WSOD task.

Specifically, on the “bike”, “car”, “chair”, and “cow”

classes, MELM outperformed the state-of-the-art WCCN

approach up to 6∼21%. Despite of the average good perfor-

mance, our approach failed on the “person” class, as shown

in the last image of Fig. 7. This may have been because with

a large appearance variation existing in person instances,

it is difficult to learn a common appearance model. The

“faces” that represent the person class with minimum ran-

domness were falsely localized.

Fig. 7 shows some of the detection results of the MELM
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Figure 7: Examples of our object detection results. Yellow bounding boxes are ground-truth annotations. Green boxes and

red boxes are positive and negative detection results respectively. Images are sampled from PASCAL VOC 2012 test set.

Method Dataset Splitting mAP

MILinear [31] train/val 23.8

PDA [23] train/val 29.1

Self-Taught [18] train/val 39.0

ContextNet [19] trainval/test 35.3

WCCN [12] trainval/test 37.9

OICR [38] trainval/test 37.9

Self-Taught [18] trainval/test 38.3

MELM train/val 40.2

MELM trainval/test 42.4

Table 3: Detection average precision (%) on the VOC 2012

test set. Comparison of MELM to the state-of-the-arts.

Method Localization (mAP) Classification (mAP)

MILinear [31] 43.9 72.0

LCL+Context [40] 48.5 -

PDA [23] 52.4 -

VGG16 [35] - 89.3

WSDDN [6] 53.5 89.7

Multi-fold MIL [9] 54.2 -

ContextNet [19] 55.1 -

WCCN [12] 56.7 90.9

MELM 61.4 93.1

Table 4: Correct localization rate (%) and image classifica-

tion average precision (%) on PASCAL VOC 2007. Com-

parison of MELM to the state-of-the-arts.

approach. By accumulating proposals of high confidences,

MELM localized multiple object regions and therefore

learned more discriminative detectors.

Weakly Supervised Object Localization. The Correct

Localization (CorLoc) metric [11] was employed to evalu-

ate the localization accuracy. CorLoc is the percentage of

images for which the region of highest object confidence

has at least 0.5 interaction-over-union (IoU) with one of the

ground-truth object regions. This experiment was done on

the trainval set because the region selection exclusively

worked in the training process. Tab. 4 shows that the mean

CorLoc of MELM outperformed the state-of-the-art WCCN

[12] by 4.7% ( 61.4% vs. 56.7%). This shows that the min-

entropy strategy used in our approach was more effective

for object localization than the image segmentation strategy

used in WCCN.

Image Classification. The object discovery and object

localization functionality of MELM highlights informative

regions and suppresses disturbing backgrounds, which also

benefits the image classification task. As shown in Tab.

4, with the VGG16 model, MELM achieved 93.1% mAP,

which respectively outperformed WSDDN [6] and WCCN

[12] up to 3.4% and 2.2%. It is noteworthy that MELM

outperforms the VGG16 network, which was specifically

trained for image classification, by 3.8% mAP (93.1% vs.

89.3%). This shows that the min-entropy latent model

learned more representative feature representations by re-

ducing the localization randomness of informative regions.

5. Conclusion

In this paper, we proposed a simple but effective min-

entropy latent model (MELM) for weakly supervised object

detection. MELM was deployed as two submodels of ob-

ject discovery and object localization, and was unified with

the deep learning framework in an end-to-end manner. Our

approach, by leveraging the sparsity produced with a min-

entropy model, provides a new way to learn latent object re-

gions. With the well-designed recurrent learning algorithm,

MELM significantly improves the performance of weakly

supervised detection, weakly supervised localization, and

image classification, in striking contrast with state-of-the-

art approaches. The underlying reality is that min-entropy

results in minimum randomness of an information system,

which provides fresh insights for weakly supervised learn-

ing problems.
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