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Abstract

Effective integration of contextual information is cru-

cial for salient object detection. To achieve this, most ex-

isting methods based on ’skip’ architecture mainly focus

on how to integrate hierarchical features of Convolution-

al Neural Networks (CNNs). They simply apply concate-

nation or element-wise operation to incorporate high-level

semantic cues and low-level detailed information. Howev-

er, this can degrade the quality of predictions because clut-

tered and noisy information can also be passed through.

To address this problem, we proposes a global Recurrent

Localization Network (RLN) which exploits contextual in-

formation by the weighted response map in order to local-

ize salient objects more accurately. Particularly, a recur-

rent module is employed to progressively refine the inner

structure of the CNN over multiple time steps. Moreover,

to effectively recover object boundaries, we propose a local

Boundary Refinement Network (BRN) to adaptively learn

the local contextual information for each spatial position.

The learned propagation coefficients can be used to opti-

mally capture relations between each pixel and its neigh-

bors. Experiments on five challenging datasets show that

our approach performs favorably against all existing meth-

ods in terms of the popular evaluation metrics.

1. Introduction

Visual saliency has gained a lot of interest in recent

years. It has been shown effective in a wide range of ap-

plications including person identification [2], visual track-

ing [9], image captioning [7, 8], robot navigation [6] and vi-

sual question answering [21]. When it comes to the image-

based salient object detection, two major problems need to

be tackled: how to highlight salient objects against the clut-

tered background and how to preserve the boundaries of

salient objects. However, in view of the fact that salient ob-

jects may share some similar visual attributes with the back-

ground distractors and sometimes multiple salient objects

(a) (b) (c) (d)

Figure 1. Comparison with the feature integration based method.

(a) Input images. (b) Amulet [33]. (c) Our method. (d) Ground

truth masks.

overlap partly or entirely with each other, saliency detection

still remains challenging in computer vision tasks. The re-

cent CNNs-based approaches [18, 22, 10, 33, 29] have been

successful in mitigating the above issues, and have given

rise to the proliferation of a significant variety of neural net-

work structures. Usually, standard convolutional neural net-

works are composed of a cascade of repeated convolutional

stages, followed by the spatial pooling. The deeper layer-

s are encoded with richer semantic representation albeit at

the expense of spatial resolution, while the shallower lay-

ers contain much finer structures. Existing saliency detec-

tion methods [18, 10, 33] attempt to combine hierarchical

features to capture distinctive objectness and detailed infor-

mation simultaneously. However, these approaches usually

concentrate their analysis on how to combine features effec-

tively in general. What is often overlooked is that directly

applying concatenation or element-wise operation to differ-

ent feature maps are suboptimal because some maps are too

cluttered which can introduce misleading information when

detecting and segmenting salient objects. The problem is

illustrated in Figure 1.

Therefore, from a global perspective, we propose a nov-

el Recurrent Localization Network (RLN) which consists of

two modules: an inception-like Contextual Weighting Mod-

ule (CWM) and a Recurrent Module (RM). CWM aims to
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predict a spatial response map to adaptively weight the fea-

tures maps for each position, which can localize the most

attentive parts for every given input. Specifically, CWM

lies on top of the side output results of each convolution-

al block, which takes the output feature maps as input and

learns a weight for each pixel based on the multi-scale con-

textual information. The weights are then employed to each

feature map for producing a weighting spatial representa-

tion. CWM serves to filter out the distractive and cluttered

background and make salient objects stand out. Moreover,

a recurrent structure is proposed in order to gradually refine

the predicted saliency map over ’time’. It establishes recur-

rent connections to propagate the outputs of certain blocks

to its input so as to exploit the context cue in the training

process of different layers.

Second, from a local perspective, we adopt a Boundary

Refinement Network (BRN) to recover the detailed bound-

ary information. The BRN takes both the initial RGB image

and the saliency map as input. The saliency map serves as

the prior map which can assist the learning process to gen-

erate more accurate predictions. BRN can predict a n × n

propagation coefficient map for each pixel which indicates

the relations between the center point and its n × n neigh-

bors. For each pixel, the corresponding coefficients are

position-aware and can adaptively learn the local contextual

information for the n× n neighbors.

To summarize, our contributions are as follows:

• We propose a novel Localization-to-Refinement net-

work where the former recurrently focuses on the s-

patial distribution of various scenarios to help better

localize salient objects and the latter helps refine the

saliency map by the relations between each pixel and

their neighbors.

• In the Recurrent Localization Network, a contextual

module is adopted for weighting features maps at each

position. Also, a recurrent mechanism is proposed to

gather contextual information for refining the convolu-

tional features iteratively. In the Boundary Refinement

Network, a refinement module is adopted to learn local

context information by the propagation efficient.

• Compared with all state-of-the-art works, the pro-

posed model achieves the best performance on EC-

SSD, THUR15K, DUT-OMRON, HKU-IS and DUTS

benchmark datasets.

2. Related Work

Various approaches have been proposed to solve the

problem of saliency detection. Early research [23, 12, 31,

32, 11, 19, 14, 4, 25] focuses on low-level visual features,

such as center bias, contrast prior and background prior. Re-

cently, significant progress has been made by deep learning

based methods [26, 36, 17, 28, 15, 16, 18, 22, 10, 29, 33, 3],

which can be broadly categorized into region-based and

Fully Convolutional Network (FCN)-based methods. In the

following, we briefly review recent developments on these

two categories.

2.1. Region­based Saliency

Region-based approaches leverage each image patch as

the basic processing unit for making saliency prediction.

In [17], Li et al. utilize multi-scale features extracted from a

deep CNN via exploiting contextual information. A classi-

fier network is employed to infer the saliency score of each

image segment. In [36], Zhao et al. propose a multi-context

deep learning structure for salient object detection. They at-

tempt to model each superpixel by jointly optimizing both

global and local context. In [26], a two-stage training strat-

egy is proposed to combine both image patches and can-

didate objects. Local features and global cues are incor-

porated for generating a weighted sum of salient object re-

gions. Lee et al. [16] utilize a two-stream framework with

high-level feature descriptors extracted from the VGG-net

and low-level heuristic features such as color histogram and

Gabor responses. A neural network with fully-connected

layers is proposed to evaluate the saliency of every region.

2.2. FCN­based Saliency

While region-based deep learning approaches improve

the performance over the ones based on hand-crafted fea-

tures by a large margin, they ignore important spatial in-

formation as they assign one saliency label to each image

patch. Also, these methods are time-consuming since the

whole networks are run for many times to get predictions of

all patches in the image. To overcome this problem, one of

the most popular CNNs adopted is the Fully Convolutional

Network. Several existing works try to improve the saliency

detection task mainly based on the following aspects.

Skip Connections. Skip connections aim to add deeper lay-

ers to lower ones and integrate saliency prediction at mul-

tiple resolutions. In [18], a multiscale FCN is proposed to

capture effective semantic features and visual contrast in-

formation for saliency inference. Hou et al. in [10] in-

troduce short connections by transforming high-level fea-

tures to shallower side-output layers. The multi-scale fea-

ture maps at each layer can assist to locate salient regions

and recover detailed structures at the same time. Zhang et.

al. [33] learn to aggregate multi-level feature maps at each

resolution and predict saliency maps in a recursive manner.

In [29], Wang et. al. propose a stagewise refinement mod-

el and a pyramid pooling module to include both local and

global context information for saliency prediction. In par-

ticular, the stagewise model is utilized to add lower level

detailed features to the predicted map stage by stage. The

aforementioned works attempt to utilize hierarchical fea-

tures of CNNs to make prediction. However, messy and
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Figure 2. The overall structure of Recurrent Localization Network

(RLN). The blue and black dotted lines denote the recurrent blocks

and convolutional operation, respectively.

cluttered information are also included when low-level fea-

tures are combined directly with high-level ones. To deal

with it, we propose an inception-like contextual weighting

module for purifying the convolutional features.

Recurrent Structure. Recurrent Structure can help re-

duce prediction errors by iteratively integrating contextu-

al information. Kuen [15] firstly adopt a convolutional-

deconvolutional network to produce a coarse saliency map.

Then a spatial transformer and recurrent network units are

used to iteratively search for the attentive image sub-regions

for the saliency refinement. Liu and Han [22] propose an

end-to-end method based on the fully convolutional net-

work. A hierarchical recurrent CNN is adopted to progres-

sively recover image details of saliency maps through in-

tegrating local context information. In [28], Wang et. al.

utilize the predicted saliency map as the feedback signal,

which serves as the saliency prior to automatically learn to

refine the saliency prediction by correcting its previous er-

rors. Different from those works, we propose a block-wise

recurrent module which can combine the output and input

features of certain convolutional block over multiple time

steps thereby incorporating the contextual information.

3. The Proposed Method

In this section, we will elaborate on the proposed frame-

work for saliency detection. We firstly describe the global

Recurrent Localization Network (RLN) in Section 3.1, and

then give a detailed depiction of the local Boundary Refine-

ment Network (BRN) in Section 3.2. The overall architec-

ture of the proposed network is illustrated in Figure 2.

3.1. Recurrent Localization Network

3.1.1 Base Network

We tackle the saliency detection problem based on the fully

convolutional network. Our proposed method is based on

the ResNet-50 network [24]. Specifically, we remove the

original global average pooling, fully connected and soft-

max loss layers and retain the bottom convolutional blocks

in ResNet-50 network. The base network is composed of

repetitive residual building blocks with different output di-

mensions. For an input image I , the base network generates

5 feature maps (f1, f2, ..., f5) with decreasing spatial resolu-

tion by stride 2. Each map is produced by one residual con-

volution block. The feature map f5 obtained from Conv5
has the smallest spatial dimension while f1 has the largest

one. For efficient computation, we obtain the k-th feature

map fkd(k ∈ {3, 4, 5}) by applying a 3 × 3 convolutional

layer with 128 channels behind the output feature map fk of

the k-th residual block to reduce the dimension. We upsam-

ple the feature maps fkd(k ∈ {4, 5}) to the same size as f3d.

Then an element-wise multiplication layer is applied to all

feature maps fkd followed by one 1 × 1 convolutional layer

with 128 channels and one 1× 1 convolutional layer with 2

channels to produce a prediction map S. We set the number

of output channels in the prediction map equal to the num-

ber of possible labels. Each channel of S corresponds to a

confidence measure used in predicting each spatial position

as one of the two classes. Finally, we directly upsample S

using bilinear interpolation to match the input image size.

3.1.2 Network Architecture

Most of the existing saliency detection methods typical-

ly involve a combination of multi-scale convolutional fea-

tures, which is driven by the notion that different layers of

CNNs usually carry rich representation varying from low-

level visual characteristics to high-level discriminative in-

formation. However, as mentioned earlier, there exist lim-

itations among the integrated features if certain ”bad” fea-

tures are adopted because simple incorporation of convo-

lutional features can make the noise in ”bad” feature maps

unrestrainedly pass to the prediction layer.

Motivated by the above observation, we propose a con-

textual weighting mechanism based on the inception archi-

tecture to modulate the features being passed. In particular,

a recurrent structure is adopted for learning context-aware

features, which can connect the output of each block to the

input of the same block in a feedback fashion.

...

Feature Map

Multiscale contex filters

Response Map

      (W X H)

Feature Aggregation

(W X H X C) (W X H X C)

Figure 3. Details of Inception-like Module.

Inception-like Contextual Weighting Module. Our

module is inspired by the success of contextual reweighting

network [13] in image geo-localization. In order to obtain
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the spatial response map for each position, we first connect

a downsampling layer behind the feature map fk which is

generated by the k-th residual block. Then a convolution-

al layer with kernel size m is applied for sliding a m × m

spatial window on the local feature, which is shown in Fig-

ure 3. Thus the context information can be included in the

hidden context filter.

To obtain multi-scale contextual information, we adopt

an inception-like module by using three context filters with

different kernel sizes (3×3, 5×5, 7×7). Each filter pro-

duces an activation map with the size W ×H×C, followed

by a L2 normalization layer. Then we concatenate these ac-

tivation maps to form features fkcat.

To compute the contextual weighting response map Mk,
we utilize a convolutional layer with one output channel be-

hind fkcat, which is formulated as

M
k = W ∗ f

k
cat + b, (1)

where W represents the kernel and b denotes the bias pa-

rameter. The resulting weighting response map is of size

W ×H where each value in this map determines the impor-

tance of each spatial position.

Then the Softmax operation is applied to Mk spatially to
get the final weighting response map,

Φ
k(x, y) =

exp(Mk(x, y))
∑

(x′,y′) exp(M
k(x′, y′))

, (2)

where Φ
k(x, y) represents the normalized response value

at (x, y) and k is the index of the residual block. Intuitive-

ly, if pixel i is salient at position (x, y), the pixel in the

response map related to it should be assigned a higher val-

ue. Finally, the weighting map is upsampled to get Φk
u and

applied to the feature fkd ,

Fk(c) = Φu

k ◦ fkd(c), (3)

where c denotes the c-th feature channel. We use ◦ to rep-

resent the element-wise product operation. Note that Φk
u is

shared across all the channels of fkd .

Block1 Block2
Block3

Block4

Block5

 1thk

 thk
 thk 1

 )1(  thwf k

r

ku

Figure 4. Illustration of the Recurrent Module (RM). The dot-

ted lines represent the convolution and upsample operations. The

symbol ⊕ denotes element-wise addition.

Recurrent Module. Contextual information [22, 36,
29] has been proved effective in saliency detection. Larger

context usually captures global spatial relations among ob-
jects while smaller context focuses on the local appearance,
both contributing to the saliency detection. In this paper,
we propose a novel recurrent module which offers the ad-
vantage that increasing time steps enable the whole network
to integrate contextual knowledge in a larger neighborhood
as time evolves and serves as a refinement mechanism by
combining the semantic cues and detailed information in the
inner blocks of Resnet-50.We treat each block in ResNet-50
as the basic recurrent unit, which shares the same parame-
ters of weight layers in our structure over time. The state of
the current block is determined by the current feed-forward
input and the previous state of the same block. Specifically,
the state of block hk at time step t is calculated by taking the
output feature maps from the previous prediction hk(t− 1)
at time step t − 1 of the same block and the current out-
put hk−1(t) at time step t of its previous block k − 1 as the
input,

hk(t) =

{

fk(w
f

k ∗ hk−1(t) + bk), t = 0

fk(w
f

k ∗ (hk−1(t) + fu(w
r
k ∗ hk(t− 1))) + bk), t > 0

(4)

where the symbol ∗ denotes the convolution operation.

fk(·) is a composite of multiple specific functions includ-

ing the BatchNorm and ReLU activation function. fu(·)

denotes the upsampling operation. w
f
k and wr

k are feed-

forward and recurrent weights for block k. bk represents

the bias for block k. Note that w
f
k is shared by the same

block, which is used multiple times at each block to reduce

memory consumption. wr
k is learned independently across

the same block at different time steps in order to learn spe-

cific transformations for incorporating context information

from the current block at time step t− 1.

Figure 4 illustrates the overall recurrent structure in the

process of forward- and backward- propagation following

depth and time dimensions (here we set t = 1). There

are several advantages with the proposed recurrent struc-

ture. First, by adopting the recurrent connection of the same

block at different time steps, the recurrent structure is able

to absorb the contextual and structural information with the

hidden convolution units. Second, by sharing weights for

multiple times at each layer, the new architecture can in-

crease the depth of traditional CNNs without significantly

increasing the total number of parameters.

3.2. Boundary Refinement Network

The RLN can aggregate useful features by filtering out

noisy parts and progressively refining the predictions by in-

tegrating dependent information. However, some detailed

structures along the boundaries of salient objects are still

missing. In order to recover continuous details for obtaining

spatial precision, we adopt a local Boundary Refinemen-

t Network (BRN) [35] to adaptively rectify the prediction.

The details of BRN is illustrated in Figure 5. The salien-

cy map generated by the RLN and the original RGB image
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Figure 5. The structure of Boundary Refinement Network (BRN).

are concatenated to serve as the input of BRN. For each po-

sition, BRN aims to learn a n × n propagation coefficient

map with which local context information can be aggregat-

ed to the center pixel.

For position i, BRN will first output a propagation coef-

ficient vector, which will then be flattened to a n×n square.

The refinement map at position i will be generated by a mul-

tiplied sum of the propagation map and the saliency map in

the neighborhood of i.

s′i =
n×n∑

d=1

vdi · sdi , d ∈ 1, 2, ..., n× n, (5)

where vdi is the coefficient vector at position i of the d-th

neighbor and n × n represents the size of local neighbors.

sdi and s′i denotes the prediction vector at location i before

and after the refinement operation, respectively. Each po-

sition in BRN is position-adaptive with a different propa-

gation coefficient, which can be automatically learned via

back-propagation without explicit supervision.

Implementation details. As shown in Table 2, BRN is

composed of 7 convolutional layers, each with the kernel

size of 3 × 3. The ReLU nonlinearity operations are per-

formed between two convolutional layers. We do not utilize

pooling layers and large strides in convolutional layers in

order to keep the same resolution between input and output

feature maps.

Layer Channel Kernel size Bias size

1 64 (K + 3)× 64× 3× 3 64

2 64 64× 64× 3× 3 64

3 64 64× 64× 3× 3 64

4 128 64× 128× 3× 3 128

5 128 128× 128× 3× 3 128

6 128 128× 128× 3× 3 128

7 n× n 128× (n× n)× 3× 3 n× n

Table 2. The parameters of the BRN, where K = 1 represents the

one-channel saliency map.

The propagation matrices can model spatial relations a-

mong neighbors to help refine the predicted map generated
by the RLN. Compared to the initial saliency map, the re-
fined one should not change too much in terms of the visual
appearance. To achieve this, we adopt the following initial-
ization in BRN:











kl(z, c) = δ,

b(c) =

{

1 l = L, c = (n× n+ 1)/2

0 others

(6)

where l ∈ {1, 2, ..., L} denotes the l-th convolutional lay-

er of BRN. kl is the convolutional kernel initialized by the

Gaussican distribution δ ∼ N (µ, σ2), where µ = 0, σ =
0.1. z is the position in each kernel and c represents the

index of the channel. We set all bias parameters in the l-th

layer (l < L) to 0. For the L-th layer, biases are set to 0 ex-

cept that the value at the center position of n× n neighbors

is set to 1. Following this initialization, saliency prediction

of a certain pixel will be primarily influenced by the central

coefficient of the propagation map and also be be affected

by the other coefficients.

4. Experiments

4.1. Experimental Setup

Evaluation Datasets. We evaluate the proposed frame-

work on five popular datasets: ECSSD [31], DUT-

OMRON [32], THUR15K [5], HKU-IS [17], and DUT-

S [27]. ECSSD contains 1,000 natural and complex images

with pixel-accurate ground truth annotations. The images

are manually selected from the Internet. DUT-OMRON

has more challenging images with 5,168 images. All im-

ages are resized so as to the maximal dimension is 400

pixels long. THUR15K includes 6,232 categorized im-

ages with ’butterfly’, ’coffee’, ’dog’, ’giraffe’ and ’plane’.

HKU-IS has 4,447 images which are selected by meeting at

least one of the following three criteria: multiple salient ob-

jects with overlapping, objects touching the image bound-

ary and low color contrast. DUTS is the latest released

dataset containing 10,553 images for training and 5,019 im-

ages for testing. Both training and test sets contain very

complex scenarios with high content variety.

Evaluation Criteria. We utilize three evaluation metrics

to evaluate the performance of our method with other salient

object detection methods, including Precision-Recall (PR)

curve, F-measure score and mean absolute error (MAE).

Given a saliency map with continuous values normalized

to the range of 0 and 255, we compute the corresponding

binary maps by using every possible fixed integer thresh-

old. Then we compute the precision/recall pairs of all bina-

ry maps to plot the PR curve by a mean value over all salien-

cy maps in a given dataset. Also, we utilize the F-measure

score to evaluate the quality of a saliency map, which is for-

mulated by a weighted combination of Precision and Recall.
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*
ECSSD [31] THUR15K [5] HKU-IS [17] DUTS [27] DUT-OMRON [32]

F-measure MAE F-measure MAE F-measure MAE F-measure MAE F-measure MAE

Ours 0.903 0.045 0.716 0.077 0.882 0.037 0.768 0.051 0.709 0.063

SRM [29] 0.892 0.056 0.708 0.077 0.874 0.046 0.757 0.059 0.707 0.069

Amulet [33] 0.869 0.061 0.670 0.094 0.839 0.052 0.676 0.085 0.647 0.098

UCF [34] 0.841 0.080 0.645 0.112 0.808 0.074 0.629 0.117 0.613 0.132

KSR [30] 0.782 0.135 0.604 0.123 0.747 0.120 0.602 0.121 0.591 0.131

RFCN [28] 0.834 0.109 0.627 0.100 0.835 0.089 0.712 0.090 0.627 0.111

DS [20] 0.821 0.124 0.626 0.116 0.785 0.078 0.632 0.091 0.603 0.120

DCL [18] 0.827 0.151 0.676 0.161 0.853 0.136 0.714 0.149 0.684 0.157

DHS [22] 0.871 0.063 0.673 0.082 0.852 0.054 0.724 0.067 - -

LEGS [26] 0.785 0.119 0.607 0.125 0.732 0.119 0.585 0.138 0.592 0.133

MCDL [36] 0.796 0.102 0.620 0.103 0.757 0.092 0.594 0.105 0.625 0.089

MDF [17] 0.805 0.108 0.636 0.109 - - 0.673 0.100 0.644 0.092

BL [25] 0.684 0.217 0.532 0.219 0.660 0.207 0.490 0.238 0.499 0.239

DRFI [12] 0.733 0.166 0.576 0.150 0.722 0.145 0.541 0.175 0.550 0.138

Table 1. Quantitative evaluation in terms of F-measure and MAE scores. The best two scores are shown in red and blue colors, respectively.

(a) Image (b) GT (c) Baseline (d) CWM (e) RM (f) BRN

Figure 6. Visual examples of the proposed modules.

Fγ =
(1 + γ2)Precision×Recall

γ2Precision+Recall
. (7)

γ is set to be 0.3 to emphasize more on precision over recall

as suggested in [1].

Given the saliency map S and ground truth mask G, the

MAE score can be calculated by the element-wise differ-

ence between S and G,

MAE =
1

W ×H

W∑

i=1

H∑

j=1

|S(i, j)−G(i, j)|, (8)

where S(i, j) represents the saliency score at position (i, j)
and W and H are width and height.

Implementation Details. We have implemented our

network on a single Nvidia GTX 1080 GPU. Pre-trained

ResNet-50 is used to initialize the convolutional layers in

the RLN network (i.e. the conv1 to conv5 block). Other

convolutional parameters are randomly assigned. We train

our model on the training set of DUTS and test on its testing

set and other datasets. All training and test images are re-

sized to 384×384 as the input to the RLN and 480× 480 to

the BRN. We do not use validation set and train the model

until its training loss converges. We use the SGD method

to train our network. A fixed learning rate is set to 1e-10

for training the RLN and 1e-8 for the BRN with the weight

decay 0.0005. We use the softmax entropy loss to train both

networks. For the recurrent structure, the time step t is set to

2 and we employ three top supervisions between the ground

truth and prediction maps.

4.2. Performance Comparison

We compare the proposed algorithm against 13 state-

of-the-art algorithms, including the deep learning based

methods as well as other non-deep competitors, DRFI [12],

BL [25], LEGS [26], MDF [17], MCDL [36], DS [20], D-

CL [18], DHS [22], RFCN [28], KSR [30], UCF [34], A-

mulet [33] and SRM [29].

Quantitative Evaluation. First, we compare the pro-

posed method with the others in terms of PR curves, F-

measure curves and F-measure scores, which are shown in

Figure 7. Among all datasets and evaluation metrics, the

proposed method performs favorably against other counter-

parts. Also, we show F-measure and MAE scores in Table

1. As we can see, our approach generates the best score

across all datasets. More results can be found in the supple-

mentary material.

Visual Comparison. To qualitatively evaluate the pro-

posed method, we visualize some example saliency maps of

our method with respect to the above-mentioned approaches

in Figure 8. The examples are shown in various scenarios,

including multiple salient objects (row 1-2), the small ob-
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*
ECSSD THUR15K HKU-IS DUTS DUT-OMRON

F-measure MAE F-measure MAE F-measure MAE F-measure MAE F-measure MAE

Baseline 0.861 0.058 0.659 0.099 0.838 0.050 0.696 0.073 0.643 0.092

CWM 0.867 0.054 0.667 0.084 0.840 0.047 0.716 0.060 0.661 0.075

RM 0.893 0.048 0.702 0.080 0.875 0.041 0.760 0.054 0.712 0.066

BRN 0.903 0.045 0.716 0.077 0.882 0.037 0.768 0.051 0.709 0.063

Table 3. Performance of the proposed modules.
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(a) THUR15K dataset (c) ECSSD dataset (d) DUT-OMRON dataset

Figure 7. The first row shows the performance of the proposed method with other state-of-the-art methods in terms of PR curves. The

second shows F-measure curves. The last show the precision, recall, and F-measure scores across four datasets. For all metrics, the

proposed method achieves better performance than others on all datasets.

ject (row 3), the object touching the image boundary (row

4) and salient objects sharing similar color appearance with

the background (row 5-7). From this picture, we can see

that our method can produce more accurate saliency maps

which are much closer to the ground truth masks.

4.3. Ablation Study

In this section, we provide the results about the contribu-

tion of each component in the proposed network.

Performance of the RLN and BRN. To investigate the

efficacy of the proposed Recurrent Localization Network

(RLN) and the Boundary Refinement Network (BRN), we

conduct ablation experiments across all five datasets. We

utilize the Base Network described in Section 3.1.1 as our

baseline model. The overall results in terms of F-measure

and MAE scores are shown in Table 3. Based on the base-

line network, we analyze the performance of each proposed

component, i.e., the inception-like Contextual Weighting

Module (CWM), Recurrent Module (RM), and BRN.

We first evaluate the CWM and the overall performance

can be improved for F-measure and MAE scores, respec-

tively. The increased performance benefits from the role

that CWM plays in filtering out the noise and cluttered
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Figure 8. Example results of the proposed method with state-of-the-art.

background information. Besides, through RM, the salien-

cy map can capture contextual dependencies to distinguish

confusing local pixels, so the mistakes can be corrected by

the network. Both modules can help the network localize

salient objects more accurately and remove distractors in

background. The final BRN can also show the improve-

ment, deriving from the learned propagation to help adap-

tively refine the boundaries of predicted map generated by

the RLN.

We also provide examples of the RLN and BRN. As

shown in Figure 6, with the connection of CWM, RM and

BRN, the proposed method can generate more accurate re-

sults.

Performance of the controlled experiments. We com-

pare our proposed RLN with different variants on DUTS

dataset, as shown in Figure 9. ’RM’-k denotes there are k

recurrent modules in our experiment. ’RM-1*’ represents

no parameters are shared between t = 0 and t = 1. ’RM-

1**’ represents that we train the RLN with only one loss at

t = 1. It can be seen that the performance increases with

more time steps. Also, top supervision of each time step and

recurrent mechanism are important for the whole network.

5. Conclusion

In this paper, we propose a novel Localization-to-

Refinement network for salient object detection from the

global and local view. The Recurrent Localization Net-

work (RLN) can learn to better localize salient objects by
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Figure 9. The F-measure scores and PR curves of the controlled

experiments on the DUTS dataset.

the weighted response map and a novel recurrent structure

is proposed for iteratively refining each convolutional block

over time. The Boundary Refinement Network (BRN) can

refine the prediction map by the spatial relationship of each

pixel and the neighbors. This is achieved via the propaga-

tion coefficient map learned by a small deep network. Ex-

perimental evaluation verify that the proposed model can

consistently improve the state-of-the-art performance on all

five benchmark datasets and all popular evaluation metrics.
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