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Abstract

We propose an inference procedure for deep convolu-

tional neural networks (CNNs) when partial evidence is

available. Our method consists of a general feedback-based

propagation approach (feedback-prop) that boosts the pre-

diction accuracy for an arbitrary set of unknown target la-

bels when the values for a non-overlapping arbitrary set

of target labels are known. We show that existing mod-

els trained in a multi-label or multi-task setting can readily

take advantage of feedback-prop without any retraining or

fine-tuning. Our feedback-prop inference procedure is gen-

eral, simple, reliable, and works on different challenging vi-

sual recognition tasks. We present two variants of feedback-

prop based on layer-wise and residual iterative updates. We

experiment using several multi-task models and show that

feedback-prop is effective in all of them. Our results unveil

a previously unreported but interesting dynamic property of

deep CNNs. We also present an associated technical ap-

proach that takes advantage of this property for inference

under partial evidence in general visual recognition tasks.

1. Introduction

In this paper we tackle visual recognition problems

where partial evidence or partial information about an in-

put image is available at test time. For instance, if we know

for certain that an image was taken at the beach, this should

change our beliefs about the types of objects that could be

present, e.g. an office chair would be unlikely. This is be-

cause something is known for certain about the image even

before performing any visual recognition. We argue that

this setting is realistic in many applications. For instance,

images on the web are usually surrounded by text, images

on social media have user comments, many images con-

tain geo-location information, images taken with portable

devices contain other sensor information. More generally,

images in standard computer vision datasets are effectively

partially annotated with respect to a single task or modality.

Assuming only visual content as inputs, while convenient
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Figure 1: Feedback-prop inference leverages an arbitrary

set of known labels to iteratively predict a set of unknown

labels for a test input image. This example shows a multi-

label classification task. Neural activations are used to

transfer information among variables in the target space.

for benchmarking purposes, does not reflect many end-user

applications where extra information is available during in-

ference. We propose here a general framework to address

this problem in any task involving deep convolutional neu-

ral networks trained with multiple target outputs (i.e. multi-

label classification) or multiple tasks (i.e. multi-task learn-

ing). We provide an example in Figure 1, where a set of

labels are known: banana, hat, table, while we are

trying to predict the other labels: apple, fork, person.

Convolutional neural networks (CNNs) have become the

state-of-the-art in most visual recognition tasks. Their ex-

traordinary representation ability has allowed researchers to

address problems at an unprecedented scale with remark-

able accuracy. While reasoning under partial evidence us-

ing probabilistic graphical models would involve marginal-

ization over the variables of interest, CNNs do not model

a joint distribution, therefore making such type of reason-

ing non-trivial. The typical pipeline using CNNs for vi-

sual recognition involves training the model using stochas-

tic gradient descent (SGD) and the back-propagation algo-

rithm [30] using an annotated image dataset, and then per-

forming forward-propagation during inference given only

visual input. In this paper, we challenge this prevail-
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ing inference procedure in CNNs where information only

flows in one direction, and the model structure is static and

fixed after training. We propose instead feedback-based

propagation (feedback-prop) where forward and backward-

propagation steps use intermediate neural activations to

share information among output variables during inference.

We show the effectiveness of our approach on multi-label

prediction under incomplete and noisy labels, hierarchical

scene categorization, and multi-task learning with object

annotations and image descriptions.

Our main hypothesis is that by correcting an intermedi-

ate set of neural activations using partial labels for a given

input sample, we would also be able to make more accu-

rate predictions for the complement set of unknown labels.

We demonstrate this behavior using our feedback-prop in-

ference for multiple tasks and under multiple CNN models.

There is remarkable evidence in previous research aimed at

interpreting intermediate representations in CNNs showing

that they encode basic patterns of increasing visual com-

plexity (i.e. edges, attributes, object parts, objects) that are

shared among target outputs [34, 43, 10, 38, 3]. Since the

underlying shared representations of a CNN capture com-

mon patterns among target outputs, we find that they can act

as pivoting variables to transfer knowledge among variables

in the target space. We show that feedback-prop is general,

simple to implement, and can be readily applied to a vari-

ety of problems where a model is trained to predict multiple

labels or multiple tasks. Our code and data are available1.

Our contributions can be summarized as follows:

• A general feedback-based propagation inference pro-

cedure (feedback-prop) for CNN inference under par-

tial evidence.

• Two variants of feedback-prop using layer-wise feed-

back updates, and residual feedback updates, and ex-

periments showing their effectiveness on both multi-

label and multi-task settings, including an experiment

using in-the-wild web data.

• An extensive analysis of CNN architectures regarding

optimal layers in terms of information sharing with re-

spect to target variables using feedback-prop.

2. Related Work

Use of Context in Computer Vision Using contextual

cues in visual recognition tasks has long been studied in the

psychology literature [26, 25, 4, 7, 2], and some of these

insights have also been used in computer vision [28, 12, 9,

23, 18]. However, unlike our paper, most previous works

using context still assume no extra information about im-

ages during inference. Instead, contextual information is

predicted jointly with target variables, and is often used to

1https://github.com/uvavision/feedbackprop

impose structure in the target space based on learned pri-

ors, label relation ontology, or statistics. In contrast, our

work leverages during inference the underlying contextual

relations that are already implicitly learned by a CNN.

Conditional Inference in Graphical Models Our work

also has connections with graphical models where messages

are iteratively passed through nodes in a learned model that

represents a joint distribution [24, 31]. In our inference

method, messages are passed between nodes in a convo-

lutional neural network in forward and backward directions

using gradients, intermediate activations, as well as addi-

tional residual variables.

Multi-task Learning Another form of using context is

by jointly training on multiple correlated visual recogni-

tion tasks or multi-task learning [29, 39, 20], where knowl-

edge about one task helps another target task. Our infer-

ence method is highly complementary and especially use-

ful with these types of models as it can directly be used

when extra information is available for at least one of the

tasks or modalities. Unlike simple conditional models that

would require re-training under a fixed set of conditional in-

put variables, feedback-prop may be used with an arbitrary

set of target variables, and does not require re-training.

Optimizing the Input Space In terms of technical ap-

proach, feedback-prop has connections to previous works

that optimize over inputs. One prominent example is the

generation of adversarial examples that are constructed to

fool a CNN model [15]. This style of gradient-based opti-

mization over inputs is also leveraged in the task of image

style transfer [13]. Gradients over inputs are also used as

the supervisory signal in the generator network of Gener-

ative Adversarial Networks (GANs) [14]. Gradient-based

optimization has also been used to visualize, identify, or in-

terpret the intermediate representations learned by a deep

CNN [34, 6, 42, 44, 32, 5]. However, unlike these meth-

ods, we are still interested in the target predictions and not

the inputs. We find that CNN layers that lie somewhere in

the middle are more beneficial to optimize as pivot variables

under our model than the input image.

Deep Inference under Partial Annotations In terms

of setup, a relevant recent experiment was reported in

Hu et al [17]. This work introduces a novel deep Struc-

tured Inference Neural Network (SINN) model that can be

adapted to a setting where true values for a set of labels are

known at test time. We compare feedback-prop against a

re-implementation of SINN for fine-grained scene catego-

rization when a set of coarse scene categories are used as

known labels, demonstrating superior performance without

additional parameters. Tag completion is another relevant

problem [40], but our approach is not specific to multi-label

inference and can be easily applied to multiple diverse tasks.
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3. Method

This section presents our feedback-based inference pro-

cedure. We start from the derivation of a basic single-

layer feedback-prop inference (Sec 3.1), and introduce our

two more general versions: layer-wise feedback-prop (LF)

(Sec 3.2), and our more efficient residual feedback-prop

(RF) (Sec 3.3).

3.1. Feedbackprop

Let us consider a feed-forward CNN already trained to

predict multiple outputs for either a single task or multi-

ple tasks. Let Ŷ = F (X,Θ) represent this trained CNN,

where X is an input image, Ŷ is a set of predicted out-

put variables, and Θ are the model parameters. Now, let us

assume that the true values for some output variables are

known at inference time, and split the variables into known

and unknown: Y = (Yk, Yu). The neural network by de-

fault makes a joint prediction for both sets of variables:

Ŷ = (Ŷk, Ŷu) = (Fk(X,Θ), Fu(X,Θ)). Given a known

set of true values Yk, we can compute a partial loss only

with respect to this set for input sample X as L(Yk, Ŷk).
The key idea behind feedback-prop is to back-propagate

this partially observed loss to the network, and iteratively

update the input X in order to re-compute the predictions

on the set of unknown variables Yu. Formally, our basic

feedback-based procedure can be described as follows:

X∗ = argminXL(Yk, Fk(X,Θ)), (1)

Ŷ ∗
u = Fu(X

∗,Θ), (2)

where we optimize X , which acts as our pivoting variable,

and forward-propagate to compute refined unknown vari-

ables Ŷ ∗
u . In fact, we need not be restricted to optimize

X and can generalize the formulation to optimize arbitrary

intermediate representations. Let us denote the l-th layer

internal neural activations of the network as al, and the dis-

sected network at layer l by Y = F (l)(al), which can be

interpreted as a truncated forward propagation in the orig-

inal network from layer l until the output. Then, we can

define single-layer feedback-prop as follows:

a∗l = argminal
L(Yk, F

(l)
k (al,Θ)), (3)

Ŷu = F (l)
u (a∗l ,Θ). (4)

In this formulation, we optimize intermediate representa-

tions at an arbitrary layer in the original model shared by

Fk and Fu. These intermediate neural activations act as

pivoting variables. Note that equation 1 is a special case

of single-layer feedback-prop when a0 ≡ X .

In our description of feedback-prop we define the output

space Y as a set of variables. Each output variable can be

arbitrarily complex, diverse and seemingly unrelated, as is

often the case in multi-task models. In the simpler scenario
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Figure 2: Overview of our feedback-prop iterative inference

procedure consisting of three basic steps - (a) full forward

propagation to predict initial scores for all labels, (b) trun-

cated backward propagation to update intermediate activa-

tions based on the partial evidence (known labels), and (c)

truncated forward propagation to update the scores for the

unknown labels.

of multi-label prediction, each variable corresponds to a la-

bel. We illustrate in Figure 2 an overview of our feedback-

prop approach for a multi-label prediction model.

3.2. Layerwise Feedbackprop (LF)

In this section we propose a more general version of

feedback-prop that leverages multiple intermediate repre-

sentations in a CNN across several layers: Layer-wise

feedback-prop. This procedure minimizes a loss function

L(Yk, Fk(A,Θ)) by optimizing a set of topologically sorted

intermediate activation A ≡ {ai, ai+1, · · · , aN} starting at

layer i. However, in feed-forward models, al is needed to

compute al+1. This requires optimizing these multiple in-

termediate representations using layer-by-layer sequential

updates. We describe layer-wise feedback-prop in detail

in Algorithm 1. Forward represents a truncated forward

propagation from the given input at a certain layer until

the output layer, and Backward represents a truncated back-

propagation of gradients from the output layer to the in-

termediate pivoting activations. Given an input image X ,

known values for variables Yk, and a topologically sorted

900



Algorithm 1 Layer-wise Feedback-prop Inference

Input: Input image X , known labels Yk, and a list of layers

L ≡ {i, i+ 1, · · · , N}
Output: Prediction Ŷu

1: a
(T )
0 := X

2: for l ∈ L do

3: Ŷ
(0)
k , a

(0)
l := Forward(a

(T )
l−1)

4: for t = 0 to T do

5: Compute the partial loss L(Yk, Ŷ
(t)
k )

6:
∂L

∂a
(t)
l

:= Backward(L)

7: a
(t+1)
l := a

(t)
l − λ ∂L

∂a
(t)
l

8: Ŷ
(t+1)
k := Forward(a

(t+1)
l )

9: end for

10: end for

11: Ŷu = Forward(a
(T )
N )

list of layers L, the algorithm optimizes internal represen-

tations al in topological order. More generally, these layers

do not need to be consecutive. The updates are performed

in this fashion so that the algorithm freezes activation vari-

able al layer-by-layer from the input side, so that after each

freeze, the next variable can be initialized to apply feedback

updates. In Algorithm 1, λ is an update rate and iterative

SGD steps are repeated T times. The update operation (line

7) may be replaced by other types of SGD update rules such

as SGD with momentum, AdaGrad, or Adam. Note that the

backward, and forward propagation steps only go back as

far as al, and do not require a full computation through the

entire network. The single-layer feedback-prop inference in

Sec 3.1 is a special case of layer-wise feedback-prop when

|L| = 1. The choice of layers will affect the quality of

feedback-prop predictions for unknown targets.

3.3. Residual Feedbackprop (RF)

The proposed layer-wise feedback-prop (LF) inference

can use an arbitrary set of intermediate layer activations, but

is inefficient due to the double-loop in Algorithm 1, where

layers have to be updated individually in each pass. Here,

we refine our formulation even further by updating multiple

layer activations in a single pass through the incorporation

of auxiliary residual variables. We name this version of our

inference procedure residual feedback-prop (RF) inference.

The core idea in RF is to inject an additive variable (feed-

back residual) to intermediate representation variables, and

optimize over residuals instead of directly updating inter-

mediate representations. Notice that incorporation of these

residual variables takes place only during inference, and

does not involve any modifications in learning, or whether

the underlying model itself uses residuals. We add a feed-

back residual variable rl to the unit activation al in the for-

Algorithm 2 Residual Feedback-prop Inference

Input: Input image X , known labels Yk, and a list of layers

L ≡ {i, i+ 1, · · · , N}
Output: Prediction Ŷu

1: r
(0) ≡ {r

(0)
l |l ∈ L} := 0

2: a0 := X
3: for t = 0 to T do

4: for l ∈ L do

5: a
(t)
l := Forward(a

(t)
l−1) + r

(t)
l

6: end for

7: Ŷ
(t)
k := Forward(a

(t)
N )

8: Compute the partial loss L(Yk, Ŷ
(t)
k )

9:
∂L
∂r(t)

:= Backward(L)

10: r
(t+1) := r

(t) − λ ∂L
∂r(t)

11: end for

12: Ŷu = Forward(a
(T )
N )

ward propagation at layer l as follows:

al = fl(al−1, θl) + rl, (5)

where fl is the layer transformation function at l (e.g.

convolutional filtering) with model parameters θl. When

rl = 0, this is a regular forward-propagation. Instead of

directly updating al by feedback-prop as in LF, we only

update residual variables rl. Figure 3 shows how residual

variables are incorporated in a model during inference.

Algorithm 2 describes in detail how residual feedback-

prop operates. The procedure starts by setting residuals to

zero (line 1). The inner-loop is a truncated feed-forward

propagation starting in activation al but using additive resid-

uals. Notice that this computation does not incur sig-

nificant computational overhead compared to regular for-

ward propagation. Updates do not require a double-loop

(lines 9-10), therefore avoiding repetitive gradient compu-

tations as in LF. We show in our experiments that residual-

based feedback-prop performs comparably to layer-wise

r1

Yo

Yu

loss

r2 r3

forward

backward

X

a1 a2 a3

+ + +

Figure 3: In our RF approach, residual variables rl are up-

dated instead of intermediate activations al in order to up-

date all layers in a single pass.
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feedback-prop in multi-label and multi-task models, and is

more efficient when updating multiple layers (Sec 6).

4. Experiments

We evaluate our approach on four tasks 1) Multi-label

image annotation with incomplete labels, where incom-

plete labels are simulated at test time by artificially split-

ting the total vocabulary of labels into known and unknown

(Sec 4.1), 2) Hierarchical scene categorization, where true

values for coarse scene categories are known and the aim

is to predict fine-grained scene categories (Sec 4.2), 3) Au-

tomatic annotation of news images in-the-wild, where sur-

rounding news text is known, and a set of visual words from

image captions are the unknown targets (Sec 4.3), and 4) A

multi-task joint prediction of image captions and object cat-

egories, where the goal during inference is to predict image

captions as the unknown target (Sec 4.4).

4.1. Multilabel Image Annotation

This experiment uses the COCO dataset [22], contain-

ing around 120k images, each with 5 human-annotated cap-

tions. We use the standard split in the dataset that has

82, 783 images in the training set and subdivide the standard

validation set into 20, 000 images for validation and 20, 504
for testing. Our task is to predict visual concepts for any

given image similar to the visual concept classifier used by

Fang et al [11], which we use as our baseline. We build a

vocabulary of concepts using the most frequent 1000 words

in captions from the training set after tokenization, lemma-

tization, and stop-word removal. We first train a multi-label

prediction model by modifying a standard CNN to gener-

ate a 1000-dimensional output, and learn logistic regressors

using the following loss function:

L = −

d∑

i=1

1

N

N∑

j=1

λj [yij log σ(fj(Ii,Θ)) +

(1− yij) log(1− σ(fj(Ii,Θ)))],

(6)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function,

fj(Ii,Θ) is the unnormalized output score for category j
given image Ii, and Θ are the model parameters of the un-

derlying CNN. Intuitively, each term in this loss function

encourages activation fj to increase if label yij = 1 or

decrease otherwise. Weight parameters λj count the con-

tribution of each class j differently. These parameters are

designed to handle the extreme class imbalance in multi-

label image annotation - larger values of lambda are as-

signed to classes that occur less frequently. Particularly, we

set λj =
∑|D|

i=1(1− yij) /
∑|D|

i=1 yij . We load weights from

models pretrained on ImageNet to train our models.

For feedback-prop evaluation, we put aside a fixed set

of 500 targets as unknown. We measure the mean average

precision, mAP, (area under the precision-recall curve) av-

eraged on the unknown label set as we experiment with dif-

ferent amounts of known labels, from 50 to the total comple-

ment set of 500 labels. Figure 4 reports the results for both

LF and RF, using several intermediate representations from

VGG-16 [35] and Resnet-18 [16]. We determine the update

rate parameter and number of iterations using the validation

split, and report results on the test split. When the amount

of known labels is less than 500, we run 5 rounds with ran-

domly sampled labels and report average performance.

Observations: Remarkably, for both LF and RF, accuracy

increases with the amount of partial evidence without any

apparent diminishing returns. Different layers achieve dif-

ferent levels of accuracy, indicating that information shared

with the target label space changes across internal convolu-

tional layers in both Resnet-18 and VGG-16. Figure 4(a)

shows that VGG-16 achieves a mAP on the set of unknown

labels of 27.09 when using only the image as input, and the

mAP is improved to 27.41 on average when only using a

random sample of 50 known labels when using the outputs

of Conv13 as pivoting variables under LF. Note that these

50 known labels are potentially unrelated to the 500 labels

the model is trying to predict, and most of them only pro-

vide weak negative evidence (e.g. yij = 0). When using the

full complement set of 500 labels, the predictions achieve

29.76 mAP, which represents a 9.8% relative improvement.

Figure 4(b) shows that Resnet-18 achieves a mAP of 24.05
using no additional evidence. RF under Conv13 outputs

as pivoting variables can reach 26.74 mAP given the non-

overlapping set of 500 known labels as partial evidence, a

relative improvement of 11.2%.

4.2. Hierarchical Scene Categorization

We apply feedback-prop on scene categorization on the

SUN dataset [41]. This dataset has images annotated with

397 fine-grained scene categories, 16 general scene cate-

gories, and 3 coarse categories. We follow the same ex-

perimental setting of train, validation and test split ratio re-

ported in [1] with 50, 10 and 40 images from every scene

category. Our task is to infer fine-grained categories given

true values for coarse categories as it was performed in Hu

et al [17]. For evaluation, we compute multi-class accuracy

(MC Acc) and intersection-over-union accuracy (IoU Acc)

as well as mean average precision (mAP ) averaged over all

categories.

Observations: Table 1 reports results averaged over 5 runs.

We use a CNN + Softmax classifier as our first Baseline,

and as a second baseline a CNN + Softmax classifier that

uses true values for coarse categories in the form of a binary

indicator vector as additional input to the classifier (Base-

line + PL). Similar baselines were used in Hu et al [17]. Ad-

ditionally, we re-implement the Structured Inference Neural

Network (SINN) of Hu et al [17] which outputs three lev-
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(b) Feedback-prop on ResNet18

Figure 4: Performance (mAP) of LF and RF using different intermediate activations (Conv5, 10, 13) against the amount of

known labels in the COCO multi-label image annotation task: the more the labels, the higher the performance.

MC Acc mAP IoU Acc

Baseline [17] 52.83±0.24 56.17±0.21 35.90±0.22

Bsln + PL [17] 53.15±0.27 56.49±0.24 36.20±0.26

SINN + PL [17] 54.30±0.35 58.45±0.31 37.28±0.34

Ours (LF) 54.93±0.42 58.52±0.34 37.86±0.39

Ours (RF) 55.01±0.35 58.70±0.26 37.95±0.33

Table 1: Feedback-prop on hierarchical scene categoriza-

tion in SUN397. Our methods (LF / RF) outperform base-

line methods on all metrics when partial labels are available.

els of predictions for fine-grained, general, and coarse scene

categories and connects them using a series of linear layers

modeling positive and negative relations in the target space

and in both top-down and bottom-up directions. Instead

of using WordNet to estimate label relations, we threshold

pearson correlation coefficients between target variables in

the training split. Both LF and RF successfully outperform

the baselines and the previously proposed model in all met-

rics. Notice that our proposed method does not require a

significant amount of additional parameters. In these exper-

iment RF and LF use as pivoting variables the outputs of

Conv-{2, 3, 4, 5}. For this experiment, all models rely on

Alexnet [21] pretrained in the Places365 dataset [45].

4.3. Visual Concept Prediction on News Images

In this experiment, we train a multi-task model that

jointly predicts a set of visual concepts from news image

captions and a separate set of concepts from surrounding

text. We first collected a dataset of news images with as-

sociated captions and text from the BBC news website.

Our splits have 153, 364 images for training, 10, 213 im-

ages for validation, and 10, 307 images for testing. Both

tasks are trained under the same multi-label loss and setup

from Sec 4.1. The vocabulary for visual concepts from im-

LF-conv-40 RF-conv-22

no-text 19.92 19.92

25% text 21.33 21.27

50% text 22.16 22.23

75% text 22.42 22.51

100% text 22.57 22.57

Table 2: mAP of visual concept predictions on news images

without vs with surrounding news text.

age captions consists of the 500 most frequent nouns, and

the vocabulary for visual concepts from surrounding news

texts consists of the top 1, 000 most frequent nouns. We

use Resnet-50 [16] trained under the sum of the losses for

each task. At inference time, we predict the visual concepts

defined by words in captions (unknown labels), given the

input image and the surrounding news text (known labels).

We evaluate LF using layer Conv40 and RF under Conv22

as pivoting variables respectively, which we generally find

to perform best in previous experiments. Table 2 shows the

mAP across the set of unknown labels in the test split with

varying amounts of additional partial evidence (surrounding

news text).

Observations: The mAP for predicting the set of unknown

labels improves from 19.921% (only using input images)

to 21.329% even when only using the first 25% of the sur-

rounding news text as additional evidence. Using a larger

portion of surrounding news text consistently increases the

accuracy. When using all the available surrounding text

for each news image the mAP improves on average from

19.92% to 22.57%, a relative improvement of 13.3%. This

is remarkable since –unlike our previous experiment– the

surrounding text might also contain many confounding sig-

nals and noisy labels. We show qualitative examples of LF

using all surrounding text as partial evidence in Figure 6.
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LF RF

no-fp 26.98 26.98

fp-input 29.14 29.53

fp-conv-1 29.72 29.56

fp-conv-4 29.65 29.66

fp-conv-7 29.77 29.79

fp-conv-10 29.82 29.74

fp-conv-13 27.59 27.87

Table 3: VGG-16 layer-wise analysis.

LF RF

no-fp 24.08 24.08

fp-input 24.74 27.06

fp-conv-1 24.16 25.91

fp-conv-5 24.57 25.76

fp-conv-9 25.94 26.71

fp-conv-13 26.80 27.26

fp-conv-17 24.19 24.22

Table 4: Resnet-18 layer-wise analysis.

LF RF

no-fp 26.94 26.94

fp-input 28.35 29.28

fp-conv-1 27.60 29.49

fp-conv-10 29.54 29.80

fp-conv-22 29.61 29.89

fp-conv-40 29.71 29.67

fp-conv-49 27.14 27.14

Table 5: Resnet-50 layer-wise analysis.

4.4. Joint Captioning and Object Categorization

We train a multi-task CNN model on the COCO

dataset [22] to jointly perform caption generation and multi-

label object categorization. We use Resnet-50 with two ad-

ditional output layers after the last convolutional layer: a

multi-label prediction layer with 80-categorical outputs cor-

responding to object annotations, and an LSTM decoder for

caption generation as proposed by Vinyals et al [37]. We

shuffle images in the standard COCO train and validation

splits and use 5000 images for validation and test, and the

remaining samples for training. We perform the same pre-

processing on images and captions as in [19]. We report

BLEU[27], METEOR[8] and CIDEr[36] scores for caption-

ing and mean average precision(mAP) for object catego-

rization. This model achieves a 0.939 CIDEr score and

71.3% mAP. In order to evaluate feedback-prop, we use

object annotations as known and analyze the effects on the

quality of the predicted captions – our unknown target. Ta-

ble 6 presents results under this regime on the test split.

BLEU-4 ROUGE CIDEr

no-fp [37] 28.65 0.5267 0.9466

LF-input 29.20 0.5290 0.9647

LF-conv-10 29.78 0.5333 0.9859

LF-conv-22 29.71 0.5327 0.9834

LF-conv-40 29.66 0.5332 0.9854

LF-conv-10, 40 29.73 0.5329 0.9872

RF-conv-10, 40 29.63 0.5337 0.9922

Table 6: Feedback-prop in multi-task learning: caption gen-

eration results benefit from object annotations as partial ev-

idence using feedback-prop.

Observations: Feedback propagation between target out-

puts and intermediate representations (including inputs)

helps generate better image captions. We observe that using

LF with any layer as pivot, improves the predictions under

all standard metrics. Furthermore, we observe that jointly

using the outputs of layers Conv10 and Conv40 as pivots

can outperform updating the outputs of any single layer. RF

on Conv10 and Conv40 reaches the highest CIDEr score,

improving from 0.946 to 0.992.

5. What Layers are the Most Useful?

In this section, we analyze where are the most useful in-

termediate representations in a CNN under feedback-prop.

In other words, what are the intermediate layers of a CNN

that seem to allow maximal sharing of information among

target predictions. We first train three multi-label models

based on Resnet-18, Resnet-50, and VGG-16 on the COCO

multi-label task from Sec 4.1. For each model we report in

tables 3, 4, and 5 the best validation accuracy that can be

reached with the outputs of several individual layers as piv-

ots using both LF and RF. We observe that in both VGG and

Resnets, middle layers seem to be the most useful compared

to layers closer to inputs or outputs. Specifically, we find

that Conv13 in Resnet-18, Conv20 and Conv40 in Resnet-

50, and Conv7 and Conv10 in VGG-16 achieve the best per-

formance given the same amount of partial evidence (a fixed

set of 500 known labels and 500 unknown labels). These re-

sults seem analogous to a recent study on neural networks

where mutual information between intermediate represen-

tations with respect to both inputs and outputs is analyzed

during training [33]. It would be interesting to devise an

approach to automatically identify what layers are most ef-

fective to use as pivots under feedback-prop using an infor-

mation theoretic approach.

6. Computational Efficiency

Here, we benchmark our two proposed feedback-prop

methods. We use Resnet-50 multi-label model of Sec 4.1

and select a sequence of layers including input image,

input image conv1 conv10 conv22 conv40 conv49
start layer

0.0

0.5

1.0

1.5

2.0

tim
e 

co
ns

um
ed

(1
0

2 s
)

LF
RF

Figure 5: Benchmark results for LF and RF. The x-axis

shows the earliest layer used, after which all the layers are

updated. RF becomes efficient as more layers are used.
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no feedback-prop predictions:

claim:0.891679 

try:0.592581 

attack:0.278426

city:0.155168 

hundred:0.133139 

woman:0.120313 

police:0.119733 

report:0.104096

school:0.060947 

people:0.054434 

light:0.050388

part:0.045863

force:0.043337

area:0.042076

include:0.042012 

security:0.039852

try:0.319411 

show:0.186112

scene:0.158961

news:0.110425

people:0.092683 

attack:0.059946

pay:0.050996

lead:0.049296

official:0.790290 

home:0.310297 

child:0.180287 

people:0.139492 

woman:0.088490

house:0.076746 

camp:0.064999 

use:0.063372

ceremony:0.506596 

thousand:0.159579

pay:0.132895

game:0.104834

deal:0.080287

people:0.071572 

open:0.048961

city:0.046278

people:0.494557

light:0.325617 

launch:0.279506

sir:0.270729

point:0.243272

leave:0.150900

centre:0.133657

campaign:0.110601

with feedback-prop predictions:

claim:0.913860 

attack:0.910921

bomb:0.267836

try:0.240699

body:0.159527

woman:0.123605

relative:0.121821

militant:0.119986

clash:0.948569

protester:0.774579

pro:0.520027

security:0.405497

force:0.176731

police:0.159598

anti:0.122141

government:0.064173

try:0.385340

protest:0.260692

medium:0.130189

china:0.119549

court:0.100340

show:0.086785

police:0.069903

woman:0.067833

camp:0.925969 

refugee:0.908903 

home:0.293703 

child:0.255574 

woman:0.147657 

people:0.104480 

syria:0.088542 

official:0.061292

school:0.858543 

game:0.284368

play:0.234772

thousand:0.112460 

parent:0.085781

people:0.076458 

start:0.061948

celebrate:0.058791

vote:0.488819

campaign:0.447369

people:0.388327

centre:0.309245

ireland:0.271122

leave:0.263814

point:0.179191

minister:0.133364

news text labels:

people, government, 

tell, police, country, 

state, group, report, 

find, place, school, 

public, news, attack, 

force, want, official, 

mean, support, death, 

security, put, use, 

leave, market, 

authority, office, claim, 

play, town, body, air, 

agency, india, past, …

country, work, part, 

party, minister, report, 

number, school, leader, 

news, meet, house, 

force, court, power, 

want, official, end, 

council, support, 

election, death, 

security, use, win, 

university, street, vote, 

authority, office, fire, 

term, remain, prime, …

people, government, 

tell, police, country, 

part, family, child, 

party, group, report, 

company, president, 

need, leader, public, 

news, business, house, 

help, force, court, case, 

member, want, official, 

china, set, death, 

security, hold, team, 

street, men, look, …

action, start, fund, 

price, move, 

technology, syria, 

thousand, name, risk, 

offer, hope, saw, food, 

face, education, girl, 

act, crime, course, 

violence, crisis, book, 

age, return, france, 

organisation, space, 

access, try, hundred, 

provide, …

union, today, secretary, 

offer, speak, key, 

executive, education, 

parent, development, 

stop, radio, energy, 

visit, mile, everyone, 

space, stage, club, 

opportunity, trust, 

department, sport, 

teacher, target, sir, 

commission, football, 

position, majority, …

prime, start, statement, 

mark, station, act, 

person, age, return, 

ireland, morning, 

provide, island, couple, 

poll, candidate, 

referendum, amount, 

ask, voter, protect, 

date, proposal, bst, 

citizen, sex, difference, 

agree, one, limit, 

contract, count, …

Figure 6: Qualitative examples for visual concept prediction for News Images. Second row shows results of a multi-label

prediction model (no feedback-prop), the next row shows results obtained using LF where words from surrounding news text

(shown in blue) are used as partial evidence. Predictions also among the true labels are highlighted in bold. While news text

contains many words that seem marginally relevant, feedback-prop still leverages them effectively to improve predictions.

Surrounding news text provides high-level feedback to make predictions that would otherwise be hard.

conv1, conv10, conv22, conv40, and conv49. We pick one

layer as initial layer and update this layer with all subse-

quent layers. For example, if conv40 is the initial layer, we

also update conv49. We use a single 12GB NVIDIA Pascal

Titan X GPU and record average inference times per image

per iteration. Figure 5 shows that as more layers are used as

pivots, RF shows the more gains over LF. RF is generally

faster, with a slight increase in memory footprint.

7. Conclusions

In the context of deep CNNs, we found that by optimiz-

ing the intermediate representations for a given input sam-

ple during inference with respect to a subset of the target

variables, predictions for all target variables improve their

accuracy. We proposed two variants of a feedback prop-

agation inference approach to leverage this dynamic prop-

erty of CNNs and showed their effectiveness for making

predictions under partial evidence for general CNN models

trained in a multi-label or multi-task setting. As multi-task

models trained to solve a wide array of tasks such as Uber-

Net [20] emerge, we expect a technique such as feedback-

prop will become increasingly useful. An interesting fu-

ture direction would be devising an approach that leverages

feedback-based updates during training.
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