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Figure 1: We propose a generative adversarial framework for synthesizing 2048 × 1024 images from semantic label maps

(lower left corner in (a)). Compared to previous work [5], our results express more natural textures and details. (b) We can

change labels in the original label map to create new scenes, like replacing trees with buildings. (c) Our framework also

allows the user to edit the appearance of individual objects in the scene, e.g. changing the color of a car or the texture of a

road. Please visit our website for more side-by-side comparisons as well as interactive editing demos.

Abstract

We present a new method for synthesizing high-

resolution photo-realistic images from semantic label maps

using conditional generative adversarial networks (condi-

tional GANs). Conditional GANs have enabled a variety

of applications, but the results are often limited to low-

resolution and still far from realistic. In this work, we gen-

erate 2048 × 1024 visually appealing results with a novel

adversarial loss, as well as new multi-scale generator and

discriminator architectures. Furthermore, we extend our

framework to interactive visual manipulation with two ad-

ditional features. First, we incorporate object instance seg-

mentation information, which enables object manipulations

such as removing/adding objects and changing the object

category. Second, we propose a method to generate di-

verse results given the same input, allowing users to edit

the object appearance interactively. Human opinion stud-

ies demonstrate that our method significantly outperforms

existing methods, advancing both the quality and the reso-

lution of deep image synthesis and editing.
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1. Introduction

Photo-realistic image rendering using standard graphics

techniques is involved, since geometry, materials, and light

transport must be simulated explicitly. Although existing

graphics algorithms excel at the task, building and edit-

ing virtual environments is expensive and time-consuming.

That is because we have to model every aspect of the world

explicitly. If we were able to render photo-realistic images

using a model learned from data, we could turn the process

of graphics rendering into a model learning and inference

problem. Then, we could simplify the process of creating

new virtual worlds by training models on new datasets. We

could even make it easier to customize environments by al-

lowing users to simply specify the overall semantic struc-

ture rather than modeling geometry, materials, or lighting.

In this paper, we discuss a new approach that produces

high-resolution images from semantic label maps. This

method has a wide range of applications. For example, we

can use it to create synthetic training data for training vi-

sual recognition algorithms, since it is much easier to create

semantic labels for desired scenarios than to generate train-

ing images. Using semantic segmentation methods, we can

transform images into a semantic label domain, edit the ob-

jects in the label domain, and then transform them back to

the image domain. This method also gives us new tools for

higher-level image editing, e.g., adding objects to images or

changing the appearance of existing objects.

To synthesize images from semantic labels, one can use

the pix2pix method, an image-to-image translation frame-

work [21] which leverages generative adversarial networks

(GANs) [16] in a conditional setting. Recently, Chen and

Koltun [5] suggest that adversarial training might be un-

stable and prone to failure for high-resolution image gen-

eration tasks. Instead, they adopt a modified perceptual

loss [11, 13, 22] to synthesize images, which are high-

resolution but often lack fine details and realistic textures.

Here we address two main issues of the above state-

of-the-art methods: (1) the difficulty of generating high-

resolution images with GANs [21] and (2) the lack of de-

tails and realistic textures in the previous high-resolution

results [5]. We show that through a new, robust adversarial

learning objective together with new multi-scale generator

and discriminator architectures, we can synthesize photo-

realistic images at 2048× 1024 resolution, which are more

visually appealing than those computed by previous meth-

ods [5,21]. We first obtain our results with adversarial train-

ing only, without relying on any hand-crafted losses [43]

or pre-trained networks (e.g. VGGNet [47]) for perceptual

losses [11,22] (Figs. 7c, 9b). Then we show that adding per-

ceptual losses from pre-trained networks [47] can slightly

improve the results in some circumstances (Figs. 7d, 9c) if

a pre-trained network is available. Both results outperform

previous works substantially in terms of image quality.

Figure 2: Example results of using our framework for translating

edges to high-resolution natural photos, using CelebA-HQ [26]

and internet cat images.

Furthermore, to support interactive semantic manipula-

tion, we extend our method in two directions. First, we

use instance-level object segmentation information, which

can separate different object instances within the same cat-

egory. This enables flexible object manipulations, such as

adding/removing objects and changing object types. Sec-

ond, we propose a method to generate diverse results given

the same input label map, allowing the user to edit the ap-

pearance of the same object interactively.

We compare against state-of-the-art visual synthesis sys-

tems [5, 21], and show that our method outperforms these

approaches regarding both quantitative evaluations and hu-

man perception studies. We also perform an ablation study

regarding the training objectives and the importance of

instance-level segmentation information. In addition to se-

mantic manipulation, we test our method on edge2photo ap-

plications (Fig. 2), which shows the generalizability of our

approach. Our code and data are available at our website.

Please check out the full version of our paper at arXiv.

2. Related Work

Generative adversarial networks Generative adversar-

ial networks (GANs) [16] aim to model the natural image

distribution by forcing the generated samples to be indistin-

guishable from natural images. GANs enable a wide variety

of applications such as image generation [1, 41, 60], rep-

resentation learning [44], image manipulation [62], object

detection [32], and video applications [37, 50, 52]. Various

coarse-to-fine schemes [4] have been proposed [9,19,26,55]

to synthesize larger images (e.g. 256 × 256) in an uncon-

ditional setting. Inspired by their successes, we propose a

new coarse-to-fine generator and multi-scale discriminator

architectures suitable for conditional image generation at a

much higher resolution.

Image-to-image translation Many researchers have

leveraged adversarial learning for image-to-image transla-

tion [21], whose goal is to translate an input image from

one domain to another domain given input-output image

pairs as training data. Compared to L1 loss, which often

leads to blurry images [21, 22], the adversarial loss [16]

has become a popular choice for many image-to-image

tasks [10, 24, 25, 31, 40, 45, 53, 58, 64]. The reason is that
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the discriminator can learn a trainable loss function and

automatically adapt to the differences between the gener-

ated and real images in the target domain. For example,

the recent pix2pix framework [21] used image-conditional

GANs [38] for different applications, such as transforming

Google maps to satellite views and generating cats from

user sketches. Various methods have also been proposed to

learn an image-to-image translation in the absence of train-

ing pairs [2, 33, 34, 46, 49, 51, 54, 63].

Recently, Chen and Koltun [5] suggest that it might be

hard for conditional GANs to generate high-resolution im-

ages due to the training instability and optimization issues.

To avoid this difficulty, they use a direct regression objective

based on a perceptual loss [11, 13, 22] and produce the first

model that can synthesize 2048 × 1024 images. The gen-

erated results are high-resolution but often lack fine details

and realistic textures. Our method is motivated by their suc-

cess. We show that using our new objective function as well

as novel multi-scale generators and discriminators, we not

only largely stabilize the training of conditional GANs on

high-resolution images, but also achieve significantly bet-

ter results compared to Chen and Koltun [5]. Side-by-side

comparisons clearly show our advantage (Figs. 1, 7, 8, 9).

Deep visual manipulation Recently, deep neural net-

works have obtained promising results in various image

processing tasks, such as style transfer [13], inpainting [40],

colorization [56], and restoration [14]. However, most of

these works lack an interface for users to adjust the current

result or explore the output space. To address this issue,

Zhu et al. [62] developed an optimization method for edit-

ing the object appearance based on the priors learned by

GANs. Recent works [21, 45, 57] also provide user inter-

faces for creating novel imagery from low-level cues such

as color and sketch. All of the prior works report results on

low-resolution images. Our system shares the same spirit

as this past work, but we focus on object-level semantic

editing, allowing users to interact with the entire scene and

manipulate individual objects in the image. As a result,

users can quickly create a novel scene with minimal effort.

Our interface is inspired by prior data-driven graphics sys-

tems [6, 23, 28]. But our system allows more flexible ma-

nipulations and produces high-res results in real-time.

3. Instance-Level Image Synthesis

We propose a conditional adversarial framework for gen-

erating high-resolution photo-realistic images from seman-

tic label maps. We first review our baseline model pix2pix

(Sec. 3.1). We then describe how we increase the photo-

realism and resolution of the results with our improved ob-

jective function and network design (Sec. 3.2). Next, we

use additional instance-level object semantic information to

further improve the image quality (Sec. 3.3). Finally, we in-

troduce an instance-level feature embedding scheme to bet-

ter handle the multi-modal nature of image synthesis, which

enables interactive object editing (Sec. 3.4).

3.1. The pix2pix Baseline

The pix2pix method [21] is a conditional GAN frame-

work for image-to-image translation. It consists of a gen-

erator G and a discriminator D. For our task, the objective

of the generator G is to translate semantic label maps to

realistic-looking images, while the discriminator D aims to

distinguish real images from the translated ones. The frame-

work operates in a supervised setting. In other words, the

training dataset is given as a set of pairs of corresponding

images {(si,xi)}, where si is a semantic label map and xi

is a corresponding natural photo. Conditional GANs aim

to model the conditional distribution of real images given

the input semantic label maps via the following minimax

game: minG maxD LGAN(G,D), where the objective func-

tion LGAN (G,D) 1 is given by

E(s,x)[logD(s,x)] + Es[log(1−D(s, G(s))]. (1)

The pix2pix method adopts U-Net [42] as the generator

and a patch-based fully convolutional network [35] as the

discriminator. The input to the discriminator is a channel-

wise concatenation of the semantic label map and the cor-

responding image. The resolution of the generated images

is up to 256× 256. We tested directly applying the pix2pix

framework to generate high-resolution images, but found

the training unstable and the quality of generated images

unsatisfactory. We therefore describe how we improve the

pix2pix framework in the next subsection.

3.2. Improving Photorealism and Resolution

We improve the pix2pix framework by using a coarse-to-

fine generator, a multi-scale discriminator architecture, and

a robust adversarial learning objective function.

Coarse-to-fine generator We decompose the generator

into two sub-networks: G1 and G2. We term G1 as the

global generator network and G2 as the local enhancer

network. The generator is then given by the tuple G =
{G1, G2} as visualized in Fig. 3. The global generator net-

work operates at a resolution of 1024 × 512, and the local

enhancer network outputs an image with a resolution that is

4× the output size of the previous one (2× along each im-

age dimension). For synthesizing images at an even higher

resolution, additional local enhancer networks could be uti-

lized. For example, the output image resolution of the gen-

erator G = {G1, G2} is 2048× 1024, and the output image

resolution of G = {G1, G2, G3} is 4096× 2048.

Our global generator is built on the architecture proposed

by Johnson et al. [22], which has been proven successful

for neural style transfer on images up to 512× 512. It con-

sists of 3 components: a convolutional front-end G
(F )
1 , a

1we denote Es , E
s∼pdata(s)

and E(s,x) , E(s,x)∼pdata(s,x)
.
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Figure 3: Network architecture of our generator. We first train a residual network G1 on lower resolution images. Then, an-

other residual network G2 is appended to G1 and the two networks are trained jointly on high resolution images. Specifically,

the input to the residual blocks in G2 is the element-wise sum of the feature map from G2 and the last feature map from G1.

set of residual blocks G
(R)
1 [18], and a transposed convolu-

tional back-end G
(B)
1 . A semantic label map of resolution

1024×512 is passed through the 3 components sequentially

to output an image of resolution 1024× 512.

The local enhancer network also consists of 3 com-

ponents: a convolutional front-end G
(F )
2 , a set of resid-

ual blocks G
(R)
2 , and a transposed convolutional back-end

G
(B)
2 . The resolution of the input label map to G2 is

2048× 1024. Different from the global generator network,

the input to the residual block G
(R)
2 is the element-wise sum

of two feature maps: the output feature map of G
(F )
2 , and

the last feature map of the back-end of the global generator

network G
(B)
1 . This helps integrating the global informa-

tion from G1 to G2.

During training, we first train the global generator and

then train the local enhancer in the order of their reso-

lutions. We then jointly fine-tune all the networks to-

gether. We use this generator design to effectively aggre-

gate global and local information for the image synthesis

task. We note that such a multi-resolution pipeline is a well-

established practice in computer vision [4] and two-scale is

often enough [3]. Similar ideas but different architectures

could be found in recent unconditional GANs [9, 19] and

conditional image generation [5, 55].

Multi-scale discriminators High-resolution image synthe-

sis poses a great challenge to the GAN discriminator de-

sign. To differentiate high-resolution real and synthesized

images, the discriminator needs to have a large receptive

field. This would require either a deeper network or larger

convolutional kernels. As both choices lead to an increased

network capacity, overfitting would become more of a con-

cern. Also, both choices require a larger memory footprint

for training, which is already a scarce resource for high-

resolution image generation.

To address the issue, we propose using multi-scale dis-

criminators. We use 3 discriminators that have an identi-

cal network structure but operate at different image scales.

We will refer to the discriminators as D1, D2 and D3.

Specifically, we downsample the real and synthesized high-

resolution images by a factor of 2 and 4 to create an image

pyramid of 3 scales. The discriminators D1, D2 and D3 are

then trained to differentiate real and synthesized images at

the 3 different scales, respectively. Although the discrimi-

nators have an identical architecture, the one that operates

at the coarsest scale has the largest receptive field. It has

a more global view of the image and can guide the gener-

ator to generate globally consistent images. On the other

hand, the discriminator operating at the finest scale is spe-

cialized in guiding the generator to produce finer details.

This also makes training the coarse-to-fine generator easier,

since extending a low-resolution model to a higher resolu-

tion only requires adding an additional discriminator at the

finest level, rather than retraining from scratch. Without the

multi-scale discriminators, we observe that many repeated

patterns often appear in the generated images.

With the discriminators, the learning problem then be-

comes a multi-task learning problem of

min
G

max
D1,D2,D3

∑

k=1,2,3

LGAN(G,Dk). (2)

Using multiple GAN discriminators at the same image scale

has been proposed in unconditional GANs [12]. Iizuka et

al. [20] add a global image classifier to conditional GANs

to synthesize globally coherent content for inpainting. Here

we extend the design to multiple discriminators at different

image scales for modeling high-resolution images.

Improved adversarial loss We improve the GAN loss in

Eq. (1) by incorporating a feature matching loss based on

the discriminator. This loss stabilizes the training as the

generator has to produce natural statistics at multiple scales.

Specifically, we extract features from multiple layers of the

discriminator, and learn to match these intermediate repre-

sentations from the real and the synthesized image. For ease

of presentation, we denote the ith-layer feature extractor of

discriminator Dk as D
(i)
k (from input to the ith layer of Dk).

The feature matching loss LFM(G,Dk) is then:

LFM(G,Dk) = E(s,x)

T∑

i=1

1

Ni

[||D
(i)
k (s,x)−D

(i)
k (s, G(s))||1],

(3)

where T is the total number of layers and Ni denotes the

number of elements in each layer. Our GAN discriminator
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(a) Boundary map (b) w/o boundary map (c) w/ boundary map

Figure 4: Using instance maps: (a) We extract a boundary

map from the instance map. (b)(c) With this information,

separating different objects becomes much easier.

feature matching loss is related to the perceptual loss [11,

13,22], which has been shown to be useful for image super-

resolution [31] and style transfer [22]. In our experiments,

we discuss how the discriminator feature matching loss and

the perceptual loss can be jointly used for further improving

the performance. We note that a similar loss is used for

training VAE-GANs [29].

Our full objective combines both GAN loss and feature

matching loss as:

min
G

(

(

max
D1,D2,D3

∑

k=1,2,3

LGAN(G,Dk)

)

+λ
∑

k=1,2,3

LFM(G,Dk)

)

(4)

where λ controls the importance of the two terms. Note

that for the feature matching loss LFM, Dk only serves as a

feature extractor and does not maximize the loss LFM.

3.3. Using Instance Maps

Existing image synthesis methods only utilize semantic

label maps [5, 21, 25], an image where each pixel value

represents the object class that the pixel belongs to. This

map does not differentiate objects of the same class. On the

other hand, an instance-level semantic label map contains a

unique object ID for each individual object. To incorporate

the instance map, a simple way would be to directly pass it

into the network, or encode it into a one-hot vector. How-

ever, both approaches are difficult to implement in practice,

since different images may contain different numbers of ob-

jects of the same category. A simple solution would be to

pre-allocate a fixed number of channels (e.g. 10) for each

class, but it fails when the number is set too small, and

wastes memory when the number is too large.

Instead, we argue that the most important information

the instance map provides, which is not available in the

semantic label map, is the object boundary. For example,

when a number of same-class objects are next to one an-

other, looking at the semantic label map alone cannot tell

them apart. This is especially true for the street scene since

many parked cars or walking pedestrians are often next to

one another. However, with the instance map, separating

these objects becomes an easier task.

Therefore, to extract this information, we first compute

the instance boundary map (Fig. 4a). In our implementa-

tion, a pixel in the instance boundary map is 1 if its ob-

ject ID is different from any of its 4-neighbors, and 0 oth-

erwise. The instance boundary map is then concatenated

with the one-hot vector representation of the semantic label

Figure 5: We apply instance-wise pooling to get features

uniform within each object. These features are then con-

catenated with the labels, and both E and G are trained

end-to-end to reconstruct the original image. This makes

the features capture high-level object information, like the

color of a car, which is missing in the label map.

map, and fed into the generator network. Similarly, the in-

put to the discriminator is the channel-wise concatenation of

the instance boundary map, the semantic label map, and the

real/synthesized image. Figure 4 shows an example demon-

strating the improvement by using object boundaries. Our

user study in Sec. 4 also shows the model with boundary

maps renders more photo-realistic object boundaries.

3.4. Learning an Instancelevel Feature Embedding

Image synthesis from semantic label maps is a one-to-

many mapping problem. An ideal image synthesis algo-

rithm should be able to generate diverse realistic images us-

ing the same semantic label map. Recently, several works

learn to produce a fixed number of discrete outputs given the

same input [5, 15] or synthesize diverse modes controlled

by a latent code that encodes the entire image [64]. Al-

though these approaches tackle the multi-modal image syn-

thesis problem, they are unsuitable for our image manipula-

tion task mainly for two reasons. First, the user has no intu-

itive control on which kinds of images the model would pro-

duce [5, 15]. Second, these methods focus on global color

and texture changes and allow no object-level control on the

generated content [64].

To generate diverse images and allow instance-level con-

trol, we add additional low-dimensional feature channels

for each instance in the image as input to the generator. We

show that, by manipulating these features, we can have flex-

ible control over the synthesis process. Note that since the

added features are continuous quantities, our model is, in

principle, capable of generating infinitely many images.

We train an encoder E to learn a feature map that corre-

sponds to the ground truth image. To make the features co-

herent within each instance, we add an instance-wise aver-

age pooling layer to the output of the encoder. The average

feature is then broadcasted to all the pixel locations of the

same instance. Figure 5 shows an example of the encoded

features. See our arXiv for a more detailed discussion.
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After obtaining this feature map E(x), we replace G(s)
with G(s, E(x)) in Eq. (4) by concatenating the label map

s and E(x) together, and train the encoder jointly with the

generator end-to-end. This enables the encoder to capture

the most representative features for the generator to use, for

example the colors of the cars, or textures of the road, with-

out explicitly telling the encoder what a “texture” is.

To perform interactive editing at inference time, after the

encoder is trained we first run it on all instances in the train-

ing images, and record the obtained features. Then we per-

form a K-means clustering on these features for each se-

mantic category. Each cluster thus encodes the features for

a specific style, for example, the asphalt or cobblestone tex-

ture for a road. At inference time, we randomly pick one

cluster center and use it as the encoded features. We ex-

perimented with the Kullback-Leibler loss [27] on the fea-

ture space for better test-time sampling as used in the recent

work [64], but found it quite hard for users to directly adjust

the latent vectors for each object. Instead, for each object,

we simply present K modes for users to choose from.

4. Results

We first provide a quantitative comparison against lead-

ing methods in Sec. 4.1. We then report a subjective human

perceptual study in Sec. 4.2. Finally, we show a few exam-

ples of interactive object editing results in Sec. 4.3.

Implementation details We use LSGANs [36] for sta-

ble training. In all experiments, we set the weight

λ = 10 (Eq. (4)) and K = 10 for K-means. We use 3-

dimensional vectors to encode features for each object in-

stance. We experimented with adding a perceptual loss

λ
∑N

i=1
1
Mi

[||F (i)(x) − F (i)(G(s))||1] to our objective

(Eq. (4)), where λ = 10 and F (i) denotes the i-th layer

with Mi elements of the VGG network. We observe that

this loss slightly improves the results. We name these two

variants as ours and ours (w/o VGG loss). Please find more

training and architecture details in our arXiv.

Datasets We conduct extensive comparisons and ablation

studies on Cityscapes dataset [7] and NYU Indoor RGBD

dataset [39]. We report additional qualitative results on

ADE20K dataset [61] and Helen Face dataset [30, 48].

Baselines We compare our method with two state-of-the-

art algorithms: pix2pix [21] and CRN [5]. We train pix2pix

models on high-res images with the default setting as only

256 × 256 images are provided. We produce the high-res

CRN images via the authors’ publicly available model.

4.1. Quantitative Comparisons

We adopt the same evaluation protocol from previous

image-to-image translation works [21, 63]. To quantify the

quality of our results, we perform semantic segmentation

on the synthesized images, and compare how well the pre-

dicted segments match the input. The intuition is that if we

pix2pix [21] CRN [5] Ours Oracle

Pixel acc 78.34 70.55 83.78 84.29

Mean IoU 0.3948 0.3483 0.6389 0.6857

Table 1: Semantic segmentation scores on results by differ-

ent methods on the Cityscapes dataset [7]. Our result out-

performs the other methods by a large margin and is very

close to the accuracy on original images (i.e., the oracle).

pix2pix [21] CRN [5]

Ours 93.8% 86.2%

Ours (w/o VGG) 94.6% 85.2%

Table 2: Pairwise comparison results on the Cityscapes

dataset [7]. Each cell lists the percentage where our result

is preferred over the other method. Chance is at 50%.

can produce realistic images that correspond to the input

label map, an off-the-shelf semantic segmentation model

(e.g. PSPNet [59] that we use) should be able to predict

the ground truth label. The obtained segmentation accu-

racy is reported in Table 1. As can be seen, for both pixel-

wise accuracy and mean intersection-over-union (IoU), our

method outperforms the other methods by a large margin.

Moreover, our result is very close to the result on the origi-

nal images, which is theoretically the ”upper bound” of the

realism we can achieve.

4.2. Human Perceptual Study

We further evaluate our algorithm via a human subjective

study. We perform pairwise A/B tests deployed on the Ama-

zon Mechanical Turk (MTurk) platform on the Cityscapes

dataset [7]. We follow the same experiment procedure as

described in Chen and Koltun [5]. More specifically, two

different kinds of experiments are conducted: unlimited

time and limited time, as explained below.

Unlimited time For this task, the workers are given two

images at once, each of which is synthesized by a differ-

ent method for the same label map. They are then given

unlimited time to select which image looks more natural.

The left-right order and the image order are randomized

to ensure unbiased comparisons. All 500 Cityscapes test

images are compared 10 times, resulting in 5, 000 human

judgments for each method. In this experiment, we use the

model trained on labels only (without instance maps) to en-

sure a fair comparison. Table 2 shows that both variants of

our method outperform the other methods significantly.

Limited time Next, for the limited time experiment, we

compare our result with CRN and the original image

(ground truth). In each comparison, two of the three im-

ages are picked, and they are shown for a short period of

time. We randomly select a duration between 1/8 seconds

and 8 seconds, as adopted by prior work [5]. This evaluates

how quickly the difference between the images can be per-
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Figure 6: Limited time comparison results. Each line shows

the percentage when one method is preferred over the other.

ceived. The comparison results at different time intervals

are shown in Fig. 6. It can be seen that as the given time

becomes longer and longer, the differences between these

three images become more apparent and easy to observe.

Figures 7 and 9 show example synthesized results.

Analysis of the loss function We also study the importance

of each term in our objective function using the unlimited

time experiment. Specifically, our final loss contains three

components: GAN loss, discriminator-based feature match-

ing loss, and VGG perceptual loss. We compare our final

implementation to the results using (1) only GAN loss, and

(2) GAN + feature matching loss (i.e., without VGG loss).

The obtained preference rates are 68.55% and 58.90%, re-

spectively. As can be seen, adding feature matching loss

substantially improves the performance, while adding per-

ceptual loss further enhances the results. However, note that

using the perceptual loss is not critical, and we can still gen-

erate visually appealing results without it (Figs. 7c, 9b).

Using instance maps We compare results using instance

maps to results without using them. We highlight the car

regions in the images, and ask the participants to choose

which region looks more realistic. We obtain a preference

rate of 64.34%, which indicates that using instance maps

improves the realism of our results.

Additional datasets In addition, we perform unlimited

time comparisons on the NYU dataset (Fig. 8). We ob-

tain 86.7% and 63.7% against pix2pix and CRN, respec-

tively. Finally, we show results on the ADE20K dataset [61]

(Fig. 10) and edge2photo applications (Fig. 2).

Network architectures Experiments in our arXiv version

show that both our coarse-to-fine generator and multi-scale

discriminators can stabilize GAN training as well as synthe-

size more visually appealing results.

4.3. Interactive Object Editing

Our feature encoder allows us to perform interactive in-

stance editing on the resulting images. For example, we can

change the object labels in the image to quickly create novel

scenes, such as replacing trees with buildings (Fig. 1b). We

can also change the colors of individual cars, or the textures

of the road (Fig. 1c).

In addition, we implement our interactive object editing

feature on the Helen Face dataset where labels for differ-

(a) pix2pix (b) CRN

(c) Ours (w/o VGG loss) (d) Ours (w/ VGG loss )

Figure 7: Comparison on the Cityscapes dataset [7] (label

maps shown at the lower left corner in (a)). Both our results

are more realistic than the other two methods.

(c) Ours(a) pix2pix (b) CRN

Figure 8: Comparison on the NYU dataset [39] (label maps

shown at the leftmost column). Our method generates more

realistic and colorful images than the other methods.

ent facial parts are available [48] (Fig. 11). This makes it

easy to edit human portraits, e.g. changing the face color to

mimic different make-up effects or adding beards to a face.

5. Discussion and Conclusion

The results in this paper suggest that conditional GANs

are able to synthesize high-resolution photo-realistic im-

agery without any hand-crafted losses or pre-trained net-

works. We have observed that incorporating a perceptual

loss [22] can slightly improve the results. Our method al-

lows many applications and will be potentially useful for

domains where high-resolution results are in demand but

pre-trained networks are not available (e.g., medical imag-

ing [17] and biology [8]).

This paper also shows that an image-to-image synthesis

pipeline can be extended to produce diverse outputs and en-

able interactive image manipulation given appropriate train-

ing input-output pairs (e.g., instance maps in our case).

Without ever been told what a “texture” is, our model learns

to stylize different objects with realistic textures. These

learned textures may be used to synthesize images in new

datasets as well.
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Figure 9: Additional comparison results with CRN [5] on the Cityscapes dataset. Again, both our results have finer details in

the synthesized cars, the trees, the buildings, etc. Please zoom in for details.

(b) Our result(a) Original image

Figure 10: Results on the ADE20K dataset [61] (label maps

shown at lower left corners in (a)). Our method generates

images at similar level of realism as the original images.

Figure 11: Diverse results on the Helen Face dataset [48]

(label maps shown at lower left corners). With our interface,

a user can edit the attributes of individual facial parts in real-

time, such as changing the skin color or adding eyebrows

and beards. See our video for more details.
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