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Abstract

Large-scale datasets possessing clean label annotations

are crucial for training Convolutional Neural Networks

(CNNs). However, labeling large-scale data can be very

costly and error-prone, and even high-quality datasets are

likely to contain noisy (incorrect) labels. Existing works

usually employ a closed-set assumption, whereby the sam-

ples associated with noisy labels possess a true class con-

tained within the set of known classes in the training data.

However, such an assumption is too restrictive for many ap-

plications, since samples associated with noisy labels might

in fact possess a true class that is not present in the training

data. We refer to this more complex scenario as the open-set

noisy label problem and show that it is nontrivial in order

to make accurate predictions. To address this problem, we

propose a novel iterative learning framework for training

CNNs on datasets with open-set noisy labels. Our approach

detects noisy labels and learns deep discriminative features

in an iterative fashion. To benefit from the noisy label de-

tection, we design a Siamese network to encourage clean

labels and noisy labels to be dissimilar. A reweighting mod-

ule is also applied to simultaneously emphasize the learning

from clean labels and reduce the effect caused by noisy la-

bels. Experiments on CIFAR-10, ImageNet and real-world

noisy (web-search) datasets demonstrate that our proposed

model can robustly train CNNs in the presence of a high

proportion of open-set as well as closed-set noisy labels.

1. Introduction

The success of Convolutional Neural Networks (CNNs)

[20] is highly tied to the availability of large-scale anno-

tated datasets, e.g., ImageNet [10]. However, large-scale

datasets with high-quality label annotations are not always

available for a new domain, due to the significant time and

effort it takes for human experts. There exist several cheap

but imperfect surrogates for collecting labeled data, such as

crowd-sourcing from non-experts or annotations from the

web, especially for images (e.g., extracting tags from the

surrounding text or query keywords from search engines).

These approaches provide the possibility to scale the acqui-

sition of training labels, but invariably result in the intro-

Figure 1. An illustration of closed-set vs open-set noisy labels.

Figure 2. An overview of our framework that iteratively learns dis-

criminative representations on a “jasmine-cat” dataset with open-

set noisy labels. It not only learns a proper decision boundary (the

black line separating jasmine and cat) but also pulls away noisy

samples (green and purple) from clean samples (blue and red).

duction of some noisy (incorrect) labels. Moreover, even

high-quality datasets are likely to have noisy labels, as data

labeling can be subjective and error-prone. The presence of

noisy labels for training samples may adversely affect rep-

resentation learning and deteriorate prediction performance

[27]. Training accurate CNNs against noisy labels is there-

fore of great practical importance.

We will refer to samples whose classes are misla-

beled/incorrectly annotated as noisy samples and denote

their labels as noisy labels. Such noisy labels can fall into

two types, closed-set and open-set. More specifically, a

closed-set noisy label occurs when a noisy sample possesses

a true class that is contained within the set of known classes

in the training data. While, an open-set noisy label occurs

when a noisy sample possesses a true class that is not con-

tained within the set of known classes in the training data.

The former scenario has been studied in previous work, but

the latter one is a new direction we explore in this paper.
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Table 1. Types of labels for a “jasmine-cat” dataset.

labeled as “jasmine” labeled as “cat”

true “jasmine” clean closed-set

true “cat” closed-set clean

other class images open-set open-set

Figure 1 provides a pictorial illustration of noisy labels,

where we have an image dataset with two classes, jasmine

(the plant) and cat (the animal). The closed-set noisy labels

occur when cat and jasmine are mislabeled from one cate-

gory to the other, but the true labels of these images are still

cat or jasmine. The open-set noisy labels occur for those

images labeled as cat or jasmine, but their true labels are

neither cat nor jasmine, e.g., the zoo map and the cartoon

character. Table 1 demonstrates all the possible cases on

how different samples are labeled in this problem. The left-

most column specifies the true class and the other columns

specify the type of label in the dataset.

Previous work has addressed the noisy label problem

explicitly or implicitly in a closed-set setting, via either

loss correction or noise model based clean label inferring

[22, 29, 37, 38]. However, these methods are vulnerable in

the more generic open-set scenario, as loss or label correc-

tion may be inaccurate since the true class may not exist in

the dataset. Open-set noisy labels are likely to occur for sce-

narios where data are harvested rapidly, or use approximate

labels (e.g., using a search engine query to retrieve images

and then labeling the images according to the query key-

word that was used). To the best of our knowledge, how to

address the open-set noisy label problem is a new challenge.

In this paper, we propose an iterative learning framework

that can robustly train CNNs on datasets with open-set noisy

labels. Our model works iteratively with : (1) a noisy label

detector to iteratively identify noisy labels; (2) a Siamese

network for discriminative feature learning, which imposes

a representation constraint via contrastive loss to pull away

noisy samples from clean samples in the deep representa-

tion space; and (3) a reweighting module on the softmax

loss to express a relative confidence of clean and noisy la-

bels on the representation learning. A simplified illustration

of the proposed framework is presented in Figure 2. Our

main contributions can be summarized as follows:

(1) We identify the open-set noisy label problem as a new

challenge for representation learning and prediction.

(2) We propose an iterative learning framework to ro-

bustly train CNNs in the presence of open-set noisy labels.

Our model is not dependent on any assumption of noise.

(3) We empirically demonstrate that our model sig-

nificantly outperforms state-of-the-art noisy label learning

models for the open-set setting, and has a comparable or

even better performance under the closed-set setting.

2. Related work

A simple approach to handle noisy labels is to remove

samples with suspicious labels from the training data [4].

However, such methods are often challenged by the diffi-

culty of distinguishing samples that are inherently hard to

learn from those with noisy labels [13]. In contrast to sim-

ply removing them, the following work focuses on address-

ing the noisy label problem via deep learning.

One alternative approach is to explicitly or implicitly

formulate the noise model and use a corresponding noise-

aware approach. Symmetric label noise that is independent

of the true label was modeled in [21], and asymmetric la-

bel noise that is conditionally independent of the individual

sample was modeled in [26, 33]. More complex noise mod-

els for samples, true labels and noisy labels can be charac-

terized by directed graphical models [43], Conditional Ran-

dom Fields (CRF) [37], neural networks [38] or knowledge

graphs [22]. These methods aim to correct noisy labels to

their true labels via a clean label inferring. However, they

require availability of an extra dataset with pre-identified

noisy labels and their ground truth labels in order to model

label noise. Moreover, these methods make their own spe-

cific assumptions about the noise model, which will limit

their effectiveness under complicated label noise.

Other approaches utilize correction methods to adjust

the loss function to eliminate the influence of noisy sam-

ples. Backward [29] and Forward [29] are two such cor-

rection methods that use an estimated or learned factor to

modify the loss function. [34, 11] further augment the cor-

rection architecture by adding a linear layer on top of the

network. Bootstrap [30] is another loss correction method

that replaces the target labels used by a loss function with a

combination of raw target labels and their predicted labels.

The above methods implicitly assume a closed-set noisy

label setting, where the true labels are always contained

within the set of known classes in the training data. Such re-

stricted assumption contradicts the more practical open-set

scenario. Open-set noisy samples should be considered sep-

arately. In our proposed model, we iteratively detect noisy

samples and gradually pull them away from clean samples,

which is different from removing them or labeling them to a

new “unknown” class [33] (these two approaches are eval-

uated in Section 4.1.3). Moreover, the proposed framework

does not depend on the noise model, and is able to address

both the open-set and the closed-set noisy label problem.

3. Iterative learning framework

Our goal is to learn discriminative features from a dataset

with noisy labels. We propose an iterative learning frame-

work that gradually pulls away noisy samples from clean

samples in the deep feature space. As illustrated in Fig-

ure 3, our proposed model consists of three major modules:

1) iterative noisy label detection, 2) discriminative feature

learning, and 3) reweighting. The noisy label detection uses

the output features of the network (dashed lines) to sepa-

rate training samples into two subsets: clean samples and

noisy samples. To benefit from the noisy label detection, we

employ a Siamese network to impose a representation con-
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Figure 3. The framework of the proposed iterative learning approach. Iterative noisy label detection module and discriminative feature

learning module form a closed-loop, i.e., one module’s inputs are the other module’s output, which can benefit from each other and be

jointly enhanced. The network is jointly optimized by two types of losses: reweighted softmax loss and contrastive loss.

straint forcing the representation of clean samples and that

of noisy samples to be as discriminative as possible. Be-

sides, a reweighting module that assigns a weight for each

sample based on the confidence supplied by the noisy label

detection is used to emphasize clean samples and weaken

noise samples on the discriminative representation learn-

ing. Such learned discriminative representations will in turn

benefit the noisy label detection. Considering the represen-

tation learning as an iterative process, we further design the

noisy label detection to be iterative so that the discrimina-

tive feature learning and the iterative noisy label detection

can be jointly improved over iterations. A brief description

of how each module works is listed as follows:

Iterative noisy label detection: We iteratively detect

noisy labels based on the features of the network, because

samples from the same class should be intrinsically similar,

while mislabeled samples are generally not [2].

Discriminative feature learning: We use a Siamese

network with two sub-networks of sharing weights. It takes

“similar” or “dissimilar” sample pairs as inputs and uses a

contrastive loss to minimize distance between similar sam-

ples and maximize distance between dissimilar samples. It

can also be seen as a representation constraint.

Reweighting: For detected clean samples, we set their

weights to 1 (no reweighting) on softmax loss, while for

detected noisy samples, we assign them smaller weights

individually based on how likely one sample being noisy.

To avoid misdetection, samples near the decision boundary

will be weighted of close importance to clean samples.

The framework is jointly optimized by two loss terms:

L = RSL + ηCL, (1)

where RSL is the reweighted softmax loss, CL is the con-

trastive loss and η is a trade-off parameter. The above ob-

jective incorporates the iterative noisy label detection, dis-

criminative feature learning and reweighting into an effec-

tive learning framework that is robust to noisy labels.

3.1. Iterative noisy label detection

Considering that samples from the same class should

have similar high-level representations but samples misla-

beled into the class do not [2], we detect noisy labels based

on the representations of the pre-softmax layer. To bene-

fit from the iterative learning process of representation, we

iteratively perform noisy label detection every few epochs.

We also use a cumulative criterion based on all previous it-

erations of detection to reduce the influence of randomness

in one particular iteration and further produce more stable

detection results.

Our detection method is a probabilistic and cumulative

version of Local Outlier Factor algorithm (pcLOF), which

inherits the advantages of LOF, i.e., it is an unsupervised al-

gorithm which performs well on high dimensional data and

requires no assumptions of the underlying data distribution.

Formally, pcLOF is defined as:

pcLOF(xi) = G
(

M
∑

m=1

LOF(m)(xi)
)

, (2)

where M is the current number of iteration and G is a lo-

cal Gaussian statistics transformation, which scales the cu-

mulative LOF score to a probabilistic value in [0, 1] as in

[17, 18]. The pcLOF score can be directly interpreted as the

probability of a sample being an outlier. In the noisy label

detection setting, a pcLOF score close to 0 indicates a clean

sample, while a score close to 1 indicates a noisy sample.

LOF is a density-based outlier detection algorithm [3]

and the LOF score of a sample xi is defined as follows:

LOF(xi) =

∑

xj∈Nk(xi)
lrd(xj)
lrd(xi)

|Nk(xi)|
, (3)

where Nk(xi) is the set of k nearest neighbors of xi and
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lrd(xi) is the local reachability density (lrd) of xi:

lrd(xi) = 1/

(

∑

xj∈Nk(xi)
reach-distk(xi, xj)

|Nk(xi)|

)

, (4)

where reach-distk(xi, xj) = max{k-dist(xj), d(xi, xj)} is

the reachability distance of xi to xj . Intuitively, if xi is

far away from xj , then the reachability distance is simply

d(xi, xj) (their actual distance). However, if they are “suf-

ficiently” close, the actual distance is replaced by k-dist(xj)
(the distance of xj to its k-th nearest neighbor), which

means that samples inside of the k nearest of xj are con-

sidered to be equally distant.

Note that the noisy label detection works iteratively, thus

we do not need complicated detection algorithms. With the

representation become more discriminative, they can con-

verge to almost the same result as long as the iteration is

long enough. To balance the efficiency and effectiveness in

training, we perform pcLOF based iterative noisy label de-

tection every 10 epochs after 2-epoch network initialization

in our experiments.

3.2. Discriminative feature learning

We implement a Siamese network [8, 14] with two chan-

nels of the same base network and sharing weights. It gen-

erates “similar” and “dissimilar” sample pairs based on the

clean and noisy samples detected by the noise label detec-

tion module, and works with a contrastive loss to minimize

distance between samples of the same class and maximize

distance between samples of different classes as well as dis-

tance between clean samples and noisy samples.

Denote the Euclidean distance between xi and xj in the

deep representation space as follows:

Dl(xi, xj , θ) = ||f l(xi|θ)− f l(xj |θ)||2, (5)

where f l(·|θ) denotes the l-th layer output of the network

f(·|θ) under parameters θ. The similarity indicator Yij is

defined based on the output of noisy label detection:

Yij =

{

1, if xi and xj are similar;

0, if xi and xj are dissimilar.
(6)

Two samples are considered to be “similar” (Yij = 1), if

and only if the two samples are from the same class and

both are correctly labeled. Two samples are considered to

be “dissimilar” (Yij = 0), if two samples are from different

classes, or one is a clean sample and the other is a noisy

sample. Note that we do not define the relationship between

two noisy samples as their true classes are not contained

within the training data, thus cannot be simply defined as

similar or dissimilar. When noisy samples are not available

before the first iteration of noisy label detection, dissimilar

pairs only contain the samples from different classes.

The contrastive loss for discriminative feature learning

can be formulated as:

CL(xi, xj , Yij) = Yij

1

2
D2

l + (1− Yij)
1

2
max{0, α−Dl},

(7)

where α > 0 is a margin formulating how far away two dis-

similar samples should be pulled from each other. This con-

trastive loss will force the distance between dissimilar pairs,

e.g., clean samples and noisy samples, to be larger than the

margin α, and similar pairs, i.e., clean samples from the

same class, to be clustered.

Although the amount of possible sample pairs can be

huge, some of the pairs are easy to discriminate and inef-

fectual for training (i.e., the distance between two dissimi-

lar samples is already larger than the margin α). Therefore,

we implement the widely used hard example mining strat-

egy [31] to obtain the closest dissimilar pairs and the most

distant similar pairs to feed into the network. The base net-

work can be any kind of architectures, such as VGG [32],

ResNet [15] and Inception [36].

3.3. Reweighting

To ensure an efficient and accurate representation learn-

ing, we also design a reweighting module before the soft-

max loss to adaptively use the label information with dif-

ferent confidence. Applying softmax loss on clean sam-

ples is intuitively to make use of their trustworthy label

information. The reason for also applying softmax loss

on noisy samples is that the detected noisy samples may

contain some clean samples, especially at the start of the

training. Those samples are close to the decision boundary

and are often very informative for representation learning

as pointed out in [13], which cannot be simply ignored, i.e.,

setting their weights to 0. This is also verified by the exper-

iments in Section 4.1.3. Therefore, a reweighting module

paired with the softmax loss is used to adaptively address

the detected clean and noisy samples simultaneously.

Since the noisy label detection method pcLOF provides

the confidence/probability of a sample being noisy, we use

γ = 1 − pcLOF as a reweighting factor on the detected

noisy samples to express their relative confidence. We set

the initial γ to 1 before the first iteration of noisy label

detection, as the learning proceeds, the γ of a noisy sam-

ple will be gradually decreased as the noisy label detection

tends to be more and more accurate. The reweighted soft-

max loss (RSL) of our model is defined as:

RSL = −

(

∑Nc

i=1
logP (yi|xi, θ) +

∑Nn

j=1
γj logP (yj |xj , θ)

)

Nc +Nn

,

(8)

where Nc, Nn denote the number of detected clean and

noisy samples respectively, γ is the proposed reweighting

factor on the detected noisy samples, and P (yi|xi, θ) is the

softmax probability of xi being in class yi. The softmax

loss used in our framework can also be replaced to more

advanced ones [24, 23] to further boost the performance.
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4. Experiments

In this section, we evaluate the robustness of our pro-

posed model to noisy labels with comprehensive experi-

ments on CIFAR-10 (small dataset), ImageNet (large-scale

dataset), and web-search dataset (real-world noisy dataset).

4.1. Exploratory experiments on CIFAR­10

We first conduct a series of experiments on CIFAR-

10 dataset towards a comprehensive understanding of our

model through comparisons to the state-of-the-arts.

Baselines: Several recently proposed noisy label learning

models are chosen as our baselines: (1) Backward [29]:

The networks are trained via loss correction by multiply-

ing the cross entropy loss by an estimated correction ma-

trix; (2) Forward [29]: The networks are trained with label

correction by multiplying the network prediction by an esti-

mated correction matrix; (3) Bootstrap [30]: The networks

are trained with new labels generated by a convex com-

bination (the “hard” version) of the noisy labels and their

predicted labels; and (4) CNN-CRF [37]: The networks

are trained with latent clean labels inferred by CRF from

only noisy training datasets. We also include the method of

Cross-entropy: learning directly from noisy datasets with a

vanilla cross entropy loss.

Experimental setup: The baseline models use a network

architecture with 6 convolutional layers and 1 fully con-

nected layer (fc7). Batch normalization (BN) [16] is ap-

plied in each convolutional layer before the ReLU activa-

tion, a max-pooling layer is implemented every two convo-

lutional layers, and a softmax layer is added on top of the

network for classification. The parameters of the baselines

are configured according to their original papers. For our

model, two copies of the above network are implemented

and the contrastive loss is built upon the fc7 layer. We set

η = 1, k = half the class sample size, and samples with

pcLOF > 0.5 are considered as noisy samples1. The classi-

fication accuracy (ACC) on clean CIFAR-10 test set is used

as the evaluation metric.

All networks are trained by Stochastic Gradient Descent

(SGD) with learning rate 0.01, weight decay 10−4 and mo-

mentum 0.9, and the learning rate is divided by 10 after

40 and 80 epochs (100 in total). All images are mean-

subtracted and normalized to [0, 1], and no data augmen-

tation is implemented in this part.

Open-set noisy datasets are built by replacing some train-

ing images in CIFAR-10 by outside images, while keeping

the labels and the number of images per class unchanged.

The “mislabeled” outside images are from either different

public datasets (type I noise) or severely damaged CIFAR-

10 images (type II noise). Type I noise includes images

from CIFAR-100 [19], ImageNet32 (32×32 ImageNet im-

ages) [9] and SVHN [28], and only those images whose

labels exclude the 10 classes in CIFAR-10 are considered.

1As pointed by [17, 18], pcLOF is not sensitive to parameter k

Figure 4. Examples of open-set noise for “airplane” in CIFAR-10.

Type II noise includes images damaged by Gaussian ran-

dom noise (mean 0.2 and variance 1.0), corruption (75%
of an image is set to black or white) and resolution distor-

tion (an image is resized to 4×4 and then dilated back to

32×32). Some examples of the type I and type II open-set

noise are given in Figure 4. For closed-set noisy datasets,

we choose a random proportion of CIFAR-10 training im-

ages per class and change its label to an incorrect random

one. This closed-set label noise belongs to symmetric noise,

which is more challenging than asymmetric noise [29].

4.1.1 Classification performance

Open-set label noise: The classification accuracy on

CIFAR-10 noisy datasets with 40% open-set noise is re-

ported in Table 2. As can be seen, our model outperforms

the baselines with large margins on both type I (top three

rows) and type II (bottom three rows) open-set noise. The

poor performance of baselines is because they either ignore

the existence of noisy labels such as Cross-entropy, or at-

tempt to correct noisy labels to so-called “clean labels”. For

example, in CIFAR-10+SVHN, noisy images from SVHN

are still noisy even if their labels are corrected to one of

the CIFAR-10 classes, thus still harm representation learn-

ing. Our superior performance indicates that our model is

capable of learning accurate representation directly from

datasets with open-set noisy labels. Such capability opens

up more opportunities for many applications that, for exam-

ple, require learning directly from web-search data.

Closed-set label noise: We also assess our model under the

closed-set noise settings of 20% and 40% noise rates. The

results are reported in Table 3. The first row “clean” pro-

vides a performance “upper bound” trained on the totally

clean CIFAR-10 dataset. Compared to baselines, our model

achieves comparable or better performance. In particular,

our model surpasses all baselines at the 20% noise level and

its performance is close to the clean training. At the 40%

noise level, our model achieves an accuracy that is com-

parable to CNN-CRF and higher than other baselines. This

experiment demonstrates that our model can also effectively

learn from datasets with closed-set noisy labels.

Discussion: Revisiting Table 2, we find that some

baselines (Forward and CNN-CRF) achieve consider-

able improvements on CIFAR-10+CIFAR-100 and CIFAR-

10+ImageNet32, compared to Cross-entropy. This may

be caused by the similarity between images from CIFAR-

100/ImageNet32 and those in CIFAR-10. Since CIFAR-

100 and ImageNet32 have many fine-grained classes, some
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Table 2. Accuracies (%) of different models on CIFAR-10 noisy dataset with 40% open-set noise. The best results are in bold.

Open-set label noise type Cross-entropy Backward Forward Bootstrap CNN-CRF Ours

Type I

CIFAR-10 + CIFAR-100 62.92 55.97 64.18 62.11 64.58 79.28

CIFAR-10 + ImageNet32 58.63 52.35 66.77 57.83 67.53 79.38

CIFAR-10 + SVHN 56.44 52.03 56.70 56.89 56.93 77.73

Type II

CIFAR-10 + Gaussian 61.96 54.98 72.70 59.05 72.51 80.37

CIFAR-10 + Corruption 57.40 50.24 63.80 56.00 64.25 74.48

CIFAR-10 + Resolution 56.93 49.58 62.65 58.95 63.60 77.30

Table 3. Accuracies (%) on CIFAR-10 noisy dataset with 20% and

40% closed-set noise. Top 2 results are in bold except for “Clean”.

Method 20% noise 40% noise

Clean 84.85 84.85

Cross-entropy 74.17 62.38

Backward 76.27 75.18

Forward 79.25 77.81

Bootstrapping 74.39 69.50

CNN-CRF 80.15 78.69

Ours 81.36 78.15

noisy images from these two datasets can be regarded as the

closed-set noise rather than the open-set noise. However,

for dissimilar datasets, e.g., CIFAR-10+SVHN, we can see

that those baselines perform almost the same poorly. This

interesting finding implies another evidence that our model

still works well when open-set and closed-set noise coexist.

4.1.2 Model interpretation

We further demonstrate some visual results to help under-

stand how our model works.

Iterative noisy label detection: We first show the effec-

tiveness of the iterative noisy label detection module. We

use the measure of true noisy label rate (true positive rate)

of the detected noisy labels. In Figure 5, the detection be-

comes more and more precise as the training proceeds, and

the trend is consistent across tall classes, which meets our

expectation that the iterative noisy label detection will im-

prove accordingly as the learned features become increas-

ingly discriminative. Figure 6 gives some of those detected

noisy images. We can see many noticeable open-set noisy

images, e.g., flower, fish to name a few, which confirms that

our iterative noisy label detection method can indeed accu-

rately identify noisy samples contained within the dataset.

Discriminative features: Next, we show the discrimina-

tive feature learning ability of our model by visualizing the

learned features at different stages of the training process in

2-D space. Figure 7 evidently shows that the learned fea-

tures become more and more discriminative as noisy sam-

ples are gradually pulled away from clean samples. At the

first epoch, all samples are densely overlapped together,

as the training proceeds to the 100-th epoch, not only the

two classes have been separated, the noisy samples are also

pulled away from the clean ones within each class. This

Figure 5. The true positive rate of the detected noisy labels over

iteration on CIFAR-10+CIFAR-100 (40% open-set noise).

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Figure 6. Randomly selected images (10 per class) from the de-

tected noisy images of CIFAR-10+CIFAR-100 with 40% open-set

noise at 100-th epoch.

confirms that the discriminative feature learning module

can work effectively with the iterative noisy label detection

module to isolate noisy samples.

4.1.3 Module analysis via ablation experiments

For a comprehensive understanding of our model, we fur-

ther evaluate each module via ablation experiments on

CIFAR-10+CIFAR-100 with 20% and 40% open-set noise.

Table 4 presents the following six experiments: (a) With-

out reweighting: we only change the weights of softmax

loss on noisy samples by either assigning the same weights

as clean samples (case a1: γ = 1), or ignoring noisy sam-

ples (case a2: γ = 0). (b) Without discriminative fea-

ture learning: we only remove the contrastive loss (the re-

8693



Figure 7. Visualization of the learned features. This visualization experiment uses a 2-class subset of CIFAR-10+CIFAR-100 (40% open-set

noise) by setting the output feature dimension as 2.

Table 4. Accuracies (%) on CIFAR-10+CIFAR-100 (20% & 40%
open-set noise) after removing (w/o) each module from our model.

Method
CIFAR-10+CIFAR-100

20% noise 40% noise

Our model 81.96 79.28

(a) w/o reweighting

-- case a1: γ = 1 76.97 74.45

-- case a2: γ = 0 79.27 76.03

(b) w/o discriminative learning

-- case b1: removing 76.22 68.40

-- case b2: new class 78.34 73.11

(c) w/o iterative detection

-- case c1: only once 77.52 70.31

-- case c2: no 76.17 63.50

maining model still has iterative noisy label detection and

reweighted softmax loss modules). As for the detected

noisy samples, we either remove them (case b1: remov-

ing) or label them to a new class “unknown” (case b2: new

class). (c) Without iterative noisy label detection: we either

conduct detection only once at the first iteration of detection

(case c1: only once) or remove the detection module along

with the reweighting on softmax loss (case c2: no).

Performance drops are observed in Table 4 when any of

the three modules is removed or replaced. The accuracy

drop compared to our original model can be interpreted as

the contribution of the module. Particularly, if discrimina-

tive feature learning (case b1) or iterative noisy label de-

tection (case c2) is removed, the accuracy significantly de-

creases, which indicates that the two modules work jointly

in an efficient way and can enhance each other. When

the detected noisy samples are removed (case b1) or re-

labeled to a new class “unknown” (case b2), the accuracy

also drops considerably, which proves that discriminative

features forced by the contrastive loss are critical for accu-

rate noisy label detection which further improves discrim-

inative feature learning. From both cases in (a), we can

see that reweighting is necessary for a proper handling of

the detected noisy samples which may contain some clean

samples around the decision boundary.

4.1.4 Parameter and complexity analysis

Moreover, we assess the influence of parameter η in our

model, which is used to balance the contrastive loss and the

softmax loss. We test a series of η ∈ [0.5, 1.5] on CIFAR-

Table 5. Accuracies (%) of our model on CIFAR-10+CIFAR-100

(40% open-set noise) with different η.

η 0.5 0.7 0.9 1.0 1.3 1.5

Ours 76.08 79.04 79.36 79.77 79.08 77.80

Figure 8. Accuracies of different models on CIFAR-10+CIFAR-

100 with different open-set noise rates.

10+CIFAR-100 with 40% open-set noise. Table 5 shows

that our model is not sensitive to the parameter η as long as

it lies in a comparable range to the weight of softmax loss

on clean samples (its weight is 1).

We also compare our model with other baselines against

different open-set noise rates on CIFAR-10+CIFAR-100. It

can be seen in Figure 8 that our model still performs the

best under all noise rates, even at a high noise rate up to

50%. The performance of baselines, however, decrease sig-

nificantly as noise rate increases.

As for the complexity of our framework, the extra costs

mainly lie on pcLOF computing. However, it is computed

1) within each class not on the entire data, 2) in parallel

for different classes and 3) only every 10 epochs not each

epoch. Moreover, pcLOF can be computed on GPU with

100X speed-up [1]. The proportion of the time cost of

pcLOF with respect to the training time is:
tpcLOF

ttraining
≈ 2%.

Thus, the computation of pcLOF is much less expensive.

4.2. Experiments on ImageNet

From above experiments, we have demonstrated that our

model achieves superior performance on a small dataset

CIFAR-10 against both open-set and closed-set label noise.

Here, we further present its capacity to handle large-scale

datasets containing open-set noisy labels, i.e., ImageNet.
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Meanwhile, we also show that our model works effectively

with different modern deep neural network architectures:

ResNet-50 [15] and Inception-v3 [36].

Experimental setup: Based on the ImageNet 2012 dataset

[10] (1.3M images of 1000 classes), we generate an open-

set noisy dataset by randomly taking 200 classes of images

as clean data, which are then mixed with uniformly and ran-

domly selected images from other 800 classes. Finally, we

obtain a noisy dataset of ∼290k images with 200 classes

and 20% noise rate in each class. ResNet-50 and Inception-

v3 networks are implemented in Keras [7]. We train the

networks with batch size 128 and initial learning rate 0.01,

which is reduced by 1/10 at the 30-th, 60-th and 80-th

epoch. The training ends at the 100-th epoch. Several com-

monly used data augmentations are applied, i.e., 224× 224
pixel random crops, horizontal random flips and scale data

augmentation as in [12]. All images are normalized by the

per-color mean and standard deviation. We test the models

using the ImageNet validation set of the 200 clean classes

along with a single center crop (224× 224).

Results: The baselines compared here are the same as that

in Section 4.1, and we report the Top-1 and Top-5 classifi-

cation accuracy. The results can be found in Table 6. Again,

our model outperforms other baselines with significant mar-

gins for ResNet-50 as well as Inception-v3 architectures.

Meanwhile, we notice that some baseline models such as

CNN-CRF and Forward also demonstrate certain improve-

ments compared to Cross-entropy. This may because that

some ImageNet classes are fine-grained and visually simi-

lar such that some open-set noisy images are “closed-set” to

some extent. In fact, this is in line with complex real-world

situations, where a clear boundary between closed-set noisy

labels and open-set noisy labels is often hard to draw. The

superiority of our model on such datasets implies its advan-

tages against real-world noisy data, where closed-set and

open-set label noise may coexist.

4.3. Experiments on real­world noisy dataset

Finally, we assess our model on real-world noisy dataset,

where noise type (closed-set or open-set) and noise rate are

unknown. This is to demonstrate that our model can effec-

tively make use of noisy data (web-search data) to learn ac-

curate representation for real-world scenarios, e.g., no clean

labeled data are available for a new domain.

Experimental setup: We use Google image search engine

to obtain a web-search image set of ∼1.2M images (∼0.8k

per class) using the query list from ImageNet [10], SUN

[42] and NEIL [6] datasets, similar as in [5], but we do not

remove images from the searched results. For conceptually

clear queries, Google returns relatively clean results, how-

ever, for “ambiguous” queries, the results are very similar to

open-set label noise, e.g., ‘jasmine’ query returns a plant or

a cartoon character. The experimental setup and training are

same as Section 4.2. For testing, however, this is a challeng-

ing task as there are no clean test data available. There are

several ways to evaluate the learned features. Here we adopt

Table 6. Accuracies (%) of different models on the 200-class Ima-

geNet with 20% open-set noise. The best results are in bold.

Method
ResNet-50 Inception-v3

Top-1 Top-5 Top-1 Top-5

Cross-entropy 58.51 75.62 60.73 76.75

Backward 59.32 75.61 61.27 76.74

Forward 64.17 79.43 65.48 80.68

Bootstrapping 59.05 75.00 61.50 76.13

CNN-CRF 66.54 82.37 67.23 84.12

Ours 70.29 86.04 71.43 87.87

Table 7. Accuracies (%) of different models trained on real-world

noisy data (web-search data) and tested on CIFAR-100 test set.

The best results are in bold.

Method ResNet-50 Inception-v3

Cross-entropy 57.32 53.82

Backward 58.75 54.02

Forward 61.65 58.28

Bootstrapping 57.62 54.49

CNN-CRF 63.94 60.47

Ours 67.90 64.21

a well defined classification task to achieve that. Specifi-

cally, we treat the learned network as a feature extractor by

fixing all its layers except the softmax layer. We then train a

softmax layer for classification using the CIFAR-100 train-

ing set. Because the optimization of the classification layer

(i.e., multi-class logistic regression) is convex, the classifi-

cation accuracy can be used to evaluate the learned features.

Results: The classification accuracy on CIFAR-100 test set

is reported in Table 7. As shown, our model achieves the

best performance compared to baselines for both ResNet-

50 and Inception-v3. This indicates that our model can ro-

bustly train CNNs from real-world noisy dataset. Note that

the noisy data are from web, thus our model can also be

extended to webly supervised learning [5].

In summary, empirical evidence has demonstrated that

our model is a promising framework for learning from

datasets with noisy labels (open-set and closed-set). More-

over, it can also be used for webly supervised learning.

5. Conclusions

In this paper, we identified and investigated the open-set

noisy label problem – a more complex noisy label scenario

that commonly occurs in real-world datasets. We proposed

an iterative learning framework to address the problem with

three powerful modules: iterative noisy label detection, dis-

criminative feature learning, and reweighting. These mod-

ules are designed to benefit from each other and to be jointly

improved over iterations. We empirically show that our

model not only outperforms the state-of-the-arts for open-

set label noise, but also effective for closed-set label noise,

on datasets of various scales.
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