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Abstract

Compared to earlier multistage frameworks using CNN

features, recent end-to-end deep approaches for fine-

grained recognition essentially enhance the mid-level

learning capability of CNNs. Previous approaches achieve

this by introducing an auxiliary network to infuse local-

ization information into the main classification network,

or a sophisticated feature encoding method to capture

higher order feature statistics. We show that mid-level

representation learning can be enhanced within the CNN

framework, by learning a bank of convolutional filters that

capture class-specific discriminative patches without extra

part or bounding box annotations. Such a filter bank is

well structured, properly initialized and discriminatively

learned through a novel asymmetric multi-stream architec-

ture with convolutional filter supervision and a non-random

layer initialization. Experimental results show that our

approach achieves state-of-the-art on three publicly avail-

able fine-grained recognition datasets (CUB-200-2011,

Stanford Cars and FGVC-Aircraft). Ablation studies and

visualizations are provided to understand our approach.

1. Introduction

Fine-grained object recognition involves distinguishing

sub-categories of the same super-category (e.g., birds [39],

cars [26] and aircrafts [34]), and solutions often utilize in-

formation from localized regions to capture subtle differ-

ences. Early applications of deep learning to this task built

traditional multistage frameworks upon convolutional neu-

ral network (CNN) features; more recent CNN-based ap-

proaches are usually trained end-to-end and can be roughly

divided into two categories: localization-classification sub-

networks and end-to-end feature encoding.

Previous multistage frameworks utilize low-level CNN

features to find discriminative regions or semantic parts, and

construct a mid-level representation out of them for classi-

*The work was done while the author was at University of Maryland.

fication [24, 44, 35, 41, 53, 42]. These methods achieve

better performance compared to two types of baselines: (i)

they outperform their counterparts with hand-crafted fea-

tures (e.g., SIFT) by a huge margin, which means that low-

level CNN features are far more effective than previous

hand-crafted ones; (ii) they significantly outperform their

baselines which finetune the same CNN used for feature

extraction. This further suggests that CNN’s ability to learn

mid-level representations is limited and still has sufficient

room to improve. Based on these observations, end-to-

end frameworks aim to enhance the mid-level representa-

tion learning capability of CNN.

The first category, localization-classification sub-

networks, consists of a classification network assisted by

a localization network. The mid-level learning capability

of the classification network is enhanced by the localization

information (e.g. part locations or segmentation masks) pro-

vided by the localization network. Earlier works from this

category [51, 29, 50, 18, 43] depend on additional seman-

tic part annotations, while more recent ones [20, 9, 55] only

require category labels. Regardless of annotations, the com-

mon motivation behind these approaches is to first find the

corresponding parts and then compare their appearance.

The first step requires the semantic parts (e.g. head and body

of birds) to be shared across object classes, encouraging the

representations of the parts to be similar; but, in order to

be discriminative, the latter encourages the part representa-

tions to be different across classes. This subtle conflict im-

plies a trade-off between recognition and localization abil-

ity, which might reduce a single integrated network’s clas-

sification performance. Such a trade-off is also reflected in

practice, in that training usually involves alternating opti-

mization of the two networks or separately training the two

followed by joint tuning. Alternating or multistage strate-

gies complicate the tuning of the integrated network.

The second category, end-to-end feature encoding [30,

10, 23, 8, 5], enhances CNN mid-level learning by encod-

ing higher order statistics of convolutional feature maps.

The need for end-to-end modeling of higher order statis-

tics became evident when the Fisher Vector encodings of
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Figure 1. The motivation of our approach is to regard a C× 1× 1 vector in a feature map as the representation of a small patch and a 1× 1

convolutional filter as a discriminative patch detector. A discriminative patch can be discovered by convolving the feature map with the

1× 1 filter and performing Global Max Pooling (GMP) over the response map. The full architecture is illustrated in Figure 2.

SIFT features outperformed a finetuned AlexNet by a large

margin on fine-grained recognition [13]. The resulting ar-

chitectures have become standard benchmarks in the liter-

ature. While effective, end-to-end encoding networks are

less human-interpretable and less consistent in their perfor-

mance across non-rigid and rigid visual domains, compared

to localization-classification sub-networks.

This paper addresses the issues facing both categories of

end-to-end networks. Our main contribution is to explic-

itly learn discriminative mid-level patches within a CNN

framework in an end-to-end fashion without extra part or

bounding box annotations. This is achieved by regarding

1× 1 filters as small “patch detectors”, designing an asym-

metric multi-stream structure to utilize both patch-level in-

formation and global appearance, and introducing filter su-

pervision with non-random layer initialization to activate

the filters on discriminative patches. Conceptually, our dis-

criminative patches differ from the parts in localization-

recognition sub-networks, such that they are not necessarily

shared across classes as long as they have discriminative

appearance. Therefore, our network fully focuses on clas-

sification and avoids the trade-off between recognition and

localization. Technically, a convolutional filter trained as a

discriminative patch detector will only yield a high response

at a certain region for one class.

The resulting framework enhances the mid-level learning

capability of the classical CNN by introducing a bank of

discriminative filters. In practice, our framework preserves

the advantages of both categories of previous approaches:

• Simple and effective. The network is easy to build and

once initialized only involves single-stage training. It

outperforms state-of-the-art.

• High human interpretability. This is shown through

various ablation studies and visualizations of learned

discriminative patches.

• Consistent performance across different fine-grained

visual domains and various network architectures.

2. Related Work

Fine-grained recognition Research in fine-grained

recognition has shifted from multistage frameworks based

on hand-crafted features [52, 3, 48, 6, 13] to multistage

framework with CNN features [24, 44, 35, 53, 42], and

then to end-to-end approaches. Localization-classification

sub-networks [51, 29, 50, 18, 20, 27, 9] have a localization

network which is usually a variant of R-CNN [12, 11],

FCN (Fully Convolutional Network) [33] or STN (Spatial

Transformer Network) [20] and a recognition network

that performs recognition based on localization. More

recent advances explicitly regress the location/scale of

the parts using a recurrent localization network such as

LSTM [27] or a specifically designed recurrent architecture

[9]. End-to-end encoding approaches [30, 10, 23, 8, 5]

encode higher order information. The classical benchmark,

Bilinear-CNN [30] uses a symmetric two-stream network

architecture and a bilinear module that computes the outer

product over the outputs of the two streams to capture

the second-order information. [10] further observed that

similar performance can be achieved by taking the outer

product over a single-stream output and itself. More recent

advances reduce high feature dimensionality [10, 23] or

extract higher order information with kernelized modules

[8, 5]. Others have explored directions such as utilizing

hierarchical label structures [57], combining visual and

textual information [54, 2, 16], 3D-assisted recognition

[26, 31, 37], introducing humans in the loop [40, 4, 7], and

collecting larger amount of data [45, 47, 25, 17].

Intermediate representations in CNN Layer visualiza-

tion [49] has shown that the intermediate layers of a CNN

learn human-interpretable patterns from edges and corners

to parts and objects. Regarding the discriminativeness of

such patterns, there are two hypotheses. The first is that

some neurons in these layers behave as “grandmother cells”

which only fire at certain categories, and the second is that

the neurons forms a distributed code where the firing pat-

tern of a single neuron is not distinctive and the discrimi-

nativeness is distributed among all the neurons. As empir-

ically observed by [1], a classical CNN learns a combina-

tion of “grandmother cells” and a distributed code. This

observation is further supported by [56], which found that

by taking proper weighted average over all the feature maps

produced by a convolutional layer, one can effectively visu-

alize all the regions in the input image used for classifica-

tion. Note that both [1] and [56] are based on the original

CNN structure and the quality of representation learning re-
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mains the same or slightly worse for the sake of better lo-

calization. On the other hand, [28, 21, 22] learn more dis-

criminative representations by putting supervision on inter-

mediate layers, usually by transforming the fully-connected

layer output through another fully-connected layer followed

by a loss layer. These transformations introduce a separa-

tion between the supervisory signal and internal filters that

makes their methods difficult to visualize. A more recent

related work is the popular SSD [32] detection framework;

it associates a convolutional filter with either a particular

category of certain aspect ratio or certain location coordi-

nates. Compared to SSD, our architecture operates at a

finer-level (small patches instead of objects) and is opti-

mized for recognition.

3. Learning Discriminative Patch Detectors as

a Bank of Convolutional Filters

We regard a 1×1 convolutional filter as a small patch de-

tector. Specifically, referring to Figure 1, if we pass an input

image through a series of convolutional and pooling layers

to obtain a feature map of size C×H ×W , each C× 1× 1

vector across channels at fixed spatial location represents a

small patch at a corresponding location in the original im-

age. Suppose we have learned a 1× 1 filter which has high

response to a certain discriminative region; by convolving

the feature map with this filter we obtain a heatmap. There-

fore, a discriminative patch can be found simply by picking

the location with the maximum value in the entire heatmap.

This operation of spatially pooling the entire feature map

into a single value is defined as Global Max Pooling (GMP)

[56].

Two requirements are needed to make the feature map

suitable for this idea. First, since the discriminative regions

in fine-grained categories are usually highly localized, we

need a relatively small receptive field, i.e., each C × 1 × 1

vector represents a relatively small patch in the original im-

age. Second, since fine-grained recognition involves accu-

rate patch localization, the stride in the original image be-

tween adjacent patches should also be small. In early net-

work architectures, the size and stride of the convolutional

filters and pooling kernels were large. As a result, the recep-

tive field of a single neuron in later convolutional layers was

large, as was the stride between adjacent fields. Fortunately,

the evolution of network architectures [36, 38, 15] has led

to smaller filter sizes and pooling kernels. For example, in

a 16-layer VGG network (VGG-16), the output of the 10
th

convolutional layer conv4 3 represents patches as small as

92× 92 with stride 8, which is small and dense enough for

our task given common CNN input size.

In the rest of Section 3, we demonstrate how a set of dis-

criminative patch detectors can be learned as a 1 × 1 con-

volutional layer in a network specifically designed for this

task. An overview of our framework is displayed in Figure
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Figure 2. Overview of our framework, which consists of a) an

asymmetric two-stream architecture to learn both the discrimina-

tive patches and global features, b) supervision imposed to learn

discriminative patch detectors and c) non-random layer initializa-

tion. For simplicity, except GMP, all pooling and ReLU layers

between convolutional layers are not displayed.

2. There are three key components in our design: an asym-

metric two-stream structure to learn discriminative patches

as well as global features (Section 3.1), convolutional filter

supervision to ensure the discriminativeness of the patch de-

tectors (Section 3.2) and non-random layer initialization to

accelerate the network convergence (Section 3.3). We then

extend our framework to handle patches of different scales

(Section 3.4). We use VGG-16 for illustration, but our ideas

are not limited to any specific network architecture as our

experiments show.

3.1. Asymmetric Two­stream Architecture

The core component of the network responsible for dis-

criminative patch learning is a 1×1 convolutional layer fol-

lowed by a GMP layer, as displayed in Figure 1. This com-

ponent followed by a classifier (e.g., fully-connected layers

and a softmax layer) forms the discriminative patch stream

(P-Stream) of our network, where the prediction is made by

inspecting the responses of the discriminative patch detec-

tors. The P-Stream uses the output of conv4 3 and the

minimum receptive field in this feature map corresponds to

a patch of size 92× 92 with stride 8.

The recognition of some fine-grained categories might

also depend on global shape and appearance, so another

stream preserves the further convolutional layers and fully

connected layers, where the neurons in the first fully con-

nected layer encode global information by linearly combin-

ing the whole convolutional feature maps. Since this stream
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Figure 3. The illustration of our convolutional filter supervision.

The filters in conv6 are grouped into M groups, where M is the

number of classes. The maximum responses in group i are aver-

aged into a single score indicating the effect of the discriminative

patches in Class i. The pooled vector is fed into a softmax loss

layer to encourage discriminative patch learning.

focuses on global features, we refer to it as the G-Stream.

We merge the two streams in the end.

3.2. Convolutional Filter Supervision

Using the network architecture described above, the 1×1

convolutional layer in the P-Stream is not guaranteed to fire

at discriminative patches as desired. For the framework to

learn class-specific discriminative patch detectors, we im-

pose supervision directly at the 1 × 1 filters by introducing

a Cross-Channel Pooling layer followed by a softmax loss

layer, shown in Figure 3 as part of the whole framework (the

side branch) in Figure 2.

Filter supervision works as follows. Suppose we have

M classes and each class has k discriminative patch detec-

tors; then the number of 1× 1 filters required is kM . After

obtaining the max response of each filter through GMP, we

get a kM -dimensional vector. Cross-Channel Pooling aver-

ages the values across every group of k dimensions as the

response of a certain class, resulting in an M -dimensional

vector. By feeding the pooled vector into an M -way soft-

max loss, we encourage the filters from any class to find

discriminative patches from training samples of that class,

such that their averaged filter response is large. We use aver-

age instead of max pooling to encourage all the filters from

a given class to have balanced responses. Average pooling

tends to affect all pooled filters during back propogation,

while max pooling only affects the filter with the maximum

response. Similar considerations are discussed in [56].

Since there is no learnable parameter between the soft-

max loss and the 1 × 1 convolutional layer, we directly

adjust the filter weights via the loss function. In contrast,

previous approaches which introduce intermediate supervi-

sion [28, 21, 22] have learnable weights (usually a fully-

connected layer) between the side loss and the main net-

work, which learn the weights of a classifier unused at

test time. The main network is only affected by back-

propogating the gradients of these weights. We believe this

is a key difference of our approach from previous ones.

3.3. Layer Initialization

In practice, if the 1 × 1 convolutional layer is initial-

ized randomly, with filter supervision it may converge to

bad local minima. For example, the output vector of the

Cross-Channel Pooling can approach all-zero or some con-

stant to reduce the side loss during training, a degenerate

solution. To overcome the issue, we introduce a method for

non-random initialization.

The non-random initialization is motivated by our inter-

pretation of a 1×1 filter as a patch detector. The patch detec-

tor of Class i is initialized by patch representations from the

samples in that class, using weak supervion without part an-

notations. Concretely, a patch is represented by a C× 1× 1

vector at corresponding spatial location of the feature map.

We extract the conv4 3 features from the ImageNet pre-

trained model and compute the energy at each spatial lo-

cation (l2 norm of each C-dimensional vector in a feature

map). As shown in the first row of Figure 10, though not

perfect, the heatmap of energy distribution acts as a reason-

able indicator of useful patches. Then the vectors with high

l2 norms are selected via non-maximum suppression with

small overlap threshold; k-means is performed over the se-

lected C-dimensional vectors within Class i and the cluster

centers are used as the initializations for filters from Class i.

To increase their discriminativeness, we further whiten the

initializations using [14] and do l2 normalization. In prac-

tice this simple method provides reasonable initializations

which are further refined during end-to-end training. Also,

in Section 4 we show that the energy distribution becomes

much more discriminative after training.

As long as the layer is properly initialized, the whole

network can be trained in an end-to-end fashion just once,

which is more efficient compared with the multistage train-

ing strategy of previous works [29, 50, 18].

3.4. Extension: Multiple Scales

Putting Section 3.1 to 3.3 together, the resulting frame-

work can utilize discriminative patches from a single scale.

A natural and necessary extension is to utilize patches from

multiple scales, since in visual domains such as birds and

aircrafts, objects might have larger scale variations.

As discussed in Section 3.1, discriminative patch size

depends on the receptive field of the input feature map.

Therefore, multi-scale extension of our approach is equiv-

alent to utilizing multiple feature maps. We regard the P-

Stream and side branch (with non-random initialization) to-

gether as a “Discriminative Filter Learning” (DFL) mod-

ule that is added after conv4 3 in Figure 2. By simply

adding the DFL modules after multiple convolutional layers

we achieve multi-scale patch learning. In practice, feature

maps produced by very early convolutional layers are not
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suitable for class-specific operations since they carry infor-

mation that is too low-level, therefore the DFL modules are

added after several late convolutional layers in Section 4.

Our multi-layer branch-out is inspired by recent ap-

proaches in object detection [32, 46], where feature maps

from multiple convolutional layers are directly used to de-

tect objects of multiple scales. Compared with these works,

our approach operates at a finer level and is optimized for

recognition instead of localization.

4. Experiments

In the rest of this paper, we denote our approach by DFL-

CNN, which is an abbreviation for Discriminative Filter

Learning within a CNN. We use the following datasets:

CUB-200-2011 [39] has 11,788 images from 200 classes

officially split into 5,994 training and 5,794 test images.

Stanford Cars [26] has 16,185 images from 196 classes

officially split into 8,144 training and 8,041 test images.

FGVC-Aircraft [34] has 10,000 images from 100 classes

officially split into 6,667 training and 3,333 test images.

4.1. Implementation Details

We first describe the basic settings of our DFL-CNN and

then we introduce two higher-capacity settings. The input

size of all our networks is 448 × 448, which is standard in

the literature. We do not use part or bounding box (BBox)

annotations and compare our method with other weakly-

supervised approaches (without part annotation). In addi-

tion, no model ensemble is used in our experiments.

The network structure of our basic DFL-CNN is based

on 16-layer VGGNet [36] and the DFL module is added af-

ter conv4 3, as illustrated exactly in Figure 2. In conv6,

we set the number of filters per class to be 10. During Cross-

Channel average pooling, the maximum responses of each

group of 10 filters are pooled into one dimension. At ini-

tialization time, conv6 is initialized in the way discussed

in Section 3.3; other original VGG-16 layers are initial-

ized from an ImageNet pretrained model directly (compared

with “indirect” initialization of conv6) and other newly in-

troduced layers are randomly initialized. After initializa-

tion, a single stage end-to-end training proceeds, with the

G-Stream, P-Stream and side branch having their own soft-

max with cross-entropy losses with weights 1.0, 1.0 and 0.1

respectively. At test time, these softmax-with-loss layers

are removed and the prediction is the weighted combination

of the outputs of the three streams.

We extend DFL-CNN in two ways. The first exten-

sion, 2-scale DFL-CNN, was discussed in Section 3.4. In

practice, two DFL modules are added after conv4 3 and

conv5 2, while the output of the last convolutional layer

(conv5 3) is used by G-Stream to extract global informa-

tion. The second extension shows that our approach applies

to other network architectures, a 50-layer ResNet [15] in

this case. Similar to VGGNet, ResNet also groups convolu-

tional layers into five groups and our DFL module is added

to the output of the fourth group (i.e. conv4 x in [15]).

Initialization, training and testing of the two extended net-

works are the same as basic DFL-CNN.

4.2. Results

The results on CUB-200-2011, Stanford Cars and

FGVC-Aircraft are displayed in Table 1, Table 2 and Table

3, respectively. In each table from top to bottom, the meth-

ods are separated into five groups, as discussed in Section

1, which are (1) fine-tuned baselines, (2) CNN features +

multi-stage frameworks, (3) localization-classification sub-

nets, (4) end-to-end feature encoding and (5) DFL-CNN.

The basic DFL-CNN, 2-scale extension and ResNet exten-

sion in Section 4.1 are denoted by “DFL-CNN (1-scale)

/ VGG-16”, “DFL-CNN (2-scale) / VGG-16” and “DFL-

CNN (1-scale) / ResNet-50”, respectively. Our VGG-16

based approach not only outperforms corresponding fine-

tuned baseline by a large margin, but also achieves or out-

performs state-of-the-art under the same base model; our

best results further outperform state-of-the-art by a notice-

able margin on all datasets, suggesting its effectiveness.

Earlier multi-stage frameworks built upon CNN features

achieve comparable results, while they often require bound-

ing box annotations and the multi-stage nature limits their

potential. The end-to-end feature encoding methods have

very high performance on birds, while their advantages di-

minish when dealing with rigid objects. The localization-

classification subnets achieve high performance on various

datasets, usually with a large number of network parame-

ters. For instance, the STN [20] consists of an Inception lo-

calization network followed by four Inception classification

networks without weight-sharing, and RA-CNN [9] con-

sists of three independent VGGNets and two localization

sub-networks. Our end-to-end approach achieves state-of-

the-art with no extra annotation, enjoys consistent perfor-

mance on both rigid and non-rigid objects, and has rela-

tively compact network architecture.

Our approach can be applied to various network archi-

tectures. Most previous approaches in fine-grained recog-

nition have based their network on VGGNets and previ-

ously reported ResNet-based results are less effective than

VGG-based ones. Table 1, 2 and 3 shows that our ResNet

baseline is already very strong, however our ResNet based

DFL-CNN is able to outperform the strong baseline by a

large margin (e.g. 3.3% absolute percentage on birds). This

clearly indicates that CNN’s mid-level learning capability

can still be improved even though the network is very deep.

4.3. Ablation Studies

We conduct ablation studies to understand the compo-

nents of our approach. These experiments use the basic
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Method Base Model Accuracy (%)

FT VGGNet [9] VGG-19 77.8

FT ResNet ResNet-50 84.1

CoSeg(+BBox) [24] VGG-19 82.6

PDFS [53] VGGNet 84.5

STN [20] Inception [19] 84.1

RA-CNN [9] VGG-19 85.3

MA-CNN [55] VGG-19 86.5

B-CNN [30] VGG-16 84.1

Compact B-CNN [10] VGG-16 84.0

Low-rank B-CNN [23] VGG-16 84.2

Kernel-Activation [5] VGG-16 85.3

Kernel-Pooling [8] VGG-16 86.2

Kernel-Pooling [8] ResNet-50 84.7

DFL-CNN (1-scale) VGG-16 85.8

DFL-CNN (2-scale) VGG-16 86.7

DFL-CNN (1-scale) ResNet-50 87.4

Table 1. Comparison of our approach (DFL-CNN) to recent re-

sults on CUB-200-2011, without extra annotations (if not speci-

fied). For the finetuned (FT) baselines, we cite the best previously

reported result if it is better than our implementation. The black-

bold number represents the best previous result.

Method Base Model Accuracy (%)

FT VGGNet [9] VGG-19 84.9

FT ResNet ResNet-50 91.7

BoT(+BBox) [42] VGG-16 92.5

CoSeg(+BBox) [24] VGG-19 92.8

RA-CNN [9] VGG-19 92.5

MA-CNN [55] VGG-19 92.8

B-CNN [30] VGG-16 91.3

Low-Rank B-CNN [23] VGG-16 90.9

Kernel-Activation [5] VGG-16 91.7

Kernel-Pooling [8] VGG-16 92.4

Kernel-Pooling [8] ResNet-50 91.1

DFL-CNN (1-scale) VGG-16 93.3

DFL-CNN (2-scale) VGG-16 93.8

DFL-CNN (1-scale) ResNet-50 93.1

Table 2. Comparison of our approach (DFL-CNN) to recent results

on Stanford Cars without extra annotations (if not specified).

Method Base Model Accuracy (%)

FT VGGNet VGG-19 84.8

FT ResNet ResNet-50 88.5

MGD(+BBox) [41] VGG-19 86.6

BoT(+BBox) [42] VGG-16 88.4

RA-CNN [9] VGG-19 88.2

MA-CNN [55] VGG-19 89.9

B-CNN [30] VGG-16 84.1

Low-Rank B-CNN [23] VGG-16 87.3

Kernel-Activation [5] VGG-16 88.3

Kernel-Pooling [8] VGG-16 86.9

Kernel-Pooling [8] ResNet-50 85.7

DFL-CNN (1-scale) VGG-16 91.1

DFL-CNN (2-scale) VGG-16 92.0

DFL-CNN (1-scale) ResNet-50 91.7

Table 3. Comparison of our approach (DFL-CNN) to recent results

on FGVC-Aircraft without extra annotation (if not specified).

DFL-CNN framework and the CUB-200-2011 dataset.

Contribution of each stream Given a trained DFL-CNN,

we investigate the contribution of each stream at test time.

Table 4 shows that the performance of the G-Stream or P-

Settings Accuracy (%)

G-Stream Only 80.3

P-Stream Only 82.0

G + P 84.9

G + P + Side 85.8

Table 4. Contribution of the streams at test time on CUB-200-

2011. Note that at training time a full DFL-CNN model is trained,

but the prediction only uses certain stream(s).

pool6 Method Accuracy (%)

GMP 85.8

GAP 80.4

Table 5. Effect of Global Max Pooling (GMP) vs. Global Average

Pooling (GAP) on CUB-200-2011.

Layer Initialization Filter Supervision Accuracy (%)

- - 82.2

X - 84.4

X X 85.8

Table 6. Effect of intermediate supervision of DFL-CNN at train-

ing time, evaluated on CUB-200-2011.

Method Without BBox (%) With BBox (%)

FT VGG-16 [57] 74.5 79.8

DFL-CNN 85.8 85.7

Table 7. Effect of BBox evaluated on CUB-200-2011.

Stream alone is mediocre, but the combination of the two is

significantly better than either one alone, indicating that the

global information and the discriminative patch information

are highly complementary. Additionally, the side branch

provides extra gain to reach the full performance in Table 1.

Effect of intermediate supervision We investigate the

effect of Section 3.2 and 3.3 by training the DFL-CNN

without certain component(s) and comparing with the full

model. Table 6 shows a significant performance improve-

ment when we gradually add the intermediate supervision

components to improve the quality of learned discrimina-

tive filters. Note that Table 6 does not include “Filter Super-

vision without Layer Initialization” settings since it leads to

failure to converge of P-Stream as mentioned in Section 3.3.

GMP vs. GAP More insight into the training process

can be obtained by simply switching the pooling method

of pool6 in Figure 2. As can be seen from the Table 5,

switching the pooling method from GMP to Global Average

Pooling (GAP) leads to a significant performance drop such

that the accuracy is close to “G-Stream Only” in Table 4.

Therefore, although conv6 is initialized to the same state,

during training GMP makes the filters more discriminative

by encouraging the 1×1 filters to have very high response at

a certain location of the feature map and the gradients will

only be back-propagated to that location, while GAP makes

the P-Stream almost useless by encouraging the filters to

have mediocre responses over the whole feature maps and

the gradients affect every spatial location.

Unnecessary BBox. Since our approach, DFL-CNN, is

able to utilize discriminative patches without localization, it
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Filter #3 Class 1
AM General Hummer SUV 

Filter #267 (Class 27)
BMW 1 Series Convertible

Filter #1606 (Class 161)
Mercedes-Benz 300-Class 

Filter #1847 (Class 185)
Tesla Model S Sedan

Filter #1938 (Class 194)
Volvo 240 Sedan

Filter #449 (Class 45)
Bugatti Veyron Convertible

Figure 4. The visualization of top patches in Stanford Cars. We remap the spatial location of the highest activation in a feature map back

to the patch in the original image. The results are highly consistent with human perception, and cover diverse regions such as head light

(2nd column), air intake (3th column), frontal face (4th column) and the black side stripe (last column).

Figure 5. Sample visualization of all ten filter activations learned for one class (Class 102) by upsampling the conv6 feature maps to

image resolution, similar to [56]. The activations are disriminatively concentrated and cover diverse regions. Better viewed at 600%.
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Figure 6. The pool6 features averaged over all test samples from Class 10, 101 and 151 in Stanford Cars. The dash lines indicate the

range of values given by the discriminative patch detectors belonging to the class. The representations peak at the corresponding class.

Figure 7. Visualization of a failure case, where the filter activates

on commonly appeared licence plates.

is expected to be less sensitive to BBox than the fine-tuned

baseline, as supported by the results in Table 7.

4.4. Visualization and Analysis

Insights into the behavior of our approach can be ob-

tained by visualizing the effects of conv6, the 1 × 1 con-

volutional layer. To understand its behavior, we

• visualize patch activations. Since we regard each fil-

ter as a discriminative patch detector, we identify the

learned patches by remapping spatial locations of top

filter activations back to images. Figure 4 shows that

we do find high-quality discriminative regions.

• visualize a forward pass. Since the max responses of

these filters are directly used for classification, by vi-

sualizing the output of conv6’s next layer, pool6,

we find that it produces discriminative representations

which have high responses for certain classes.

• visualize back propagation. During training, conv6

can affect its previous layer, conv4 3 (VGG-

16), through back propagation. By comparing the

conv4 3 features before and after training, we find

that the spatial energy distributions of previous feature

maps are changed in a discriminative fashion.

Figure 8. The visualization of patches in CUB-200-2011. We ac-

curately localize discriminative patches without part annotations,

such as the bright texture (first image), the color spot (second im-

age), the webbing and beak (third and forth image).
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Figure 9. The averaged pool6 features over all test samples from

Class 101 in CUB-200-2011, peaky at corresponding dimensions.

4.4.1 Stanford Cars

The visualization of top patches found by some classes’

1× 1 filters is displayed in Figure 4; the visualization of all

ten filters learned for a sample class is displayed in Figure 5.

Unlike previous filter visualizations, which pick human in-

terpretable results randomly among the filter activations, we

have imposed supervision on conv6 filters and can iden-

tify their corresponding classes. Figure 4 shows that the

top patches are very consistent with human perception. For

instance, the 1847
th filter belonging to Class 185 (Tesla

Model S) captures the distinctive tail of this type. Figure

5 shows that the filter activation are highly concentrated at
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Before
Training

After
Training

Figure 10. Visualization of the energy distribution of conv4 3 feature map before and after training for Stanford Cars. We remap each

spatial location in the feature map back to the patch in the original image. After training in our approach, the energy distribution becomes

more discriminative. For example, in the 1
st column, the high energy region shifts from the wheels to discriminative regions like the

frontal face and the top of the vehicle; in the 2
nd column, after training the energy over the brick patterns is reduced; in the 3

rd column,

the person no longer lies in high energy region after training; in the 7
th column, before training the energy is focused mostly at the air

grill, and training adds the discriminative fog light into the high energy region. More examples are interpretated in Section 4.4.1.

Before
Training

After
Training

Before
Training

After
Training

Figure 11. The energy distributions of conv4 3 feature maps be-

fore and after training in CUB-200-2011. After training, in the

left example, the high energy region at the background branches is

greatly shrinked and the energy is concentrated at the discrimina-

tive color spot; in the right example, more energy is distributed to

the distinctive black-and-white wing and tail of the species.

discriminative regions and the ten filters cover diverse re-

gions. The network can localize these subtle discriminative

regions because: a) 1 × 1 filters correspond to small patch

detectors in original image, b) the filter supervision, and c)

the use of cluster centers as initialization promotes diversity.

The visualization of pool6 features is shown in Fig-

ure 6. We plot the averaged representations over all test

samples from a certain class. Since we have learned a

set of discriminative filters, the representations should have

high responses at one class or only a few classes. Figure

6 shows that our approach works as expected. As notice-

able, the fine-grained similarity at patch-level (e.g. Audi A4

and Audi A6) and few common patterns ( example shown

in Figure 7) might explain the alternative peaks in Figure 6.

Most interesting is the effect of conv6 on the previ-

ous convolutional layer conv4 3 through back propaga-

tion. As discussed in Section 3.3, we use the energy dis-

tribution of conv4 3 as a hint to provide layer initializa-

tion. After training, we observed that the energy distribu-

tion is refined by conv6 and becomes more discriminative,

as shown by Figure 10. We map every spatial location in

the feature map back to the corresponding patch in the orig-

inal image, and the value of each pixel is determined by the

max energy patch covering that pixel. From the first line

of Figure 10, the features extracted from an ImageNet pre-

trained model tend to have high energy at round patterns

such as wheels, some unrelated background shape, a person

in the image and some texture patterns, which are common

patterns in generic models found in [49]. After training,

the energy shifts from these patterns to discriminative re-

gions of cars. For example, in the 6
th column, the feature

map has high energy initially at both the wheel and the head

light; after training, the network has determined that a dis-

criminative patch for that class (Volkswagen Beetle) is the

head light rather than the wheels. Therefore, conv6 have

beneficial effects on their previous layer during training.

4.4.2 CUB-200-2011

Figure 8 shows examples of the discriminative patches

found by our approach. They include the texture and spots

with bright color as well as specific shape of beak or web-

bing. Compared with visualizations of previous works not

using part annotations (e.g. [24, 30]), our approach localizes

such patches more accurately because our patch detectors

operate over denser and smaller patches and do not have to

be shared across categories.

Similar to cars, features from the next GMP layers are

peaky at certain categories (Fig. 9). The energy distribu-

tions of previous convolutional features are also improved:

high energy at background regions like branches is reduced

and the discriminative regions become more focused or di-

verse according to different categories (Fig. 11).

5. Conclusion

We have presented an approach to fine-grained recogni-

tion based on learning a discriminative filter bank within

a CNN framework in an end-to-end fashion without extra

annotation. This is done via an asymmetric multi-stream

network structure with convolutional layer supervision and

non-random layer initialization. Our approach learns high-

quality discriminative patches and obtains state-of-the-art

performance on both rigid / non-rigid fine-grained datasets.
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