
Low-Shot Learning from Imaginary Data

Yu-Xiong Wang1,2 Ross Girshick1 Martial Hebert2 Bharath Hariharan1,3

1Facebook AI Research (FAIR) 2Carnegie Mellon University 3Cornell University

Abstract

Humans can quickly learn new visual concepts, perhaps

because they can easily visualize or imagine what novel

objects look like from different views. Incorporating this

ability to hallucinate novel instances of new concepts might

help machine vision systems perform better low-shot learn-

ing, i.e., learning concepts from few examples. We present

a novel approach to low-shot learning that uses this idea.

Our approach builds on recent progress in meta-learning

(“learning to learn”) by combining a meta-learner with a

“hallucinator” that produces additional training examples,

and optimizing both models jointly. Our hallucinator can

be incorporated into a variety of meta-learners and pro-

vides significant gains: up to a 6 point boost in classifica-

tion accuracy when only a single training example is avail-

able, yielding state-of-the-art performance on the challeng-

ing ImageNet low-shot classification benchmark.

1. Introduction

The accuracy of visual recognition systems has grown

dramatically. But modern recognition systems still need

thousands of examples of each class to saturate perfor-

mance. This is impractical in cases where one does not

have enough resources to collect large training sets or that

involve rare visual concepts. It is also unlike the human vi-

sual system, which can learn a novel visual concept from

even a single example [28]. This challenge of learning new

concepts from very few labeled examples, often called low-

shot or few-shot learning, is the focus of this work.

Many recently proposed approaches to this problem fall

under the umbrella of meta-learning [33]. Meta-learning

methods train a learner, which is a parametrized function

that maps labeled training sets to classifiers. Meta-learners

are trained by sampling small training sets and test sets

from a large universe of labeled examples, feeding the sam-

pled training set to the learner to get a classifier, and then

computing the loss of the classifier on the sampled test set.

These methods directly frame low-shot learning as an opti-

mization problem.

However, generic meta-learning methods treat images as

blue	heron

Figure 1. Given a single image of a novel visual concept, such as a

blue heron, a person can visualize what the heron would look like

in other poses and different surroundings. If computer recognition

systems could do such hallucination, they might be able to learn

novel visual concepts from less data.

black boxes, ignoring the structure of the visual world. In

particular, many modes of variation (for example camera

pose, translation, lighting changes, and even articulation)

are shared across categories. As humans, our knowledge of

these shared modes of variation may allow us to visualize

what a novel object might look like in other poses or sur-

roundings (Figure 1). If machine vision systems could do

such “hallucination” or “imagination”, then the hallucinated

examples could be used as additional training data to build

better classifiers.

Unfortunately, building models that can perform such

hallucination is hard, except for simple domains like hand-

written characters [20]. For general images, while consider-

able progress has been made recently in producing realistic

samples, most current generative modeling approaches suf-

fer from the problem of mode collapse [26]: they are only

able to capture some modes of the data. This may be insuffi-

cient for low-shot learning since one needs to capture many

modes of variation to be able to build good classifiers. Fur-

thermore, the modes that are useful for classification may

be different from those that are found by training an im-

age generator. Prior work has tried to avoid this limitation

17278

by explicitly using pose annotations to generate samples in

novel poses [5], or by using carefully designed, but brittle,

heuristics to ensure diversity [13].

Our key insight is that the criterion that we should aim

for when hallucinating additional examples is neither diver-

sity nor realism. Instead, the aim should be to hallucinate

examples that are useful for learning classifiers. Therefore,

we propose a new method for low-shot learning that directly

learns to hallucinate examples that are useful for classifica-

tion by the end-to-end optimization of a classification ob-

jective that includes data hallucination in the model.

We achieve this goal by unifying meta-learning with hal-

lucination. Our approach trains not just the meta-learner,

but also a hallucinator: a model that maps real examples

to hallucinated examples. The few-shot training set is first

fed to the hallucinator; it produces an expanded training set,

which is then used by the learner. Compared to plain meta-

learning, our approach uses the rich structure of shared

modes of variation in the visual world. We show empirically

that such hallucination adds a significant performance boost

to two different meta-learning methods [35, 30], providing

up to a 6 point improvement when only a single training ex-

ample is available. Our method is also agnostic to the choice

of the meta-learning method, and provides significant gains

irrespective of this choice. It is precisely the ability to lever-

age standard meta-learning approaches without any modifi-

cations that makes our model simple, general, and very easy

to reproduce. Compared to prior work on hallucinating ex-

amples, we use no extra annotation and significantly outper-

form hallucination based on brittle heuristics [13]. We also

present a novel meta-learning method and discover and fix

flaws in previously proposed benchmarks.

2. Related Work

Low-shot learning is a classic problem [32]. One class

of approaches builds generative models that can share pri-

ors across categories [7, 25, 10]. Often, these generative

models have to be hand-designed for the domain, such as

strokes [17, 18] or parts [39] for handwritten characters. For

more unconstrained domains, while there has been signifi-

cant recent progress [24, 11, 22], modern generative models

still cannot capture the entirety of the distribution [26].

Different classes might not share parts or strokes, but

may still share modes of variation, since these often cor-

respond to camera pose, articulation, etc. If one has a

probability density on transformations, then one can gener-

ate additional examples for a novel class by applying sam-

pled transformations to the provided examples [20, 5, 13].

Learning such a density is easier for handwritten charac-

ters that only undergo 2D transformations [20], but much

harder for generic image categories. Dixit et al. [5] tackle

this problem by leveraging an additional dataset of images

labeled with pose and attributes; this allows them to learn

how images transform when the pose or the attributes are

altered. To avoid annotation, Hariharan and Girshick [13]

try to transfer transformations from a pair of examples from

a known category to a “seed” example of a novel class.

However, learning to do this transfer requires a carefully

designed pipeline with many heuristic steps. Our approach

follows this line of work, but learns to do such transforma-

tions in an end-to-end manner, avoiding both brittle heuris-

tics and expensive annotations.

Another class of approaches to low-shot learning has fo-

cused on building feature representations that are invari-

ant to intra-class variation. Some work tries to share fea-

tures between seen and novel classes [1, 36] or incremen-

tally learn them as new classes are encountered [21]. Con-

trastive loss functions [12, 16] and variants of the triplet

loss [31, 29, 8] have been used for learning feature represen-

tations suitable for low-shot learning; the idea is to push ex-

amples from the same class closer together, and farther from

other classes. Hariharan and Girshick [13] show that one

can encourage classifiers trained on small datasets to match

those trained on large datasets by a carefully designed loss

function. These representation improvements are orthogo-

nal to our approach, which works with any features.

More generally, a recent class of methods tries to

frame low-shot learning itself as a “learning to learn”

task, called meta-learning [33]. The idea is to directly

train a parametrized mapping from training sets to classi-

fiers. Often, the learner embeds examples into a feature

space. It might then accumulate statistics over the train-

ing set using recurrent neural networks (RNNs) [35, 23],

memory-augmented networks [27], or multilayer percep-

trons (MLPs) [6], perform gradient descent steps to finetune

the representation [9], and/or collapse each class into proto-

types [30]. An alternative is to directly predict the classifier

weights that would be learned from a large dataset using

few novel class examples [2] or from a small dataset clas-

sifier [37, 38]. We present a unified view of meta-learning

and show that our hallucination strategy can be adopted in

any of these methods.

3. Meta-Learning

Let X be the space of inputs (e.g., images) and Y be a

discrete label space. Let D be a distribution over X × Y .

Supervised machine learning typically aims to capture the

conditional distribution p(y|x) by applying a learning algo-

rithm to a parameterized model and a training set Strain =
{(xi, yi) ∼ D}Ni=1. At inference time, the model is evalu-

ated on test inputs x to estimate p(y|x). The composition

of the inference and learning algorithms can be written as

a function h (a classification algorithm) that takes as input

the training set and a test input x, and outputs an estimated

probability distribution p̂ over the labels:

p̂(x) = h(x, Strain). (1)

7279

In low-shot learning, we want functions h that have high

classification accuracy even when Strain is small. Meta-

learning is an umbrella term that covers a number of re-

cently proposed empirical risk minimization approaches to

this problem [37, 35, 30, 9, 23]. Concretely, they con-

sider parametrized classification algorithms h(·, ·;w) and

attempt to estimate a “good” parameter vector w, namely

one that corresponds to a classification algorithm that can

learn well from small datasets. Thus, estimating this pa-

rameter vector can be construed as meta-learning [33].

Meta-learning algorithms have two stages. The first

stage is meta-training in which the parameter vector w

of the classification algorithm is estimated. During meta-

training, the meta-learner has access to a large labeled

dataset Smeta that typically contains thousands of images

for a large number of classes C. In each iteration of meta-

training, the meta-learner samples a classification prob-

lem out of Smeta. That is, the meta-learner first sam-

ples a subset of m classes from C. Then it samples a

small “training” set Strain and a small “test” set Stest. It

then uses its current weight vector w to compute condi-

tional probabilities h(x, Strain;w) for every point (x, y)
in the test set Stest. Note that in this process h may

perform internal computations that amount to “training”

on Strain. Based on these predictions, h incurs a loss

L(h(x, Strain;w), y) for each point in the current Stest.

The meta-learner then back-propagates the gradient of the

total loss
∑

(x,y)∈Stest
L(h(x, Strain;w), y). The number

of classes in each iteration, m, and the maximum number

of training examples per class, n, are hyperparameters.

The second stage is meta-testing in which the resulting

classification algorithm is used to solve novel classification

tasks: for each novel task, the labeled training set and unla-

beled test examples are given to the classification algorithm

and the algorithm outputs class probabilities.

Different meta-learning approaches differ in the form of

h. The data hallucination method introduced in this paper

is general and applies to any meta-learning algorithm of the

form described above. Concretely, we will consider the fol-

lowing three meta-learning approaches:

Prototypical networks: Snell et al. [30] propose an archi-

tecture for h that assigns class probabilities based on dis-

tances from class means µk in a learned feature space:

h(x, Strain;w) = p̂(x) (2)

p̂k(x) =
e−d(φ(x;wφ),µk)

∑
j e

−d(φ(x;wφ),µj)
(3)

µk =

∑
(xi,yi)∈Strain

φ(xi;wφ)I[yi = k]
∑

(xi,yi)∈Strain
I[yi = k]

. (4)

Here p̂k are the components of the probability vector p̂

and d is a distance metric (Euclidean distance in [30]). The

only parameters to be learned here are the parameters of the

feature extractor wφ. The estimation of the class means µk

can be seen as a simple form of “learning” from Strain that

takes place internal to h.

Matching networks: Vinyals et al. [35] argue that when

faced with a classification problem and an associated train-

ing set, one wants to focus on the features that are useful for

those particular class distinctions. Therefore, after embed-

ding all training and test points independently using a fea-

ture extractor, they propose to create a contextual embed-

ding of the training and test examples using bi-directional

long short-term memory networks (LSTMs) and attention

LSTMs, respectively. These contextual embeddings can be

seen as emphasizing features that are relevant for the par-

ticular classes in question. The final class probabilities are

computed using a soft nearest-neighbor mechanism. More

specifically,

h(x, Strain;w) = p̂(x) (5)

p̂k(x) =

∑
(xi,yi)∈Strain

e−d(f(x),g(xi))I[yi = k]
∑

(xi,yi)∈Strain
e−d(f(x),g(xi))

(6)

f(x) =AttLSTM(φ(x;wφ), {g(xi)}
N
i=1;wf) (7)

{g(xi)}
N
i=1 =BiLSTM({φ(xi;wφ)}

N
i=1;wg). (8)

Here, again d is a distance metric. Vinyals et al. used

the cosine distance. There are three sets of parameters to be

learned: wφ,wg, and wf .

Prototype matching networks: One issue with matching

networks is that the attention LSTM might find it harder to

“attend” to rare classes (they are swamped by examples of

common classes), and therefore might introduce heavy bias

against them. Prototypical networks do not have this prob-

lem since they collapse every class to a single class mean.

We want to combine the benefits of the contextual embed-

ding in matching networks with the resilience to class im-

balance provided by prototypical networks.

To do so, we collapse every class to its class mean be-

fore creating the contextual embeddings of the test exam-

ples. Then, the final class probabilities are based on dis-

tances to the contextually embedded class means instead of

individual examples:

h(x, Strain;w) = p̂(x) (9)

p̂k(x) =
e−d(f(x),νk)

∑
j e

−d(f(x),νj)
(10)

f(x) =AttLSTM(φ(x;wφ), {νk}
|Y|
k=1;wf) (11)

νk =

∑
(xi,yi)∈Strain

g(xi)I[yi = k]
∑

(xi,yi)∈Strain
I[yi = k]

(12)

{g(xi)}
N
i=1 =BiLSTM({φ(xi;wφ)}

N
i=1;wg). (13)

7280

,	heron)

,	heron)

Sample

G

h

(

(

!"#$%&
'

!"#$%&

!"#$%&
$()

!"*+"

Noise	,

-.

Figure 2. Meta-learning with hallucination. Given an initial train-

ing set Strain, we create an augmented training set S
aug

train by

adding a set of generated examples SG

train. SG

train is obtained by

sampling real seed examples and noise vectors z and passing them

to a parametric hallucinator G. The hallucinator is trained end-to-

end along with the classification algorithm h. Dotted red arrows

indicate the flow of gradients during back-propagation.

The parameters to be learned are wφ,wg , and wf . We

call this novel modification to matching networks prototype

matching networks.

4. Meta-Learning with Learned Hallucination

We now present our approach to low-shot learning by

learning to hallucinate additional examples. Given an initial

training set Strain, we want a way of sampling additional

hallucinated examples. Following recent work on genera-

tive modeling [11, 15], we will model this stochastic pro-

cess by way of a deterministic function operating on a noise

vector as input. Intuitively, we want our hallucinator to take

a single example of an object category and produce other

examples in different poses or different surroundings. We

therefore write this hallucinator as a function G(x, z;wG)
that takes a seed example x and a noise vector z as input,

and produces a hallucinated example as output. The param-

eters of this hallucinator are wG.

We first describe how this hallucinator is used in meta-

testing, and then discuss how we train the hallucinator.

Hallucination during meta-testing: During meta-testing,

we are given an initial training set Strain. We then halluci-

nate ngen new examples using the hallucinator. Each hal-

lucinated example is obtained by sampling a real example

(x, y) from Strain, sampling a noise vector z, and passing

x and z to G to obtain a generated example (x′, y) where

x′ = G(x, z;wG). We take the set of generated examples

SG
train and add it to the set of real examples to produce an

augmented training set S
aug
train = Strain ∪ SG

train. We can

now simply use this augmented training set to produce con-

ditional probability estimates using h. Note that the hal-

lucinator parameters are kept fixed here; any learning that

happens, happens within the classification algorithm h.

Meta-training the hallucinator: The goal of the hallucina-

tor is to produce examples that help the classification algo-

rithm learn a better classifier. This goal differs from real-

ism: realistic examples might still fail to capture the many

modes of variation of visual concepts, while unrealistic hal-

lucinations can still lead to a good decision boundary [4].

We therefore propose to directly train the hallucinator to

support the classification algorithm by using meta-learning.

As before, in each meta-training iteration, we sample

m classes from the set of all classes, and at most n ex-

amples per class. Then, for each class, we use G to

generate ngen additional examples till there are exactly

naug examples per class. Again, each hallucinated ex-

ample is of the form (x′, y), where x′ = G(x, z;wG),
(x, y) is a sampled example from Strain and z is a sam-

pled noise vector. These additional examples are added

to the training set Strain to produce an augmented train-

ing set S
aug
train. Then this augmented training set is fed

to the classification algorithm h, to produce the final loss∑
(x,y)∈Stest

L(h(x, Saug
train), y), where S

aug
train = Strain ∪

SG
train and SG

train = {(G(xi, zi;wG), yi)
ngen

i=1 : (xi, yi) ∈
Strain}.

To train the hallucinator G, we require that the classi-

fication algorithm h(x, Saug
train;w) is differentiable with re-

spect to the elements in S
aug
train. This is true for many meta-

learning algorithms. For example, in prototypical networks,

h will pass every example in the training set through a fea-

ture extractor, compute the class means in this feature space,

and use the distances between the test point and the class

means to estimate class probabilities. If the feature extrac-

tor is differentiable, then the classification algorithm itself

is differentiable with respect to the examples in the training

set. This allows us to back-propagate the final loss and up-

date not just the parameters of the classification algorithm

h, but also the parameters wG of the hallucinator. Figure 2

shows a schematic of the entire process.

Using meta-learning to train the hallucinator and the

classification algorithm has two benefits. First, the hal-

lucinator is directly trained to produce the kinds of hal-

lucinations that are useful for class distinctions, removing

the need to precisely tune realism or diversity, or the right

modes of variation to hallucinate. Second, the classifica-

tion algorithm is trained jointly with the hallucinator, which

enables it to make allowances for any errors in the halluci-

nation. Conversely, the hallucinator can spend its capacity

on suppressing precisely those errors which throw the clas-

sification algorithm off.

Note that the training process is completely agnostic to

the specific meta-learning algorithm used. We will show in

our experiments that our hallucinator provides significant

gains irrespective of the meta-learner.

5. Experimental Protocol

We use the benchmark proposed by Hariharan and Gir-

shick [13]. This benchmark captures more realistic scenar-

7281

ios than others based on handwritten characters [18] or low-

resolution images [35]. The benchmark is based on Ima-

geNet images and subsets of ImageNet classes. First, in the

representation learning phase, a convolutional neural net-

work (ConvNet) based feature extractor is trained on one

set of classes with thousands of examples per class; this set

is called the “base” classes Cbase. Then, in the low-shot

learning phase, the recognition system encounters an addi-

tional set of “novel” classes Cnovel with a small number of

examples n per class. It also has access to the base class

training set. The system has to now learn to recognize both

the base and the novel classes. It is tested on a test set con-

taining examples from both sets of classes, and it needs to

output labels in the joint label space Cbase ∪ Cnovel. Hari-

haran and Girshick report the top-5 accuracy averaged over

all classes, and also the top-5 accuracy averaged over just

base-class examples, and the top-5 accuracy averaged over

just novel-class examples.

Tradeoffs between base and novel classes: We observed

that in this kind of joint evaluation, different methods had

very different performance tradeoffs between the novel and

base class examples and yet achieved similar performance

on average. This makes it hard to meaningfully compare the

performance of different methods on just the novel or just

the base classes. Further, we found that by changing hyper-

parameter values of some meta-learners it was possible to

achieve substantially different tradeoff points without sub-

stantively changing average performance. This means that

hyperparameters can be tweaked to make novel class perfor-

mance look better at the expense of base class performance

(or vice versa).

One way to concretize this tradeoff is by incorporating

a prior over base and novel classes. Consider a classifier

that gives a score sk(x) for every class k given an image

x. Typically, one would convert these into probabilities by

applying a softmax function:

pk(x) = p(y = k|x) =
esk

∑
j e

sj
. (14)

However, we may have some prior knowledge about the

probability that an image belongs to the base classes Cbase

or the novel classes Cnovel. Suppose that the prior probabil-

ity that an image belongs to one of the novel classes is µ.

Then, we can update Equation (14) as follows:

pk(x) = p(y = k|x) (15)

= p(y = k|y ∈ Cbase, x)p(y ∈ Cbase|x)

+ p(y = k|y ∈ Cnovel, x)p(y ∈ Cnovel|x) (16)

=
eskI[k ∈ Cbase]∑
j e

sjI[j ∈ Cbase]
(1− µ)

+
eskI[k ∈ Cnovel]∑
j e

sjI[j ∈ Cnovel]
µ. (17)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Novel class prior

0

20

40

60

80

100

T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

All classes

Novel classes

Base classes

Figure 3. The variation of the overall, novel class, and base class

accuracy for MN in the evaluation proposed by Hariharan and Gir-

shick [13] as the novel class prior µ is varied.

The prior probability µ might be known beforehand, but

can also be cross-validated to correct for inherent biases

in the scores sk. However, note that in some practical set-

tings, one may not have a held-out set of categories to cross-

validate.Thus resilience to this prior is important.

Figure 3 shows the impact of this prior on matching net-

works in the evaluation proposed by Hariharan and Gir-

shick [13]. Note that the overall accuracy remains fairly sta-

ble, even as novel class accuracy rises and base class accu-

racy falls. Such prior probabilities for calibration were pro-

posed for the zero-shot learning setting by Chao et al. [3].

A new evaluation: The existence of this tunable tradeoff

between base and novel classes makes it hard to make

apples-to-apples comparisons of novel class performance if

the model is tasked with making predictions in the joint la-

bel space. Instead, we use a new evaluation protocol that

evaluates four sets of numbers:

1. The model is given test examples from the novel

classes, and is only supposed to pick a label from the

novel classes. That is, the label space is restricted

to Cnovel (note that doing so is equivalent to setting

µ = 1 for prototypical networks but not for matching

networks and prototype matching networks because of

the contextual embeddings). We report the top-5 accu-

racy on the novel classes in this setting.

2. Next, the model is given test examples from the base

classes, and the label space is restricted to the base

classes. We report the top-5 accuracy in this setting.

3. The model is given test examples from both the base

and novel classes in equal proportion, and the model

has to predict labels from the joint label space. We

report the top-5 accuracy averaged across all exam-

ples. We present numbers both with and without a

novel class prior µ; the former set cross-validates µ

to achieve the highest average top-5 accuracy.

Note that, following [13], we use a disjoint set of classes for

cross-validation and testing. This prevents hyperparameter

7282

choices for the hallucinator, meta-learner, and novel class

prior from becoming overfit to the novel classes that are

seen for the first time at test time.

6. Experiments

6.1. Implementation Details

Unlike prior work on meta-learning which experiments

with small images and few classes [35, 30, 9, 23], we use

high resolution images and our benchmark involves hun-

dreds of classes. This leads to some implementation chal-

lenges. Each iteration of meta-learning at the very least has

to compute features for the training set Strain and the test

set Stest. If there are 100 classes with 10 examples each,

then this amounts to 1000 images, which no longer fits in

memory. Training a modern deep convolutional network

with tens of layers from scratch on a meta-learning objec-

tive may also lead to a hard learning problem.

Instead, we first train a convolutional network based fea-

ture extractor on a simple classification objective on the

base classes Cbase. Then we extract and save these fea-

tures to disk, and use these pre-computed features as inputs.

For most experiments, consistent with [13], we use a small

ResNet-10 architecture [14]. Later, we show some experi-

ments using the deeper ResNet-50 architecture [14].

Meta-learner architectures: We focus on state-of-the-art

meta-learning approaches, including prototypical networks

(PN) [30], matching networks (MN) [35], and our improve-

ment over MN — prototype matching networks (PMN). For

PN, the embedding architecture consists of two MLP layers

with ReLU as the activation function. We use Euclidean

distance as in [30]. For MN, following [35], the embedding

architecture consists of a one layer bi-directional LSTM that

embeds training examples and attention LSTM that embeds

test samples. We use cosine distance as in [35]. For our

PMN, we collapse every class to its class mean before the

contextual embeddings of the test examples, and we keep

other design choices the same as those in MN.

Hallucinator architecture and initialization: For our hal-

lucinator G, we use a three layer MLP with ReLU as the

activation function. We add a ReLU at the end since the

pre-trained features are known to be non-negative. All hid-

den layers have a dimensionality of 512 for ResNet-10 fea-

tures and 2048 for ResNet-50 features. Inspired by [19], we

initialize the weights of our hallucinator network as block

diagonal identity matrices. This significantly outperformed

standard initialization methods like random Gaussian, since

the hallucinator can “copy” its seed examples to produce a

reasonable generation immediately from initialization.

6.2. Results

As in [13], we run five trials for each setting of n (the

number of examples per novel class) and present the av-

1 2 5 10 20

of examples / novel class

0

1

2

3

4

5

6

Im
p
ro

v
e
m

e
n
t

in
 t

o
p
-5

 a
cc

u
ra

cy
 (

a
b
so

lu
te

)

Novel classes
(PN w/ G) - (PN)

(PMN w/ G) - (PMN)

1 2 5 10 20

of examples / novel class

0

1

2

3

4

5

6

7

8

Im
p
ro

v
e
m

e
n
t

in
 t

o
p
-5

 a
cc

u
ra

cy
 (

a
b
so

lu
te

)

All classes
(PN w/ G) - (PN)

(PMN w/ G) - (PMN)

(PN w/ G) - (PN) w/ prior

(PMN w/ G) - (PMN) w/ prior

Figure 4. Improvement in accuracy by learned hallucination for

different meta-learners as a function of the number of examples

available per novel class.

erage performance. Different approaches are comparably

good for base classes, achieving 92% top-5 accuracy. We

focus more on novel classes since they are more important

in low-shot learning. Table 1 contains a summary of the

top-5 accuracy for novel classes and for the joint space both

with and without a cross-validated prior. Standard devia-

tions for all numbers are of the order of 0.2%. We discuss

specific results, baselines, and ablations below.

Impact of hallucination: We first compare meta-learners

with and without hallucination to judge the impact of hallu-

cination. We look at prototypical networks (PN) and proto-

type matching networks (PMN) for this comparison. Fig-

ure 4 shows the improvement in top-5 accuracy we get

from hallucination on top of the original meta-learner per-

formance. The actual numbers are shown in Table 1.

We find that our hallucination strategy improves novel

class accuracy significantly, by up to 6 points for prototypi-

cal networks and 2 points for prototype matching networks.

This suggests that our approach is general and can work

with different meta-learners. While the improvement drops

when more novel category training examples become avail-

able, the gains remain significant until n = 20 for prototyp-

ical networks and n = 5 for prototype matching networks.

Accuracy in the joint label space (right half of Figure 4)

shows the same trend. However, note that the gains from

hallucination decrease significantly when we cross-validate

for an appropriate novel-class prior µ (shown in dotted

lines). This suggests that part of the effect of hallucination

is to provide resilience to mis-calibration. This is important

in practice where it might not be possible to do extensive

cross-validation; in this case, meta-learners with halluci-

nation demonstrate significantly higher accuracy than their

counterparts without hallucination.

Comparison to prior work: Figure 5 and Table 1 compare

our best approach (prototype matching networks with hallu-

cination) with previously published approaches in low-shot

learning. These include prototypical networks [30], match-

ing networks [35], and the following baselines:

1. Logistic regression: This baseline simply trains a lin-

ear classifier on top of a pre-trained ConvNet-based

feature extractor that was trained on the base classes.

7283

Novel All All with prior

Method n=1 2 5 10 20 n=1 2 5 10 20 n=1 2 5 10 20

ResNet-10

PMN w/ G* 45.8 57.8 69.0 74.3 77.4 57.6 64.7 71.9 75.2 77.5 56.4 63.3 70.6 74.0 76.2

PMN* 43.3 55.7 68.4 74.0 77.0 55.8 63.1 71.1 75.0 77.1 54.7 62.0 70.2 73.9 75.9

PN w/ G* 45.0 55.9 67.3 73.0 76.5 56.9 63.2 70.6 74.5 76.5 55.6 62.1 69.3 73.1 75.4

PN [30] 39.3 54.4 66.3 71.2 73.9 49.5 61.0 69.7 72.9 74.6 53.6 61.4 68.8 72.0 73.8

MN [35] 43.6 54.0 66.0 72.5 76.9 54.4 61.0 69.0 73.7 76.5 54.5 60.7 68.2 72.6 75.6

LogReg 38.4 51.1 64.8 71.6 76.6 40.8 49.9 64.2 71.9 76.9 52.9 60.4 68.6 72.9 76.3

LogReg w/ Analogies [13] 40.7 50.8 62.0 69.3 76.5 52.2 59.4 67.6 72.8 76.9 53.2 59.1 66.8 71.7 76.3

ResNet-50

PMN w/ G* 54.7 66.8 77.4 81.4 83.8 65.7 73.5 80.2 82.8 84.5 64.4 71.8 78.7 81.5 83.3

PMN* 53.3 65.2 75.9 80.1 82.6 64.8 72.1 78.8 81.7 83.3 63.4 70.8 77.9 80.9 82.7

PN w/ G* 53.9 65.2 75.7 80.2 82.8 65.2 72.0 78.9 81.7 83.1 63.9 70.5 77.5 80.6 82.4

PN [30] 49.6 64.0 74.4 78.1 80.0 61.4 71.4 78.0 80.0 81.1 62.9 70.5 77.1 79.5 80.8

MN [35] 53.5 63.5 72.7 77.4 81.2 64.9 71.0 77.0 80.2 82.7 63.8 69.9 75.9 79.3 81.9

Table 1. Top-5 accuracy on the novel classes and on all classes (with and without priors) for different values of n. ∗Our methods. PN: Pro-

totypical networks, MN: Matching networks, PMN: Prototype matching networks, LogReg: Logistic regression. Methods with “w/ G” use

a meta-learned hallucinator.

1 2 5 10 20

of examples / novel class

35

40

45

50

55

60

65

70

75

80

T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

Novel classes

PMN w/ G

PN

MN

LogReg w/ Analogies

LogReg

1 2

of examples / novel class

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

Novel classes (zoom)

1 2 5 10 20

of examples / novel class

50

55

60

65

70

75

80

T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

All classes (with prior)

Figure 5. Our best approach compared to previously published methods. From left to right: just the novel classes, zoomed in performance

for the case when the number of examples per novel class n ≤ 2, performance on the joint label space with a cross-validated prior.

2. Logistic regression with analogies: This baseline

uses the procedure described by Hariharan and Gir-

shick [13] to hallucinate additional examples. These

additional examples are added to the training set and

used to train the linear classifier.

Our approach easily outperforms all baselines, provid-

ing almost a 2 point improvement across the board on the

novel classes, and similar improvements in the joint label

space even after allowing for cross-validation of the novel

category prior. Our approach is thus state-of-the-art.

Another intriguing finding is that our proposed prototype

matching network outperforms matching networks on novel

classes as more novel class examples become available (Ta-

ble 1). On the joint label space, prototype matching net-

works are better across the board.

Interestingly, the method proposed by Hariharan and

Girshick [13] underperforms the standard logistic regres-

sion baseline (although it does show gains when the novel

class prior is not cross-validated, as shown in Table 1, indi-

cating that its main impact is resilience to mis-calibration).

Unpacking the performance gain: To unpack where our

performance gain is coming from, we perform a series of

ablations to answer the following questions.

Are sophisticated hallucination architectures necessary?

In the semantic feature space learned by a convolutional net-

work, a simple jittering of the training examples might be

enough. We created several baseline hallucinators that did

such jittering by: (a) adding Gaussian noise with a diagonal

covariance matrix estimated from feature vectors from the

base classes, (b) using dropout (PN/PMN w/ Dropout), and

(c) generating new examples through a weighted average of

real ones (PN/PMN w/ Weighted). For the Gaussian hallu-

cinator, we evaluated both a covariance matrix shared across

classes and class-specific covariances. We found that the

shared covariance outperformed class-specific covariances

by 0.7 point and reported the best results. We tried both

retraining the meta-learner with this Gaussian hallucinator,

and using a pre-trained meta-learner: PN/PMN w/ Gaus-

sian uses a pre-trained meta-learner and PN/PMN w/ Gaus-

sian(tr) retrains the meta-learner. As shown in Figure 6,

7284

1 2 5 10 20

of examples / novel class

8

6

4

2

0

2

4

6

Im
p
ro

v
e
m

e
n
t

in
 t

o
p
-5

 a
cc

u
ra

cy
 (

a
b
so

lu
te

)

Novel classes

(PN w/ G) - (PN)

(PN w/ Gaussian) - (PN)

(PN w/ Gaussian(tr)) - (PN)

(PN w/ init G) - (PN)

(PN w/ det. G) - (PN)

(PN w/ det. G(tr)) - (PN)

(PN w/ Dropout) - (PN)

(PN w/ Weighted) - (PN)

(PN w/ Analogies) - (PN)

Figure 6. Comparison of our learned hallucination with several

ablations for both PN (left) and PMN (right). Our approach sig-

nificantly outperforms the baselines, showing that a meta-learned

hallucinator is important. Best viewed in color with zoom.

while such hallucinations help a little, they often hurt sig-

nificantly, and lag the accuracy of our approach by at least 3

points. This shows that generating useful hallucinations is

not easy and requires sophisticated architectures.

Is meta-learning the hallucinator necessary?

Simply passing Gaussian noise through an untrained con-

volutional network can produce complex distributions. In

particular, ReLU activations might ensure the hallucinations

are non-negative, like the real examples. We compared hal-

lucinations with (a) an untrained G and (b) a pre-trained

and fixed G based on analogies from [13] with our meta-

trained version to see the impact of our training. Figure 6

shows the impact of these baseline hallucinators (labeled

PN/PMN w/ init G and PN/PMN w/ Analogies, respec-

tively). These baselines hurt accuracy significantly, sug-

gesting that meta-training the hallucinator is important.

Does the hallucinator produce diverse outputs?

A persistent problem with generative models is that they

fail to capture multiple modes [26]. If this is the case, then

any one hallucination should look very much like the oth-

ers, and simply replicating a single hallucination should be

enough. We compared our approach with: (a) a determin-

istic baseline that uses our trained hallucinator, but simply

uses a fixed noise vector z = 0 (PN/PMN w/ det. G) and

(b) a baseline that uses replicated hallucinations during both

training and testing (PN/PMN w/ det. G(tr)).These base-

lines had a very small, but negative effect. This suggests

that our hallucinator produces useful, diverse samples.

Visualizing the learned hallucinations: Figure 7 shows t-

SNE [34] visualizations of hallucinated examples for novel

classes from our learned hallucinator and a baseline Gaus-

sian hallucinator for prototypical networks. As before, we

used statistics from the base class distribution for the Gaus-

sian hallucinator. Note that t-SNE tends to expand out

parts of the space where examples are heavily clustered to-

gether. Thus, the fact that the cloud of hallucinations for the

Gaussian hallucinator is pulled away from the class distri-

butions suggests that these hallucinations are very close to

each other and far away from the rest of the class. In con-

trast, our hallucinator matches the class distributions more

(a) Gaussian baseline (b) G with 1 seed

(c) 2 seeds (d) 4 seeds

Figure 7. t-SNE visualizations of hallucinated examples. Seeds

are shown as stars, real examples as crosses, hallucinations as tri-

angles. (a) Gaussian, single seed. (b,c,d) Our approach, 1, 2, and

4 seeds respectively. Best viewed in color with zoom.

closely, and with different seed examples captures different

parts of the space. Interestingly, our generated examples

tend to cluster around the class boundaries. This might be

an artifact of t-SNE, or perhaps a consequence of discrim-

inative training of the hallucinator. However, our halluci-

nations are still fairly clustered; increasing the diversity of

these hallucinations is an avenue for future work.

Representations from deeper models: All experiments till

now used a feature representation trained using the ResNet-

10 architecture [13]. The bottom half of Table 1 shows the

results on features from a ResNet-50 architecture. As ex-

pected, all accuracies are higher, but our hallucination strat-

egy still provides gains on top of both prototypical networks

and prototype matching networks.

7. Conclusion

In this paper, we have presented an approach to low-

shot learning that uses a trained hallucinator to generate ad-

ditional examples. Our hallucinator is trained end-to-end

with meta-learning, and we show significant gains on top of

multiple meta-learning methods. Our best proposed model

achieves state-of-the-art performance on a realistic bench-

mark by a comfortable margin. Future work involves pin-

ning down exactly the effect of the hallucinated examples.

Acknowledgments: We thank Liangyan Gui, Larry Zitnick, Piotr

Dollár, Kaiming He, and Georgia Gkioxari for valuable and insight-

ful discussions. This work was supported in part by ONR MURI

N000141612007 and U.S. Army Research Laboratory (ARL) under the

Collaborative Technology Alliance Program, Cooperative Agreement

W911NF-10-2-0016. We also thank NVIDIA for donating GPUs and AWS

Cloud Credits for Research program.

7285

