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Abstract

In recent years, many tracking algorithms achieve im-

pressive performance via fusing multiple types of features,

however, most of them fail to fully explore the context among

the adopted multiple features and the strength of them. In

this paper, we propose an efficient multi-cue analysis frame-

work for robust visual tracking. By combining differen-

t types of features, our approach constructs multiple ex-

perts through Discriminative Correlation Filter (DCF) and

each of them tracks the target independently. With the pro-

posed robustness evaluation strategy, the suitable expert is

selected for tracking in each frame. Furthermore, the di-

vergence of multiple experts reveals the reliability of the

current tracking, which is quantified to update the experts

adaptively to keep them from corruption.

Through the proposed multi-cue analysis, our tracker

with standard DCF and deep features achieves outstand-

ing results on several challenging benchmarks: OTB-2013,

OTB-2015, Temple-Color and VOT 2016. On the other

hand, when evaluated with only simple hand-crafted fea-

tures, our method demonstrates comparable performance

amongst complex non-realtime trackers, but exhibits much

better efficiency, with a speed of 45 FPS on a CPU.

1. Introduction

Visual tracking is a fundamental task in computer vision

with a wide range of applications. It is challenging since

only the initial state of the target is available. Although

substantial progress has been made in the past decades

[52, 16, 35], there still remain many challenges [49].

In recent years, Discriminative Correlation Filter (DCF)

based tracking methods [4, 16] have gained much atten-

tion thanks to their impressive performance as well as high

speed. In DCF based trackers, the filter is trained through

minimizing a least-squares loss for all circular shifts of a

training sample. Since the correlation operation can be cal-

culated in Fourier domain, DCF shows the advantage of

high computational efficiency. Its performance is further
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Figure 1. Comparison of the proposed algorithm (MCCT) with

the state-of-the-art trackers: SRDCF [12], DeepSRDCF [11] and

C-COT [13]. These trackers adopt various types of features and

perform differently in challenging scenes. Our method maintain-

s multiple cues for tracking and performs favorably against these

trackers. All the videos are from OTB-2015 [48].

enhanced by using multi-dimensional features [16, 26, 31],

part-based strategies [29, 28], adaptive scale [9, 26], long-

term framework [32, 17, 45], end-to-end learning [41, 40]

and improved filter training methods [20, 30, 33, 14]. Spe-

cially, the combination of DCF and features from deep con-

volutional neural networks (CNNs) [23, 39] has demonstrat-

ed state-of-the-art results. Recently, Ma et al. [31] propose

a HCF algorithm, which constructs multiple DCFs on low,

middle and high-level features to capture both spatial detail-

s and semantics. It predicts the target location using multi-

level DCF response maps in a coarse-to-fine fashion.

Although feature-level fusion methods [26, 31, 38] have

been widely used or extended to boost the performance,

there still leaves room for improvement. In HCF [31] or

other methods [56, 38] that follow such a fusion strategy,

the initial weight of high-level features is usually high such

that semantic features play the dominant role in general. It

is reasonable because of better effectiveness of high-level

features compared to shallow features. However, due to the

occasional misguidance of the semantic information, a tran-

sient drift or wrong prediction may be amplified by the in-

adequate online update. Therefore, the feature-level fusion
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approach sometimes still fails to fully explore the relation-

ship of multiple features. Furthermore, it is quite difficult to

handle various challenging variations using a single model,

and relying on a certain feature-level fusion strategy limits

the model diversity to some extent.

To better illustrate the issues mentioned above, our pro-

posed algorithm is compared with three DCF based method-

s. In Figure 1, SRDCF [12], DeepSRDCF [11] and C-COT

[13] adopt different types of features, but none of them is

able to handle various challenging factors, even for the C-

COT algorithm with multiple features as well as the nov-

el continuous convolution operators. Since it is quite diffi-

cult to design a satisfying feature-level fusion method that

suits various challenging scenes, it is intuitive to design an

adaptive switch mechanism to achieve better performance,

which can flexibly switch to the reliable tracker depend-

ing on what kind of challenging factors it is expert at han-

dling. In other words, the performance of a single tracker

can sometimes be unstable but the decision-level fusion of

the outputs from multiple trackers can enhance the robust-

ness effectively.

In this paper, a novel Multi-Cue Correlation filter based

Tracker (MCCT) is proposed. Different from the previous

DCF based methods [4, 16] that usually lack the diversity

of target appearance representations, our method maintains

multiple experts to learn the appearance models from dif-

ferent views. Here, a certain combination of features con-

structs an individual expert and provides a reliable cue (pre-

dicted target state) for tracking. The main contributions

of our work can be summarized as follows. (1) We pro-

pose an algorithm that maintains multiple cues for track-

ing. Through checking the robustness scores of multiple

experts carefully, our method refines the tracking results

by choosing the reliable expert for tracking in each frame.

(2) By considering the divergence of multiple experts, we

present an adaptive update strategy which can discriminate

the unreliable samples (e.g., occlusion or sever deforma-

tion) effectively and alleviate the contamination of train-

ing samples. (3) We implement two versions of the pro-

posed method to validate the generality of the framework.

The MCCT tracker with deep features demonstrates out-

standing performance on several challenging benchmarks

[47, 48, 27, 21]. The MCCT-H tracker with only two s-

tandard Hand-crafted features (HOG [7] and ColorNames

[46]) achieves comparable performance with many complex

deep-model based trackers, but operates about 45 frames

per second on a single CPU, exceeding most competitive

trackers by several times.

2. Related Work

In this section, we discuss two categories of trackers

closely related to our algorithm: correlation tracking and

ensemble tracking.

Correlation Tracking. Since Bolme et al. [4] pro-

pose a tracker using minimum output sum of squared er-

ror (MOSSE) filter, the correlation filters have been widely

studied in visual tracking. Heriques et al. exploit the cir-

culant structure of the training patches [15] and propose to

train correlation filter in a kernel space with HOG features

[16]. Zhang et al. [54] incorporate context information in-

to filter learning. The SRDCF tracker [12] alleviates the

boundary effects by penalizing correlation filter coefficients

depending on spatial location, and is enhanced by reduc-

ing the influence of corrupted samples [10]. Qi et al. [38]

propose a HDT algorithm that fuses several DCFs through

adaptive hedged method. Luca et al. [2] propose a Sta-

ple tracker which combines DCF and color histogram based

model while running in excess of real-time. The CSR-DCF

algorithm [30] constructs DCF with channel and spatial reli-

ability. The recent C-COT [13] adopts a continuous-domain

formulation of the DCF, leading to the top performance on

several tracking benchmarks. The enhanced version of C-

COT is ECO [8], which improves both speed and perfor-

mance by introducing several efficient strategies.

Different from the DCF based methods mentioned

above, our algorithm considers not only feature-level fusion

but also decision-level fusion to better explore the relation-

ship of multiple features, and adaptively selects the expert

that is suitable for a particular tracking task.

Ensemble Tracking. To enhance the tracking robust-

ness and obtain reliable results, the ensemble approach

treats the trackers as black boxes and takes only the bound-

ing boxes returned by them as input [43]. In [1], a dynam-

ic programming based trajectory optimization approach is

proposed to build a strong tracker. In [44], Wang et al. pro-

pose a factorial hidden Markov model for ensemble-based

tracking. The MEEM algorithm [51] exploits the relation-

ship between the current tracker and its historical snapshots

using entropy minimization, and Li et al. [25] extend it

by introducing a discrete graph optimization framework. In

[19], a partition fusion framework is proposed to cluster re-

liable trackers for target state prediction.

Although promising results are obtained through fusing

multiple trackers, there still leave some limitations: (1) the

overall speed is limited by the lowest tracker in the en-

semble (e.g., sparse representation based methods [57, 18],

about 1 FPS), which restricts the real-time application. Spe-

cially, the fusion methods [19, 24] by analyzing the for-

ward and backward trajectories require each tracker to run

at least twice; (2) the trackers are just regarded as inde-

pendent black boxes and their fusion result in each frame

does not feedback to the trackers [1, 44, 19], which fails to

make full use of the reliable fusion outputs; (3) if the fu-

sion tracker number increases, the dynamic programming

based fusion methods [25, 1] still bring obvious computa-

tional burden (e.g., O(TN2) for T frames and N trackers).
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Figure 2. A systematic flowchart of the proposed tracking algorithm. First, different features of ROI are extracted and combined to train

multiple experts following DCF framework (Sec. 3.1 and 3.2). Then, each expert gives an individually predicted cue and the most reliable

expert is selected for the current tracking (Sec. 3.3). Finally, adaptive update helps keep the experts from corruption (Sec. 3.4).

Different from the above methods: (1) Our approach

constructs all the experts in the DCF framework, and

through the proposed ROI and training sample sharing s-

trategy (Sec. 3.3), the efficiency is greatly ensured; (2) the

refined tracking results are fed back to the experts to boost

them further; (3) through a simple but effective robustness

evaluation strategy, our method selects the reliable expert

for tracking with a complexity of only O(TN) for T frames

and N experts.

3. Method

Our algorithm is composed of several experts which pro-

vide different levels of cues for tracking. A preview of DCF

is introduced in Sec. 3.1. The component of the expert pool

is described in Sec. 3.2. How to switch to the suitable ex-

pert in each frame is elaborated in Sec. 3.3. Finally, Sec.

3.4 introduces the adaptive update. The framework of our

method is depicted in Figure 2.

3.1. Preview of DCF

A typical tracker based on DCF [4, 16] is trained using

an image patch x of size M ×N , which is centered around

the target. All the circular shifts of the patch x(m,n) ∈
{0, 1, ...M − 1}×{0, 1, ...N − 1} are generated as training

samples with Gaussian function label y(m,n) in terms of

the shifted distance. The filter w is trained by minimizing

the following regression error:

min
w

‖Xw − y‖
2
2 + λ‖w‖

2
2, (1)

where λ is a regularization parameter (λ ≥ 0) and X is the

data matrix by concatenating all the circular shifts. The fil-

ter solution on the d-th (d ∈ {1, · · · , D}) channel is defined

by

ŵ∗

d =
ŷ ⊙ x̂∗

d
∑D

i=1 x̂
∗

i ⊙ x̂i + λ
, (2)

where ⊙ is the element-wise product, the hat symbol de-

notes the Discrete Fourier Transform (DFT) of a vector

(e.g., x̂ = F(x)) and x̂∗ is the complex-conjugate of x̂.

In the next frame, a Region of Interest (ROI) is cropped out

for tracking the target (e.g., a patch z with the same size of

x). The response map R of z is calculated in Eq. (3) and

the location of the target is identified by searching for the

maximum value of R.

R = F−1(

D
∑

d=1

ŵd ⊙ ẑ∗d). (3)

To avoid the boundary effects during learning, we apply

Hann window to the signals [16]. Besides, inspired by [30,

5], color information is applied to the training sample in a

simple way to enhance its spatial reliability: X
′

= X⊙C,

where X represents the data matrix and C is the color mask

obtained by computing the histogram-based per-pixel score

map [37, 2] of ROI. The online update of the numerator Âd

and the denominator B̂d of the filter ŵ∗

d is as follows,

Ât
d = (1− η)Ât−1

d + η ŷ ⊙ x̂∗t
d ,

B̂t
d = (1− η)B̂t−1

d + η

D
∑

i=1

x̂∗t
i ⊙ x̂t

i,

ŵ∗t
d =

Ât
d

B̂t
d + λ

,

(4)

where η is the learning rate and t is the index of the current

frame. As for the target scale estimation, we follow the

DSST tracker [9].

3.2. Feature Pool and Expert Pool

A variety of features can be adopted in DCF and differ-

ent features have their own strength. Hand-crafted features

are typically used to capture low-level details while deep

features are semantic-aware. As discussed in HCF [31], the

DCF constructed by each single layer of VGG-19 [39] is

not accurate enough, so HCF performs coarse-to-fine search

on several DCF response maps from different layers. In

our MCCT tracker, HOG [7] is used as low-level features.

Then, we remove the fully-connected layers and extract the

outputs of the conv4-4 and conv5-4 convolutional layers of

VGG-19 as middle-level and high-level features, respective-

ly. Thus, the feature pool consists of three types of features:

{Low,Middle,High} and they are optionally combined

into C1
3 + C2

3 + C3
3 = 7 experts. As for the coarse-to-fine
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Table 1. The component of the expert ensemble. Our MCCT

and MCCT-H trackers both consist of seven experts. Each expert

adopts different features and tracks the target via a different view.

Tracker MCCT Tracker MCCT-H

Expert Pool Feature Type Feature Type

Expert I Low (HOG) HOG1

Expert II Middle (conv4-4 of VGG-19) HOG2

Expert III High (conv5-4 of VGG-19) ColorNames

Expert IV Middle, Low HOG1, ColorNames

Expert V High, Low HOG2, ColorNames

Expert VI High, Middle HOG1, HOG2

Expert VII High, Middle, Low HOG1, HOG2, ColorNames

weighting parameters of different level DCF response maps,

we follow the settings in HCF [31]. Although some experts

(e.g., Expert I, II and III) with single type of features may be

less robust compared to Expert VII, they provide the diver-

sity of tracking results, which is crucial in ensemble-based

tracking [43].

Our fast variant, the MCCT-H tracker only utilizes stan-

dard hand-crafted features (HOG [7] and ColorNames [46])

to construct experts. Since HOG and ColorNames are both

low-level features, we do not conduct coarse-to-fine fusion

and just simply concatenate them to construct DCF. Col-

orNames provides an 11 dimensional color representation

and HOG feature is 31-dim. To obtain more experts, we

take the average grey value over all pixels in a patch as a

1-dim feature and concatenate it to the HOG feature into a

32-dim vector, which is further evenly decomposed into two

16-dim features, denoted as HOG1 and HOG2, respective-

ly. The detailed information of the experts in MCCT and

MCCT-H is shown in Table 1.

3.3. Multi­Cue Correlation Tracker

The tracking process of our proposed framework can be

illustrated by Figure 3, where the multiple experts track the

target in parallel and the nodes denote the generated cues

(bounding boxes) of the experts. In each frame, the evalua-

tion between different hypothesis nodes reveals the consis-

tency degree between the experts, which is denoted as pair-

wise evaluation. Besides, each expert has its own trajec-

tory continuity and smoothness. Thus, given a hypothesis

node, its robustness degree can be evaluated by both pair-

evaluation and self-evaluation. After evaluating the overall

reliability of each node, the expert with the highest robust-

ness score is selected and its tracking result is taken for the

current frame.

In the following, we elaborate the formulation of pair-

evaluation, self-evaluation and expert selection strategy.

Expert Pair-Evaluation. Most experts in the ensemble

are capable of tracking the target stably, and the cues pro-

duced by a good expert should be consistent with the cues

from other experts as much as possible.

Let E1, · · · , E7 denote Expert I, · · · , Expert VII, respec-

tively. In the t-th frame, the bounding box of Expert i is

Frame t Frame t+1 Frame t+2

…

…

…

…

…

…

…

…

Expert I

Expert II

Expert III

Expert IV

Expert Pair-Evaluation Expert Self-Evaluation

Figure 3. Graph illustration of the multi-expert framework. The

node in the graph denotes the predicted bounding box. The ro-

bustness score of each expert is evaluated by both pair-evaluation

and self-evaluation. For clarity, only four experts are displayed.

denoted as Bt
Ei

. Through regarding all the experts as black

boxes, the bounding box Bt
Ei

only contains the target state

(e.g., location and scale) without any context information,

which reduces the computational and memory burden ef-

fectively.

First, we compute overlap ratios of the bounding boxes

from different experts. The overlap ratio Ot
(Ei,Ej)

of Expert

i and Expert j at frame t is calculated as follows,

Ot
(Ei,Ej)

=
Area(Bt

Ei

⋂

Bt
Ej

)

Area(Bt
Ei

⋃

Bt
Ej

)
. (5)

To reduce the gap between low and high overlap ratios, we

adopt a nonlinear gaussian function to Ot
(Ei,Ej)

as follows,

which gathers the expert scores.

O
′t
(Ei,Ej)

= exp

(

−
(

1−Ot
(Ei,Ej)

)2
)

. (6)

The mean value M t
Ei

= 1
K

∑K

j=1 O
′t
(Ei,Ej)

of overlap ra-

tios reveals the trajectory consistency between expert i and

others, where K denotes the number of experts (in our ex-

periment, K = 7). In general, the pair-wise comparison s-

cores between two experts should be temporal stable. Thus,

the fluctuation extent of overlap ratios in a short period ∆t
(e.g., 5 frames) reveals the stability of overlap evaluation

between Ei and other experts, which is given by Eq. (7).

V t
Ei

=

√

√

√

√

1

K

K
∑

j=1

(

O
′t
(Ei,Ej)

−O
′t−∆t+1:t
(Ei,Ej)

)2

, (7)

where O
′t−∆t+1:t
(Ei,Ej)

= 1
∆t

∑

τ O
′τ
(Ei,Ej)

and the time index

τ ∈ [t−∆t+ 1, t].
Then, to avoid performance fluctuation of the experts, we

further take temporal stability into account and introduce an

increasing sequence W = {ρ0, ρ1, · · · , ρ∆t−1}, (ρ > 1) to

give more weight to the recent scores. After considering the

temporal context, the average weighted mean and standard
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Figure 4. Expert selection process of our MCCT tracker in MotorRolling sequence. The bottom plots show the normalized robustness

scores of different experts. In top figures, the expert with the highest robustness score is selected for tracking. All the experts share the

same ROI (the largest yellow box) and are updated using the same selected results.

variance are calculated through: M
′t
Ei

= 1
N

∑

τ WτM
τ
Ei

and V
′t
Ei

= 1
N

∑

τ WτV
τ
Ei

, respectively, where Wτ denotes

the (τ − t + ∆t)-th element in sequence W and N is the

normalization factor defined by N =
∑

τ Wτ .

Finally, the pair-wise expert robustness score of Expert i
at frame t is defined as follows,

Rt
pair(Ei) =

M
′t
Ei

V
′t
Ei

+ ξ
, (8)

where ξ is a small constant that avoids the infinite pair-

evaluation score for a zero denominator. A larger Rt
pair(Ei)

means better consistency with other experts and higher sta-

bility of the target state prediction.

Expert Self-Evaluation. The trajectory smoothness de-

gree of each expert indicates the reliability of its track-

ing results to some extent. The Euclidean distance mea-

suring the shift between the previous bounding box Bt−1
Ei

and the current bounding box Bt
Ei

is computed by Dt
Ei

=

‖c(Bt−1
Ei

) − c(Bt
Ei
)‖, where c(Bt

Ei
) is the center of the

bounding box Bt
Ei

. In frame t, the trajectory fluctuation

degree of Expert i is given by Eq. (9).

St
Ei

= exp

(

−
1

2σ2
Ei

(Dt
Ei
)2
)

, (9)

where σEi
is the average length of the width W (Bt

Ei) and

height H(Bt
Ei) of the bounding box provided by Expert i,

i.e., σEi
= 1

2 [W (Bt
Ei) +H(Bt

Ei)].
Similar to the pair-evaluation, we collect the previous

movement information to consider the temporal stability.

Finally, the self-evaluation score is defined by Rt
self (Ei) =

1
N

∑

τ WτS
τ
Ei

. The higher Rt
self (Ei) means the better re-

liability of the tracking trajectory.

Expert Selection. The final robustness score Rt(Ei)
of the Expert i in t-th frame is a linear combination of it-

s pair-evaluation score Rt
pair(Ei) and self-evaluation score

Rt
self (Ei):

Rt(Ei) = µ ·Rt
pair(Ei) + (1− µ) ·Rt

self (Ei), (10)

where µ is the parameter to trade off the pair-evaluation and

self-evaluation weights. In each frame, as shown in Figure

4, the expert with the highest robustness score is selected

for the current tracking.

Sharing Strategy. In the tracking process, all the expert-

s are updated using the same selected samples and share the

same searching areas (ROI). This sharing strategy has two

advantages: (1) It alleviates the drift and tracking failures

of the weak experts effectively by sharing the refined re-

sults for target position prediction and model update; (2) It

ensures the efficiency of our framework greatly. The main

computational burden of DCF lies in the feature extraction

process, especially the deep features. Although multiple ex-

perts (K = 7) are maintained in our method, the sharing s-

trategy makes the feature extraction process only be carried

out twice in each frame (instead of 7 × 2 = 14 times), one

for the searching patch (ROI) and the other for the train-

ing patch (used for model update), which is the same as the

standard DCF and independent of the expert number.

3.4. Adaptive Expert Update

Due to the training sample sharing strategy used in our

framework, the selected tracking results should be carefully

checked to avoid the corruption of the experts. The peak-

to-sidelobe ratio (PSR) is widely used in DCF to quantify

the reliability of the tracked samples [4]. PSR is defined as

P = (Rmax −m)/σ, where Rmax is the maximum confi-

dence, m and σ are the mean and standard deviation of the

response, respectively. We compute the average PSR of d-

ifferent features: P t
mean = 1

3 (P
t
H + P t

M + P t
L) to evaluate

the t-th tracking result, where P t
H , P t

M , P t
L denote the PSR

values of the High, Middle and Low-level response map-

s, respectively. However, in some cases when the unreliable
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tracked results have similar features with the target, the PSR

value may fail to make a difference.

In our experiment, we observe that when occlusion or se-

vere deformation occurs, the average robustness score of the

experts Rt
mean = 1

K

∑K

i=1 R
t(Ei) decreases significant-

ly, which can be regarded as the divergence between mul-

tiple experts when facing an unreliable sample. Through

considering the average PSR score as well as average ex-

pert robustness score together, a combined reliability score

St = P t
mean ·R

t
mean is proposed, which can discover unre-

liable samples more effectively and better evaluate the qual-

ity of the current tracking.

Since the DCF learns both target and background in-

formation, it is not reasonable to simply discard unreli-

able samples. When the current reliability score St is

significantly lower than the past average reliability score:

S1:t
mean = 1

t

∑t

i=1 S
i, the learning rate η in Eq. (4) is de-

creased by Eq. (11).

η =

{

C if St > α · S1:t
mean,

C · [St/(α · S1:t
mean)]

β otherwise,
(11)

where C is the learning rate of the standard DCF, α is the re-

liability threshold, and β is the power exponent of the power

function. The designed power function penalizes samples

with low reliability scores severely to protect the experts

from corruption.

4. Experiments

4.1. Experimental Setup

Implementation Details: In our experiment, we follow

the parameters in standard DCF method [16] to construct

experts. The parameter ρ in the weigh sequence W is set to

1.1. The weighting factor µ in Eq. (10) is set to 0.1. As for

the adaptive update, α and β in Eq. (11) are set to 0.7 and

3 for MCCT tracker, and 0.6 and 3 for MCCT-H tracker,

respectively. More details can be found in the source code1.

We use the same setting of parameters for all the exper-

iments. Our trackers are implemented in MATLAB 2017a

on a computer with an Intel I7-4790K 4.00GHz CPU and

16GB RAM. The MatConvNet toolbox [42] is used for ex-

tracting the deep features from VGG-19 [39]. Our MCCT

tracker runs at about 1.5 FPS on CPU. The GPU version of

MCCT tracker runs at about 8 FPS, which is carried out on a

GeForce GTX 1080Ti GPU. The speed of MCCT-H tracker

is about 45 FPS on CPU.

Evaluation Benchmarks and Metrics: Our method is

evaluated on three benchmark datasets by a no-reset evalua-

tion protocol: OTB-2013 [47], OTB-2015 [48] and Temple-

Color [27]. All the tracking methods are evaluated by the

overlap precision (OP) at an overlap threshold 0.5. For the

1https://github.com/594422814/MCCT

Table 2. Effectiveness study of the proposed MCCT-H (top) and

MCCT (bottom) trackers. The DP (@20px) and AUC scores are

reported on the OTB-2013 [47] and OTB-2015 [48] datasets (D-

P/AUC) corresponding to the OPE. Expert VII (E7) is the best

individual expert (best baseline) in MCCT and MCCT-H.

E7 in MCCT-H MCCT-H-NU MCCT-H-PSR MCCT-H (Final)

Best Baseline Sec. 3.3 Sec. 3.3 + PSR Sec. 3.3 + 3.4

OTB-2013 78.4 / 60.8 83.5 / 64.4 83.5 / 64.6 85.6 / 66.4

OTB-2015 79.2 / 60.5 83.3 / 63.3 82.7 / 63.1 84.1 / 64.2

E7 in MCCT MCCT-NU MCCT-PSR MCCT (Final)

Best Baseline Sec. 3.3 Sec. 3.3 + PSR Sec. 3.3 + 3.4

OTB-2013 89.7 / 69.0 91.9 / 70.9 90.9 / 70.5 92.8 / 71.4

OTB-2015 87.1 / 66.5 88.3 / 67.6 88.1 / 67.4 91.4 / 69.5

better performance measure, we also use the average dis-

tance precision (DP) plots and overlap success plots over

these datasets using one-pass evaluation (OPE) [47, 48].

Finally, we evaluate the performance of the proposed

trackers on the VOT2016 [21, 22] benchmark, which con-

sists of 60 challenging sequences and provides an evalua-

tion toolkit which will re-initialize the tracker to the correct

position to continue tracking when tracking failure occurs.

In VOT2016, the expected average overlap (EAO) is used

for ranking trackers, which combines the raw values of per-

frame accuracies and failures in a principled manner [21].

4.2. Framework Effectiveness Study

To evaluate the effectiveness of the proposed methods,

we compare the MCCT and MCCT-H trackers with their

individual experts. By only fusing multiple experts, we ob-

tain the MCCT-NU (MCCT-H-NU) without adaptive update

(only Sec. 3.3). The MCCT-PSR (MCCTH-PSR) repre-

sents the tracker adopts the fusion method and uses PSR

measurement for adaptive update (Sec. 3.3 + PSR). MCCT

(MCCT-H) is our final algorithm which combines the ex-

pert selection mechanism and the proposed adaptive update

strategy (Sec. 3.3 + Sec. 3.4).

From the results in Table 2, we can observe that our fi-

nal methods outperform their corresponding best baseline

Expert VII (the best individual expert) obviously, which il-

lustrates the effectiveness of the proposed framework. On

the OTB-2013 and OTB-2015 datasets, our final MCCT-H

tracker outperforms its best baseline with a gain of about

6% (from 4.9%-7.2%) in DP and 4% (from 3.7%-5.6%) in

AUC. For tracker MCCT, it should be noted that its Expert

VII has already achieved a sufficient performance level, but

our framework still boosts its performance further (about

4% DP and 3% AUC on challenging OTB-2015). Besides,

for the baseline MCCT-NU with high performance, the tra-

ditional PSR method for reliability estimation [4] does not

have obvious impact, but our adaptive update strategy by

considering the divergence of multiple experts improves the

performance further.
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Table 3. A comparison of our methods using overlap precision (OP) (%) at an overlap threshold 0.5 with recent state-of-the-art trackers on

the OTB-2013 [47], OTB-2015 [48] and Temple-Color [27] datasets. The average speed (i.e., frames per second, FPS) is evaluated on the

OTB-2013 dataset. The speed labeled with ∗ represents the corresponding tracker utilizes GPU in the experiment. The first and second

highest values are highlighted by red and blue.

DSST MEEM SAMF KCF LCT HCF SRDCF DeepSRDCDF SCT HDT Staple SiamFc SRDCFdecon MDNet C-COT ACFN CSR-DCF ADNet MCPF ECO MCCT-H MCCT

When 2014 2014 2014 2015 2015 2015 2015 2015 2016 2016 2016 2016 2016 2016 2016 2017 2017 2017 2017 2017

Where BMVC ECCV ECCVW TPAMI CVPR ICCV ICCV ICCVW CVPR CVPR CVPR ECCV CVPR CVPR ECCV CVPR CVPR CVPR CVPR CVPR

OTB-2013 66.8 70.3 71.4 62.6 81.4 72.9 78.1 77.8 74.2 72.0 76.0 77.8 79.8 89.6 82.0 71.8 74.0 80.6 84.6 87.0 81.8 90.7

OTB-2015 61.6 62.5 66.4 55.3 70.1 65.4 72.6 76.4 63.0 65.0 70.8 73.0 75.8 82.9 81.5 68.1 68.3 77.2 77.5 84.1 78.9 86.4

Temple-Color 47.0 60.6 56.8 45.9 55.3 56.9 61.2 65.2 55.7 56.8 62.5 63.5 65.6 - 70.2 - 57.7 - 66.9 73.5 67.4 74.4

Speed (FPS) 26.3 19.2 18.3 243.7 26.1 10.8∗ 5.6 <1 41.5 10.5∗ 67.2 86.0∗ 2.9 1.0∗ 0.3 15.0∗ 14.2 2.9∗ 0.6∗ 15.0∗ 44.8 7.8∗

4.3. State­of­the­art Comparison

We evaluate the proposed approach with 20 recent state-

of-the-art trackers including DSST [9], MEEM [51], SAMF

[26], KCF [16], LCT [32], HCF [31], SRDCF [12], Deep-

SRDCF [11], SCT [5], HDT [38], Staple [2], SiamFc [3],

SRDCFdecon [10], MDNet [35], C-COT [13], ACFN [6],

CSR-DCF [30], ADNet [50], MCPF [56], ECO [8]. A com-

parison with these state-of-the-art trackers using OP met-

ric on OTB-2013, OTB-2015 and Temple-Color datasets is

shown in Table 3.

Evaluation on OTB-2013. On the OTB-2013 [47]

benchmark, our proposed MCCT method achieves the best

OP of 90.7% (Table 3) and the highest area-under-curve

(AUC) score of 71.4% (Figure 5). The MDNet method

also exhibits excellent results and performs slightly better

than ours on DP metric (Figure 5), which is mainly due to

the effectiveness of the multi-domain network trained using

various similar tracking videos. Compared with other DCF

based methods, the proposed MCCT method outperform-

s the recent ECO, C-COT and MCPF on various metrics,

including on metrics OP, DP and AUC.

Evaluation on OTB-2015. On the OTB-2015 [48]

dataset, our proposed MCCT tracker achieves the best re-

sults on OP and DP with scores of 86.4% and 91.4% (Table

3 and Figure 6), outperforming the second best method by

2.3% and 1.3%. Among all the trackers, only ECO slightly

outperforms our method on AUC score. Our MCCT track-

er performs much better than HCF, HDT and MCPF, which

are also based on correlation filters with multiple types of

features.

The proposed MCCT-H method which only incorpo-

rates simple hand-crafted features achieves impressive per-

formance and operates at about 45 FPS on a single CPU

(Table 3). It significantly outperforms the DCF based

trackers with the same features (e.g., SAMF, SRDCF and

CSR-DCF) in both performance and speed. Furthermore,

MCCT-H achieves comparable results with the recent com-

plex trackers using deep features (e.g., ADNet, MCPF and

DeepSRDCF) but runs much faster than them. Compared

with other frame-wise adaption trackers (e.g., STC [5] and

ACFN [6]) that use attention mechanism for tracker con-

struction, our framework maintains several experts in par-

allel for decision-level selection and achieves better perfor-
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Figure 5. Precision and success plots on the OTB-2013 [47] dataset

with 50 videos. Only the top 10 trackers are displayed for clarity.

In the legend, the DP at a threshold of 20 pixels and area-under-

curve (AUC) are reported in the left and right figures, respectively.
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Figure 6. Precision and success plots on the OTB-2015 [48] dataset

with 100 videos. In the legend, the DP (@20px) and AUC scores

are reported in the left and right figures, respectively.

mance (Table 3, Figure 5 and 6).

Evaluation on Temple-Color. For further evaluation,

we compare the proposed MCCT-H and MCCT methods on

the Temple-Color dataset [27] with the trackers mentioned

in Sec. 4.3 excluding MDNet, ADNet and ACFN, which all

need many external tracking videos for network training. In

contrast, our approach is free of such necessity.

In Table 3 and Figure 7, the proposed MCCT-H track-

er still achieves outstanding performance amongst real-time

trackers and outperforms some complex non-realtime track-

ers. Our MCCT method achieves the OP, DP and AUC s-

cores of (74.4%, 79.7%, 59.6%), while ECO and C-COT

yield (73.5%, 79.7%, 60.7%) and (70.2%, 78.1%, 58.3%),

respectively. Overall, our MCCT tracker shows compara-

ble results compared to the recent performance leader E-

CO and outperforms other state-of-the-art methods (e.g., C-

COT) on various metrics.
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Figure 7. Precision and success plots on the Temple-Color [27]

dataset with 128 color videos. In the legend, the DP (@20px) and

AUC scores are reported in the left and right figures, respectively.

Evaluation on VOT2016. Figure 8 shows the rank-

ing results in terms of expected average overlap (EAO) in

VOT2016 [21], from which we can observe that our MCC-

T tracker outperforms the top performer (C-COT [13]) by a

considerable margin. For presentation clarity, we only show

some top ranked and baseline trackers for comparison. For

more information, please refer to [21].

In Table 4, we list the detailed results of our approach-

es and the top ranked methods in VOT2016 (e.g., C-COT

[13], TCNN [34] and SSAT). Besides, two recently pro-

posed methods: CSR-DCF [30] and ECO [8] are also put

into comparison which do not participate in VOT2016. A-

mong all the compared methods, the proposed MCCT track-

er demonstrates advances in both accuracy and robustness.

As a result, our MCCT tracker provides the best EAO score

of 0.393, achieving a relative gain of 18.7% compared to

the VOT2016 top performer C-COT.

Discussion: (1) About Performance. It should be noted

that the ECO, C-COT and DeepSRDCF methods all take S-

RDCF as baseline, which can alleviate boundary effects ef-

fectively and performs much better than the standard DCF

[4, 16]. Besides, ECO and C-COT adopt the novel contin-

uous operator to better fuse the feature maps. However, all

the experts in our MCCT-H and MCCT methods just take

the simple DCF as baseline and all the strategies mentioned

above and other novel techniques [14, 33] can also be inte-

grated into our framework to further boost the performance.

(2) About Efficiency. Our tracker achieves almost the same

speed with expert VII because the same number of DCFs

and features are utilized (i.e., sharing strategy), but achieves

much better performance than it. Our general framework

provides a promising alternative for the multi-feature based

DCF trackers with ignorable impact on efficiency. Further-

more, we believe that other tracking algorithms [53, 36, 55]

with multiple types of features can also benefit from our

multi-cue analysis framework.

5. Conclusion

In this paper, we propose a multi-cue analysis frame-

work for robust visual tracking, which considers not only
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Figure 8. Expected Average Overlap (EAO) graph with trackers

ranked from right to left evaluated on VOT2016 [21]. Our pro-

posed MCCT tracker outperforms the top performer (C-COT [13])

by a considerable margin.

Table 4. The accuracy, robustness (failure rate) and EAO of state-

of-the-art methods on the VOT2016 [21]. The proposed MCCT

tracker achieves superior results compared to the top ranked meth-

ods in the challenge and recently proposed state-of-the-art algo-

rithms (ECO [8] and CSR-DCF [30]). The first and second highest

values are highlighted by red and blue.

MCCT-H MLDF SSAT TCNN C-COT CSR-DCF ECO MCCT

Accuracy 0.57 0.48 0.57 0.54 0.52 0.51 0.54 0.58

Failure Rate 1.24 0.83 1.04 0.96 0.85 0.85 0.72 0.73

EAO 0.305 0.311 0.321 0.325 0.331 0.338 0.374 0.393

feature-level fusion but also decision-level fusion to fully

explore the strength of multiple features. Our framework

maintains multiple experts to track the target via different

views and selects the reliable outputs to refine the tracking

results. Moreover, the proposed method evaluates the unre-

liable samples through considering the divergence of mul-

tiple experts and updates them adaptively. Through exten-

sive experiments on several challenging datasets, we show

that after adopting our simple yet effective multi-cue analy-

sis framework, without sophisticated models, only standard

Discriminative Correlation Filter (DCF) with deep or hand-

crafted features is able to perform favorably against state-

of-the-art methods in both accuracy and efficiency.
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