
Reconstruction Network for Video Captioning

Bairui Wang‡ Lin Ma†∗ Wei Zhang‡∗ Wei Liu†

†Tencent AI Lab ‡School of Control Science and Engineering, Shandong University

{bairuiwong,forest.linma}@gmail.com davidzhang@sdu.edu.cn wliu@ee.columbia.edu

Abstract

In this paper, the problem of describing visual contents

of a video sequence with natural language is addressed.

Unlike previous video captioning work mainly exploiting

the cues of video contents to make a language descrip-

tion, we propose a reconstruction network (RecNet) with

a novel encoder-decoder-reconstructor architecture, which

leverages both the forward (video to sentence) and back-

ward (sentence to video) flows for video captioning. Specif-

ically, the encoder-decoder makes use of the forward flow

to produce the sentence description based on the encoded

video semantic features. Two types of reconstructors are

customized to employ the backward flow and reproduce the

video features based on the hidden state sequence gener-

ated by the decoder. The generation loss yielded by the

encoder-decoder and the reconstruction loss introduced by

the reconstructor are jointly drawn into training the pro-

posed RecNet in an end-to-end fashion. Experimental re-

sults on benchmark datasets demonstrate that the proposed

reconstructor can boost the encoder-decoder models and

leads to significant gains in video caption accuracy.

1. Introduction

Describing visual contents with natural language auto-

matically has received increasing attention in both the com-

puter vision and natural language processing communities.

It can be applied in various practical applications, such as

image and video retrieval [33, 44, 22], answering questions

from images [21], and assisting people who suffer from vi-

sion disorders [43].

Previous work predominantly focused on describing still

images with natural language [15, 41, 42, 28, 13, 5]. Re-

cently, researchers have strived to generate sentences to de-

scribe video contents [48, 8, 39, 40, 25]. Compared to im-

age captioning, describing videos is more challenging as the

amount of information (e.g., objects, scenes, actions, etc.)

contained in videos is much more sophisticated than that
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Figure 1. The proposed RecNet with an encoder-decoder-

reconstructor architecture. The encoder-decoder relies on the for-

ward flow from video to caption (blue dotted arrow), in which the

decoder generates caption with the frame features yielded by the

encoder. The reconstructor exploiting the backward flow from

caption to video (green dotted arrow), takes the hidden state se-

quence of the decoder as input and reproduces the visual features

of the video.

in still images. More importantly, the temporal dynamics

within video sequences need to be adequately captured for

captioning, besides the spatial content modeling.

Recently, the encoder-decoder architecture, has been

widely adopted for video captioning [8, 27, 14, 49, 9, 34, 24,

25, 19], as shown in Fig. 1. However, the encoder-decoder

architecture only relies on the forward flow (video to sen-

tence), but does not consider the information from sentence

to video, named as backward flow. Usually the encoder is

a convolutional neural network (CNN) capturing the image

structure to yield its semantic representation. For a given

video sequence, the yielded semantic representations by the

CNN are further fused together to exploit the video tem-

poral dynamics and generate the video representation. The
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decoder is usually a long short-term memory (LSTM) [12]

or a gated recurrent unit (GRU) [7], which is popular in

processing sequential data [53]. LSTM and GRU generate

the sentence fragments one by one, and ensemble them to

form one sentence. The semantic information from target

sentences to source videos are never included. Actually, the

backward flow can be yielded by the dual learning mech-

anism that has been introduced into neural machine trans-

lation (NMT) [37, 11] and image segmentation [20]. This

mechanism reconstructs source from target when the target

is achieved and demonstrates that backward flow from tar-

get to source improves performance.

To well exploit the backward flow, we refer to

idea of dual learning and propose an encoder-decoder-

reconstructor architecture shown in Fig. 1, dubbed as Rec-

Net, to address video captioning. Specifically, the encoder-

decoder yields the semantic representation of each video

frame and subsequently generates a sentence description.

Relying on the backward flow, the reconstructor, realized by

LSTMs, aims at reproducing the original video feature se-

quence based on the hidden state sequence of the decoder.

The reconstructor, targeting at minimizing the differences

between original and reproduced video features, is expected

to further bridge the semantic gap between the natural lan-

guage captions and video contents.

To summarize, the contributions of this work lie in three-

fold.

• We propose a novel reconstruction network (RecNet)

with an encoder-decoder-reconstructor architecture to

exploit both the forward (video to sentence) and back-

ward (sentence to video) flows for video captioning.

• Two types of reconstructors are customized to restore

the video global and local structures, respectively.

• Extensive results on benchmark datasets indicate that

the backward flow is well addressed by the proposed

reconstructor and significant gains on video captioning

are achieved.

2. Related Work

In this section, we first introduce two types of video cap-

tioning: template-based approaches [17, 10, 30, 29, 48] and

sequence learning approaches [49, 39, 40, 8, 27, 14, 52, 24,

25, 32, 19], then introduce the application of dual learning.

2.1. Template­based Approaches

Template-based methods first define some specific rules

for language grammar, and then parse the sentence into sev-

eral components such as subject, verb, and object. The

obtained sentence fragments are associated with words de-

tected from the visual content to produce the final descrip-

tion about the input video with predefined templates. For

example, a concept hierarchy of actions was introduced to

describe human activities in [17], while a semantic hierar-

chy was defined in [10] to learn the semantic relationship

between different sentence fragments. In [30], the condi-

tional random field (CRF) was adopted to model the con-

nections between objects and activities of the visual input

and generate the semantic features for description. Besides,

Xu et al. proposed a unified framework consisting of a se-

mantic language model, a deep video model, and a joint

embedding model to learn the association between videos

and natural sentences [48]. However, as stated in [25],

the aforementioned approaches highly depend on the prede-

fined template and are thus limited by the fixed syntactical

structure, which is inflexible for sentence generation.

2.2. Sequence Learning Approaches

Compared with the template-based methods, the se-

quence learning approaches aim to directly produce the sen-

tence description about the visual input with more flexible

syntactical structures. For example, in [40], the video rep-

resentation was obtained by averaging each frame feature

extracted by a CNN, and then fed to LSTMs for sentence

generation. In [24], the relevance between video context

and sentence semantics was considered as a regularizer in

the LSTM. However, since simple mean pooling is used,

the temporal dynamics of the video sequence are not ade-

quately addressed. Yao et al. introduced an attention mech-

anism to assign weights to the features of each frame and

then fused them based on the attentive weights [49]. Venu-

gopalan et al. proposed S2VT [39], which included the tem-

poral information with optical flow and employed LSTMs

in both the encoder and decoder. To exploit both temporal

and spatial information, Zhang and Tian proposed a two-

stream encoder comprised of two 3D CNNs [36, 16] and

one parallel fully connected layer to learn the features from

the frames [52]. Besides, Pan et al. proposed a transfer unit

to model the high-level semantic attributes from both im-

ages and videos, which are rendered as the complementary

knowledge to video representations for boosting sentence

generation [25].

In this paper, our proposed RecNet can be regarded as

a sequence learning method. However, unlike the above

conventional encoder-decoder models which only depend

on the forward flow from video to sentence, RecNet can

also benefit the backward flow from sentence to video. By

fully considering the bidirectional flows between video and

sentence, RecNet is capable of further boosting the video

captioning.

2.3. Dual Learning Approaches

As far as we know, dual learning mechanism has not

been employed in video captioning but widely used in

NMT [37, 11, 45]. In [37], the source sentences are repro-
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Figure 2. The proposed RecNet consists of three parts: the CNN-based encoder which extracts the semantic representations of the video

frames, the LSTM-based decoder which generates natural language for visual content description, and the reconstructor which exploits the

backward flow from caption to visual contents to reproduce the frame representations.

duced from the target side hidden states, and the accuracy

of reconstructed source provides a constraint for decoder to

embed more information of source language into target lan-

guage. In [11], the dual learning is employed to train model

of inter-translation of English-French, and get significantly

improvement on tasks of English to French and French to

English.

3. Architecture

We propose a novel RecNet with an encoder-decoder-

reconstructor architecture for video captioning, which

works in an end-to-end manner. The reconstructor imposes

one constraint that the semantic information of one source

video can be reconstructed from the hidden state sequence

of the decoder. The encoder and decoder are thus encour-

aged to embed more semantic information about the source

video. As illustrated in Fig. 2, the proposed RecNet consists

of three components, specifically the encoder, the decoder,

and the reconstructor. Moreover, our designed reconstruc-

tor can collaborate with different classical encoder-decoder

architectures for video captioning. In this paper, we em-

ploy the attention-based video captioning [49] and S2VT

[39]. We first briefly introduce the encoder-decoder model

for video captioning. Afterwards, the proposed reconstruc-

tors with two different architectures are described.

3.1. Encoder­Decoder

The aim of video captioning is to generate one sentence

S = {s1, s2, . . . , sn} to describe the content of one given

video V. Classical encoder-decoder architectures directly

model the captioning generation probability word by word:

P (S|V) =

n∏

i=1

P (si|s<i,V; θ) , (1)

where θ keeps the parameters of the encoder-decoder

model. n denotes the length of the sentence, and s<i (i.e.,

{s1, s2, . . . , si−1}) denotes the generated partial caption.

Encoder. To generate reliable captions, visual features need

to be extracted to capture the high-level semantic informa-

tion about the video. Previous methods usually rely on

CNNs, such as AlexNet [40], GoogleNet [49], and VGG19

[46] to encode each video frame into a fixed-length rep-

resentation with the high-level semantic information. By

contrast, in this work, considering a deeper network is

more plausible for feature extraction, we advocate using

Inception-V4 [35] as the encoder. In this way, the given

video sequence is encoded as a sequential representation

V = {v1,v2, . . . ,vm}, where m denotes the total number

of the video frames.

Decoder. Decoder aims to generate the caption word by

word based on the video representation. LSTM with the

capabilities of modeling long-term temporal dependencies

are used to decode video representation to video captions

word by word. To further exploit the global temporal in-

formation of videos, a temporal attention mechanism [49]

is employed to encourage the decoder to selecting the key

frames/elements for captioning.

During the captioning process, the ith word prediction is

generally made by LSTM:

P (si|s<i,V, θ) ∝ exp
(
f(si−1, hi, ci; θ)

)
, (2)

where f represents the LSTM activation function, hi is the

ith hidden state computed in the LSTM, and ci denotes

the ith context vector computed with the temporal atten-

tion mechanism. The temporal attention mechanism is used

to assign weight αt
i to the representation of each frame

{v1,v2, . . . ,vm} at the time step t as follows:

ct =

m∑

i=1

αt
ivi, (3)

where m denotes the number of the video frames. With the

(i−1)th hidden state hi−1 summarizing all the current gen-

erated words, the attention weight αt
i reflects the relevance
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of the ith temporal feature in the video sequence given all

the previously generated words. As such, the temporal at-

tention strategy allows the decoder to select a subset of key

frames to generate the word at each time step, which can

improve the video captioning performance as demonstrated

in [49].

The encoder-decoder model can be jointly trained by

minimizing the negative log likelihood to produce the cor-

rect description sentence given the video as follows:

min
θ

N∑

i=1

{
− logP

(
Si|Vi; θ

)}
. (4)

3.2. Reconstructor

As shown in Fig. 2, the proposed reconstructor is built

on the top of the encoder-decoder, which is expected to re-

produce the video from the hidden state sequence of the de-

coder. However, due to the diversity and high dimension of

the video frames, directly reconstructing the video frames

seems to be intractable. Therefore, in this paper, the re-

constructor aims at reproducing the sequential video frame

representations generated by the encoder, with the hidden

states H = {h1, h2, ..., hn} of the decoder as input. The

benefits of such a structure are two-fold. First, the proposed

encoder-decoder-reconstructor architecture can be trained

in an end-to-end fashion. Second, with such a reconstruc-

tion process, the decoder is encouraged to embed more in-

formation from the input video sequence. Therefore, the re-

lationships between the video sequence and caption can be

further enhanced, which is expected to improve the video

captioning performance. In practice, the reconstructor is

realized by LSTMs. Two different architectures are cus-

tomized to summarize the hidden states of the decoder for

video feature reproduction. More specifically, one focuses

on reproducing the global structure of the provided video,

while the other pays more attentions to the local structure

by selectively attending to the hidden state sequence.

3.2.1 Reconstructing Global Structure

The architecture for reconstructing the global structure of

the video sequence is illustrated in Fig. 3. The whole sen-

tence is fully considered to reconstruct the video global

structure. Therefore, besides the hidden state ht at each

time step, the global representation characterizing the se-

mantics of the whole sentence is also taken as the input at

each step. Several methods like LSTM and multiple-layer

perception, can be employed to fuse the hidden sequential

states of the decoder to generate the global representation.

Inspired by [39], the mean pooling strategy is performed on

the hidden states of the decoder to yield the global repre-

Figure 3. An illustration of the proposed reconstructor that repro-

duces the global structure of the video sequence. The left mean

pooling is employed to summarize the hidden states of the decoder

for the global representation of the caption. The reconstructor aims

to reproduce the feature representation of the whole video by mean

pooling (the right one) using the global representation of the cap-

tion as well as the hidden state sequence of the decoder.

sentation of the caption:

φ (H) =
1

n

n∑

i=1

hi, (5)

where φ (·) denotes the mean pooling process, which yields

a vector representation φ (H) with the same size as hi.

Thus, the LSTM unit of the reconstructor is further mod-

ified as:







it
ft
ot
gt







=







σ

σ

σ

tanh







T





ht
zt−1

φ (H)



 ,

mt = ft ⊙mt−1 + it ⊙ gt,

zt = ot ⊙ tanh(mt),

(6)

where it, ft, mt, ot, and zt denote the input, forget, mem-

ory, output, and hidden states of each LSTM unit, respec-

tively. σ and ⊙ denote the logistic sigmoid activation and

the element-wise multiplication, respectively.

To reconstruct the video global structure from the hidden

state sequence produced by the encoder-decoder, the global

reconstruction loss is defined as:

Lg
rec = ψ

(
φ(V), φ(Z)

)
, (7)

where φ(V) denotes the mean pooling process on the video

frame features, yielding the ground-truth global structure of

the input video sequence. φ(Z) works on the hidden states

of the reconstructor, indicating the global structure recov-

ered from the captions. The reconstruction loss is measured

by ψ(·), which is simply chosen as the Euclidean distance.
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3.2.2 Reconstructing Local Structure

The aforementioned reconstructor aims to reproduce the

global representation for the whole video sequence, while

neglects the local structures in each frame. In this subsec-

tion, we propose to learn and preserve the temporal dynam-

ics by reconstructing each video frame as shown in Fig. 4.

Differing from the global structure estimation, we intend to

reproduce the feature representation of each frame from the

key hidden states of the decoder selected by the attention

strategy [1, 49]:

µt =

n∑

i=1

βt
ihi, (8)

where
∑n

i=1
βt
i = 1 and βt

i denotes the weight computed

for the ith hidden state at time step t by the attention mech-

anism. Similar to Eq. 3, βt
i measures the relevance of the

ith hidden state in the caption given all the previously re-

constructed frame representations {z1, z2, . . . , zt−1}. Such

a strategy encourages the reconstructor to work on the hid-

den states selectively by adjusting the attention weight βt
i

and yield the context information µt at each time step as

in Eq. 8. As such, the proposed reconstructor can further

exploit the temporal dynamics and the word compositions

across the whole caption. The LSTM unit is thereby refor-

mulated as:







it
ft
ot
gt







=







σ

σ

σ

tanh







T

(
µt

zt−1

)

. (9)

Differing from the global structure recovery step in

Eq. 6, the dynamically generated context µt is taken as the

input other than the hidden state ht and its mean pooling

representation φ (H). Moreover, instead of directly gen-

erating the global mean representation of the whole video

sequence, we propose to produce the feature representation

frame by frame. The reconstruction loss is thereby defined

as:

Ll
rec =

1

m

m∑

j=1

ψ(zj ,vj). (10)

3.3. Training

Formally, we train the proposed encoder-decoder-

reconstructor architecture by minimizing the whole loss de-

fined in Eq. 11, which involves both the forward (video-to-

sentence) likelihood and the backward (sentence-to-video)

Reconstructor

1kz 

kz
••• 

Local
Reconstructor 

Loss

k

1h

2h

nh

Soft-
attention

••• 

••• 1k 

Local
Reconstructor 

Loss



Figure 4. An illustration of the proposed reconstructor that repro-

duces the local structure of the video sequence. The reconstructor

works on the hidden states of the decoder by selectively adjust-

ing the attention weight, and reproduces the feature representation

frame by frame.

reconstruction loss:

L(θ, θrec) =

N∑

i=1

(

− logP
(
Si|Vi; θ

)

︸ ︷︷ ︸

encoder-decoder

+ λLrec(V
i,Zi; θrec)

︸ ︷︷ ︸

reconstructor

)

.

(11)

The reconstruction loss Lrec(V
i,Zi; θrec) can be real-

ized by the global loss in Eq. 7 or the local loss in Eq. 10.

The hyper-parameter λ is introduced to seek a trade-off be-

tween the encoder-decoder and the reconstructor.

The training of our proposed RecNet model proceeds

in two stages. First, we rely on the forward likelihood

to train the encoder-decoder component of the RecNet,

which is terminated by the early stopping strategy. After-

wards, the reconstructor and the backward reconstruction

loss Lrec(θrec) are introduced. We use the whole loss de-

fined in Eq. 11 to jointly train the reconstructor and fine-

tune the encoder-decoder. For the reconstructor, the recon-

struction loss is calculated using the hidden state sequence

generated by the LSTM units in the reconstructor as well as

the video frame feature sequence.

4. Experimental Results

In this section, we evaluate the proposed video caption-

ing method on benchmark datasets such as Microsoft Re-

search video to text (MSR-VTT) [46] dataset and Microsoft

Research Video Description Corpus (MSVD) [4]. To com-

pare with existing work, we compute the popular metrics in-

cluding BLEU-4 [26], METEOR [3], ROUGE-L [18], and

CIDEr [38] with the codes released on the Microsoft COCO

evaluation server [6].
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4.1. Datasets and Implementation Details

MSR-VTT. It is the largest dataset for video captioning

so far in terms of the number of video-sentence pairs and

the vocabulary size. In the experiments, we use the initial

version of MSR-VTT, referred as MSR-VTT-10K, which

contains 10K video clips from 20 categories. Each video

clip is annotated with 20 sentences by 1327 workers from

Amazon Mechanical Turk. Therefore, the dataset results

in a total of 200K clip-sentence pairs and 29,316 unique

words. We use the public splits for training and testing, i.e.,

6513 for training, 497 for validation, and 2990 for testing.

MSVD. It contains 1970 YouTube short video clips, and

each one depicts a single activity in 10 seconds to 25 sec-

onds. and each video clip has roughly 40 English descrip-

tions. Similar to the prior work [24, 49], we take 1200 video

clips for training, 100 clips for validation and 670 clips for

testing.

For the sentences, we remove the punctuations, split

them with blank space and convert all words into lower-

case. The sentences longer than 30 are truncated, and the

word embedding size for each word is set to 468.

For the encoder, we feed all frames of each video clip

into Inception-V4 [35] which is pretrained on the ILSVRC-

2012-CLS [31] classification dataset for feature extraction

after resizing them to the standard size of 299 × 299, and

extract the 1536 dimensional semantic feature of each frame

from the last pooling layer. Inspired by [49], we choose the

equally-spaced 28 features from one video, and pad them

with zero vectors if the number of features is less than 28.

The input dimension of the decoder is 468, the same to that

of the word embedding, while the hidden layer contains 512

units. For the reconstructor, the inputs are the hidden states

of the decoder and thus have the dimension of 512. To ease

the reconstruction loss computation, the dimension of the

hidden layer is set to 1536 same to that of the frame features

produced by the encoder.

During the training, the AdaDelta [51] is employed for

optimization. The training stops when the CIDEr value on

the validation dataset stops increasing in the following 20

successive epochs. In the testing, beam search with size 5

is used for the final caption generation.

4.2. Study on the Encoder­Decoder

In this section, we first test the impacts of different

encoder-decoder architectures in video captioning, such

as SA-LSTM and MP-LSTM. Both are popular encoder-

decoder models and share similar LSTM structure, except

that SA-LSTM introduced an attention mechanism to ag-

gregate frame features, while MP-LSTM relies on the mean

pooling. As shown in Table 1, with the same encoder

VGG19, SA-LSTM yielded 35.6 and 25.4 on the BLEU-

4 and METEOR respectively, while MP-LSTM only pro-

duced 34.8 and 24.7, respectively. The same results can

Table 1. Performance evaluation of different video captioning

models on the testing set of the MSR-VTT dataset (%). The

encoder-decoder framework is equipped with different CNN struc-

tures such as AlexNet, GoogleNet, VGG19 and Inception-V4. Ex-

cept Inception-V4, the metric values of the other published models

are referred from the work in [47], and the symbol “-” indicates

that such metric is unreported.

Model BLEU-4 METEOR ROUGE-L CIDEr

MP-LSTM (AlexNet) 32.3 23.4 - -

MP-LSTM (GoogleNet) 34.6 24.6 - -

MP-LSMT (VGG19) 34.8 24.7 - -

SA-LSTM (AlexNet) 34.8 23.8 - -

SA-LSTM (GoogleNet) 35.2 25.2 - -

SA-LSTM (VGG19) 35.6 25.4 - -

SA-LSTM (Inception-V4) 36.3 25.5 58.3 39.9

RecNetglobal 38.3 26.2 59.1 41.7

RecNetlocal 39.1 26.6 59.3 42.7

be obtained when using AlexNet and GoogleNet as the en-

coder. Hence, it is concluded that exploiting the tempo-

ral dynamics among frames with attention mechanism per-

formed better in sentence generation than mean pooling on

the whole video.

0.00 0.01 0.1 0.2 0.3 0.4 0.5
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)
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Figure 5. Effects of the trade-off parameter λ for RecNetglobal and

RecNetlocal in terms of BLEU-4 metric on MSR-VTT. It is noted

that λ = 0 means the reconstructor is off, and the RecNet turns to

be a conventional encoder-decoder model.

Besides, we also introduced Inception-V4 as an al-

ternative CNN for feature extraction in the encoder. It

is observed that with the same encoder-decoder struc-

ture SA-LSTM, Inception-V4 yielded the best caption-

ing performance comparing to the other CNNs such as

AlexNet, GoogleNet, and VGG19. This is probably be-

cause Inception-V4 is a deeper network and better at se-
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RecNetglobal  : a man is running through a field
GT : soldiers are fighting each other in the battle

SA-LSTM : a person is explaining something
RecNetlocal : a group of people are fighting

RecNetglobal  : a woman is talking about makeup
GT : two ladies are talking and make up her face

SA-LSTM : a woman is talking
RecNetlocal : a a woman is putting makeup on her face

RecNetglobal  : people are riding a boat
GT : bunch of people taking pictures from the boat and 
going towards ice 

SA-LSTM : a man is in the water
RecNetlocal : a man is taking pictures on boat

RecNetglobal  : a man is riding a horse
GT : a group of people are riding their horses on the grass

SA-LSTM : a group of people are running
RecNetlocal : a group of people are riding horse

RecNetglobal  : a person is playing a game of ping pong
GT : inside a ping pong stadium two men play a game

SA-LSTM : two man are playing ping pong
RecNetlocal : two players are playing table tennis in a 
stadium

Figure 6. Visualization of some video captioning examples on the MSR-VTT dataset with different models. Due to the page limit, only

one ground-truth sentence is given as reference. Compared to SA-LSTM, the proposed RecNet is able to yield more vivid and descriptive

words highlighted in red boldface, such as “fighting”, “makeup”, “face”, and “horse”.

mantic feature extraction. Hence, SA-LSTM equipped with

Inception-V4 is employed as the encoder-decoder model in

the proposed RecNet.

By adding the global or local reconstructor to the

encoder-decoder model SA-LSTM, we can have the pro-

posed encoder-decoder-reconstructor architecture: Rec-

Nets. Apparently, such structure provided significant gains

to the captioning performance in all metrics. This proved

the backward flow information introduced by the proposed

reconstructor could encourage the decoder to embed more

semantic information and also regularize the generated cap-

tion to be more consistent with the video contents. More

discussion about the proposed reconstrucutor will be given

in Section 4.4.

4.3. Study on the Trade­off Parameter λ

In this section, we discuss the influence of the trade-off

parameter λ in Eq. 11. With different λ values, the obtained

BLEU-4 metric values are given in Figure 5. First, it can be

concluded again that adding the reconstruction loss (λ > 0)

did improve the performance of video captioning in terms

of BLEU-4. Second, there is a trade-off between the for-

ward likelihood loss and the backward reconstruction loss,

as too large λ may incur noticeable deterioration in caption
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performance. Thus, λ needs to be more carefully selected

to balance the contributions of the encoder-decoder and the

reconstructor. As shown in Figure 5, we empirically set λ to

0.2 and 0.1 for RecNetglobal and RecNetlocal, respectively.

4.4. Study on the Reconstructors

The difference of the proposed two reconstructors is

discussed in this section. The quantitative results of

RecNetlocal and RecNetglobal on MSR-VTT are given on

the bottom two rows of Table 1. It can be observed

that RecNetlocal performs slightly better than RecNetglobal.

The reason mainly lies in the temporal dynamic modeling.

RecNetglobal employs mean pooling to reproduce the video

representation and misses the local temporal dynamics,

while the attention mechanism is included in RecNetlocal
to exploit the local temporal dynamics for each frame re-

construction.

However, the performance gap between RecNetglobal
and RecNetlocal is not significant. One possible reason is

that the visual information of frames is very similar. As the

video clips of MSR-VTT are short, the visual representa-

tions of frames have few differences with each other, that

is the global and local structure information is similar. An-

other possible reason is the complicated video-sentence re-

lationship, which may lead to similar input information for

RecNetglobal and RecNetlocal.

4.5. Qualitative Analysis

Besides, some qualitative examples are shown in

Fig. 6. Still, it can be observed that the proposed

RecNets with local and global reconstructors gener-

ally produced more accurate captions than the typi-

cal encoder-decoder model SA-LSTM. For example, in

the second example, SA-LSTM generated “a woman

is talking”, which missed the core subject of the

video, i.e., “makeup”. By contrast, the captions pro-

duced by RecNetglobal and RecNetlocal are “a woman

is talking about makeup” and “a women is

putting makeup on her face”, which apparently

are more accurate. RecNetlocal even generated the word of

“face” which results in a more descriptive caption. More

results can be found in the supplementary file.

4.6. Evaluation on the MSVD Dataset

Finally, we tested the proposed RecNet on the MSVD

dataset [4], and compared it to more benchmark encoder-

decoder models, such as GRU-RCN[2], HRNE[23], h-

RNN[50], LSTM-E[24], aLSTMs[9] and LSTM-LS[19].

The quantitative results are given in Table 2. It is observed

that the RecNetlocal and RecNetglobal with SA-LSTM per-

formed the best and second best in all metrics, respectively.

Besides, we introduced the reconstructor to S2VT[39] to

build another encoder-decoder-reconstructor model. The

Table 2. Performance evaluation of different video captioning

models on the MSVD dataset in terms of BLEU-4, METEOR,

ROUGE-L, and CIDEr scores (%). The symbol ”-” indicates such

metric is unreported.

Model BLEU-4 METEOR ROUGE-L CIDEr

MP-LSTM (AlexNet)[40] 33.3 29.1 - -

GRU-RCN[2] 43.3 31.6 - 68.0

HRNE[23] 43.8 33.1 - -

LSTM-E[24] 45.3 31.0 - -

LSTM-LS (VGG19)[19] 46.5 31.2 - -

h-RNN[50] 49.9 32.6 - 65.8

aLSTMs [9] 50.8 33.3 - 74.8

S2VT (Inception-V4) 39.6 31.2 67.5 66.7

SA-LSTM (Inception-V4) 45.3 31.9 64.2 76.2

RecNetglobal (S2VT) 42.9 32.3 68.5 69.3

RecNetlocal (S2VT) 43.7 32.7 68.6 69.8

RecNetglobal (SA-LSTM) 51.1 34.0 69.4 79.7

RecNetlocal (SA-LSTM) 52.3 34.1 69.8 80.3

results show that both global and local reconstructors bring

improvement to the original S2VT in all metrics, which

again demonstrate the benefits of video captioning based on

bidirectional cue modeling.

5. Conclusions

In this paper, we proposed a novel RecNet with the

encoder-decoder-reconstructor architecture for video cap-

tioning, which exploits the bidirectional cues between nat-

ural language description and video content. Specifically,

to address the backward information from description to

video, two types of reconstructors were devised to repro-

duce the global and local structures of the input video,

respectively. The forward likelihood and backward re-

construction losses were jointly modeled to train the pro-

posed network. The experimental results on the benchmark

datasets corroborate the superiority of the proposed RecNet

over the existing encoder-decoder models in video caption

accuracy.
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