
Temporal Hallucinating for Action Recognition with Few Still Images

Yali Wang1∗ Lei Zhou1,3∗ Yu Qiao1,2†

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
2 The Chinese University of Hong Kong 3 SenseTime Group Limited

Abstract

Action recognition in still images has been recently pro-

moted by deep learning. However, the success of these deep

models heavily depends on huge amount of training images

for various action categories, which may not be available

in practice. Alternatively, humans can classify new action

categories after seeing few images, since we may not only

compare appearance similarities between images on hand,

but also attempt to recall importance motion cues from rel-

evant action videos in our memory. To mimic this capacity,

we propose a novel Hybrid Video Memory (HVM) machine,

which can hallucinate temporal features of still images from

video memory, in order to boost action recognition with few

still images. First, we design a temporal memory module

consisting of temporal hallucinating and predicting. Tem-

poral hallucinating can generate temporal features of still

images in an unsupervised manner. Hence, it can be flexi-

bly used in realistic scenarios, where image and video cat-

egories may not be consistent. Temporal predicting can

effectively infer action categories for query image, by in-

tegrating temporal features of training images and videos

within a domain-adaptation manner. Second, we design a

spatial memory module for spatial predicting. As spatial

and temporal features are complementary to represent dif-

ferent actions, we apply spatial-temporal prediction fusion

to further boost performance. Finally, we design a video

selection module to select strongly-relevant videos as mem-

ory. In this case, we can balance the number of images and

videos to reduce prediction bias as well as preserve com-

putation efficiency. To show the effectiveness, we conduct

extensive experiments on three challenging data sets, where

our HVM outperforms a number of recent approaches by

temporal hallucinating from video memory.

1. Introduction

Action recognition in still images has been an active re-

search topic in computer vision, due to its wide applications
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Figure 1. Temporal hallucinating (better view in color). First, we

compare similarities between spatial features of query image and

spatial video memory. Based on this, we hallucinate temporal fea-

tures of query image from temporal video memory.

in image retrieval, human-computer interaction, and so on

[10]. Recent advances in this task are mainly driven by deep

learning models [2, 7, 8, 18, 41], based on the remarkable

successes of convolutional neural networks (CNNs) in im-

age classification [12, 17, 29, 32, 38]. However, the power

of those deep models is built upon huge amounts of train-

ing images for various action categories, which may not be

always available for realistic applications.

Alternatively, humans can correctly understand the new

action concept in a query image, after checking out a few

images. Our key insight is that, in the few-image scenario,

humans may not only compare appearance similarity be-

tween still images on hand, but also attempt to recall tem-

poral motions of relevant actions from memory. For ex-

ample, when we see an image about windsurfing in Fig. 1,

we intuitively refresh the surfing motions of relevant actions

which we have ever seen from olympic videos, TV and so

on. Motivated by this, we propose to address action recog-

nition with few images, via hallucinating motion cues of

still images from videos. Recently, several deep learning

models have been proposed to predict optical flow (i.e., an

important motion cue) by RGB video frames [3, 23, 26, 42].
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However, these approaches may be infeasible for our prob-

lems. First, most of these approaches require at least two

RGB frames of a video as inputs to generate the correspond-

ing optical flow. This is unapplicable for a single still im-

age. Second, our goal is to classify complex actions in the

wild. Hence, instead of predicting low-level optical flow,

it may be preferable to infer high-level representations for

action recognition, especially when few training images are

available. Finally, these approaches only focus on the video

domain itself, which may not be effective to handle domain

difference between image and video in our problem.

To address the challenges above, we propose a novel Hy-

brid Video Memory (HVM) machine in this paper, which

can hallucinate temporal features of still images from rele-

vant videos in memory, in order to boost action recognition

with few training images. First, we design a temporal mem-

ory module consisting of temporal hallucinating and pre-

dicting. Temporal hallucinating can learn high-level tempo-

ral features of still images from video memory, via compar-

ing spatial similarities between images and videos. Since

hallucination is generated in an unsupervised manner, it can

be widely applied to realistic scenarios, where action cate-

gories between images and videos may be different. Next,

temporal predicting is to infer action categories of query im-

ages, according to temporal features. Since our design flexi-

bly takes domain difference between images and videos into

account, we can leverage temporal features of both train-

ing images and video memory together to boost temporal

prediction. Second, we design a spatial memory module

for spatial predicting. As spatial and temporal features are

complementary to represent actions, we fuse spatial and

temporal prediction to further enhance the performance of

HVM. Finally, we design a video selection module to se-

lect strongly-relevant videos as memory. In this case, we

can balance the number of videos and training images to

reduce prediction bias as well as preserve computation effi-

ciency. To show the effectiveness, we conduct extensive ex-

periments on three challenging data sets. Our results show

that, HVM outperforms a number of recent works with a

higher classification accuracy, by temporal hallucinating of

still images from video memory.

2. Related Works

Action Recognition. The recent advances of action

recognition in visual data are mainly driven by deep learn-

ing [2, 4, 5, 8, 10, 15, 28, 33]. Compared to video-based ac-

tion recognition, image-based action recognition is a more

challenging task, due to large appearance variations and

lack of motion descriptions in the wild images [10]. Most

existing approaches mainly take advantage of available spa-

tial information such as scene-object contexts [8, 41], or

human parts-poses-attributes [2, 7, 18], to recognize ac-

tions in still images. However, the absence of action mo-

tions may restrict these deep models, especially when the

training set is scarce (i.e., only little spatial information

is available). Alternatively, video-based action recogni-

tion has been intensively investigated in the recent years

[15, 22, 28, 31, 33, 36],with the rise of large-scale video

benchmarks [13, 15, 30].Besides of spatial modality, videos

contain a temporal modality (i.e., optical flow), which pro-

vides discriminative motion cues to improve action recog-

nition [28]. Recently, several deep models have been pro-

posed to generate optical flows from RGB video frames

[3, 20, 23, 26, 35, 42],and applied to action recognition in

videos [23, 42]. However, these approaches may be infea-

sible for still images. First, these models require at least

two RGB frames of a video as inputs, which do not exist for

a single still image. In addition, raw optical flows learned

from these video-based approaches may not be effective for

images, due to domain difference between image and video.

Deep Learning with Limited Data. The remarkable

success of deep learning heavily relies on the availability

of large-scale visual benchmarks. Hence, its power is of-

ten limited, when the target data set is scarce in many real

problems. On the contrary, human can learn new concepts

from very little supervision [11, 19, 25, 39]. Inspired by

this fact, a number of few-shot learning approaches have

been proposed by Bayesian program learning [19], siamese

neural networks [1, 16], memory machines [9, 14, 27, 34],

and so on. Especially, the recent memory machines achieve

promising performance with few training images, by mim-

icking the learning procedure of humans with visual atten-

tion mechanisms. However, the complex network structure

in these approaches may lead to training instability. More

importantly, query and memory in most memory machines

are from the same domain, which can lead to a biased learn-

ing procedure when domain shifts exist (like our image-

video case). Alternatively, a well-known approach to handle

domain difference is transfer learning, where one can use

limited target data to fine-tune deep models pretrained on

large-scale source data [40]. However, these general trans-

fer learning approaches may ignore the important knowl-

edge of specific tasks (such as temporal action cues in our

case), and thus reduce the performance in our problem.

3. Hybrid Video Memory (HVM) Machine

Humans can correctly learn the action concept in a query

image, after checking out few training images. Our key in-

sight is that, when quite a few images are available, humans

may not only compare appearance similarity between still

images on hand, but also attempt to recall temporal motions

of relevant actions from memory. To mimic this capacity,

we introduce a novel hybrid video memory (HVM) ma-

chine. Even though few training images are available, our

HVM Net can effectively hallucinate their temporal motions

from video memory (e.g., the existing video benchmarks
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Figure 2. Temporal hallucinating in temporal memory module

(better view in color). First, we compare spatial similarities be-

tween images and videos. Then, we hallucinate temporal features

of images unsupervisedly, via weighted sum over temporal fea-

tures of videos. More explanations can be found in Section 3.2.1.

such as UCF101), and subsequently boost action recogni-

tion via spatial-temporal integration.

3.1. Action Representation in Videos and Images

To represent distinct action characteristics in videos and

images, we choose deep neural network as our feature gen-

erator in HVM. Specifically, we train a popular two-steam

CNN architecture in action recognition [36, 37], by feeding

RGB and optical flow of video memory respectively into

spatial and temporal streams. As a result, we obtain spatial

and temporal features of videos,

{Vrgb, Vflow}. (1)

Next, we feed the query and training images into spatial

CNN, and obtain their spatial features,

U
rgb
all = {urgb

∗
, Urgb}, (2)

where u
rgb
∗ refers to the query image, and U

rgb refers to

the training images (quite a few in our case). Note that,

still images do not have optical flows originally, and thus no

temporal features are available for them. In the following,

we propose a novel temporal memory module, which can

hallucinate temporal features of still images, and integrate

them within video memory for temporal prediction.

3.2. Temporal Memory Module

In fact, spatial features may be limited to classify highly-

confused actions, especially when we only have a glance at

static human gestures in such a few images (e.g., one image

per category). Alternatively, temporal features often contain

important motion cues of actions, which may be a prefer-

able choice to boost action recognition. For this reason,

we propose a novel temporal memory module to hallucinate

temporal features and make temporal predictions.

3.2.1 Temporal Hallucinating

Temporal hallucinating aims at taking advantage of video

memory to learn temporal features of still images, i.e.,

U
flow
all = {uflow

∗
, U

flow}. (3)

In this work, we propose to adapt Gaussian process (GP)

[24], a flexible Bayesian non-parametric model, to achieve

this goal. The main reason is that, compared to paramet-

ric models, non-parametric models are often more suitable

to match new examples from memory, without catastrophic

forgetting [34]. To reduce writing redundancy, we mainly

explain how to adapt GP for hallucination. More basics of

GP can be found in our supplementary material and [24].

Spatial Similarity Comparison. As shown in Fig. 2,

we first compare spatial similarities between images and

videos, in order to weight which videos may be more rel-

evant to each image. This can be elegantly achieved via the

kernel operation of GP,

Wh = Kh(U
rgb
all , V

rgb)[Kh(V
rgb, Vrgb) + σ2

hI]
−1 (4)

where U
rgb
all refers to spatial features of query and training

images in Eq. (2), Vrgb refers to spatial features of videos

in Eq. (1), each entry of all kernel matrices Kh is computed

by a kernel function kh(xi,xj) with two features xi and xj ,

σ2

h is a noise term, and each row of Wh is the weight vector

of videos for an image.

Weighted Sum over Temporal Features of Videos.

After obtaining the similarity matrix Wh between videos

and images, we hallucinate temporal features of images via

weighted sum over temporal features of videos,

U
flow
all = WhV

flow. (5)

Note that, temporal hallucinating is performed in an un-

supervised manner, without using any labels information.

Hence, it can be used in the realistic scenarios, where im-

age and video categories may be inconsistent.

3.2.2 Temporal Predicting

Once temporal features of still images are generated, we can

make temporal prediction for query image. To achieve this

goal, we adapt GP as follows.

Temporal Similarity Comparison. Since we not only

have temporal features of videos Vflow but also obtain tem-

poral features of few training images U
flow, we integrate

them together as temporal memory for query image, i.e.,

M
flow = {Vflow, U

flow}. (6)

Subsequently, we compare temporal similarities between

query image and this temporal memory, to see which videos

5316



Figure 3. Temporal predicting in temporal memory module (bet-

ter view in color). Specifically, we integrate temporal features of

videos and training images as temporal memory for query image.

Subsequently, we compare temporal similarities between query

image and this temporal memory in a domain adaptation manner.

Then, we compute the weighted sum over labels of temporal mem-

ory to obtain temporal prediction for query image. Note that, the

structure of spatial memory module is the same as temporal pre-

dicting, except that all temporal terms are switched to be spatial.

More explanations can be found in Section 3.2.2 and 3.3.

and training images are temporally relevant to the query im-

age. Note that, the property of temporal similarities be-

tween query image and training images may be different

from the one between query image and videos, due to shifts

between image and video domains. For this reason, we per-

form the kernel operation of GP with a domain-adaptation

noise term Σp =
[

σ2

v
I 0

0 σ2

u
I

]

,

wp = Kp(u
flow
∗

, Mflow)[Kp(M
flow, Mflow) + Σp]

−1

(7)

where u
flow
∗ is the temporal feature of query image that is

obtained from temporal hallucinating, Mflow is the tempo-

ral memory in Eq. (6), each entry of all kernel matrices Kp

is computed by a kernel function kp(xi,xj), σ
2

v and σ2

u are

respectively noise terms for videos and training images in

temporal memory, and wp is the weight vector of temporal

memory for query image.

Weighted Sum over Labels of Temporal Memory. Af-

ter obtaining wp for query image, we make temporal predic-

tion via weighted sum over labels of temporal memory,

L
flow
∗

= wpL, (8)

where L = {Lv,Lu} refers to action labels of videos and

training images in temporal memory. Since action cate-

gories may be different for images and videos, we use the

total number of action categories in image and video do-

mains to construct each one-hot-label vector in L. As a

result, one can adaptively leverage videos and training im-

ages in temporal memory to boost temporal action predic-

tion of query image.

Figure 4. Video selection (better view in color). The goal is to mine

highly-relevant videos from a video bag, so that we balance videos

and training images to reduce inference bias as well as preserve

computation efficiency. More details can be found in Section 3.4.

3.3. Spatial Memory Module

Since both image and video domains have spatial fea-

tures, we introduce a spatial memory module for query im-

age, where we integrate spatial features of videos and train-

ing images as spatial memory. Specifically, the memory

structure of spatial predicting is the same as the one of tem-

poral predicting in Section 3.2.2, except that all temporal

terms are changed to be spatial. Finally, we perform spatial-

temporal fusion as our final prediction for query image, due

to the fact that spatial and temporal characteristics of ac-

tions are often complementary. Via designing temporal and

spatial memory modules above, we flexibly leverage video

memory to boost action recognition with few still images.

3.4. Video Selection Module

In practice, it is unnecessary and inefficient to use the

entire video data set as memory, since not all videos are rel-

evant to still images on hand. For this reason, we design

a video selection module to mine highly-relevant videos

{Vrgb, V
flow} from a video bag {Vrgb

bag, V
flow
bag }, where

this bag is collected by randomly sampling videos from

each video-domain action category.

Step1: We use video bag as memory to hallucinate tem-

poral features of training images. Hence, each image can be

treated as a pseudo video with spatial and temporal features.

Step2: We use training images (i.e., pseudo videos in

Step1) as memory, and perform spatial and temporal pre-

dicting for video bag. The prediction score for each video

in the bag is about image-domain label.

Step3: We perform spatial and temporal score fusion

for video bag, where each video has a fused score vector

sfuse. We use smax = max(sfuse) as the importance of

each video to image domain.

Step4: For each video-domain category in the bag, we

select top Nfuse videos according to their smax. Then, we

use their features {Vrgb, V
flow} as our video memory.

Note that, Nfuse is chosen to be the same as the number
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of training images in each image-domain category. In this

case, we can balance videos and training images to reduce

inference bias as well as preserve computation complexity.

4. Experiments

In this section, we evaluate our hybrid video memory

(HVM) machine. To achieve this goal, we first introduce

video and image data sets. More data explanations and ex-

periments can be found in the supplementary material.

Data Sets. (I) Video Memory. We choose UCF101

(i.e., training set of split1) [30] as video memory of HVM,

because it is a widely-used benchmark for action recogni-

tion in videos [28, 36, 37]. (II) Still Image. We use three

still image data sets, i.e., WEB101, VOC, and DIFF20.

First, we collect WEB101 and DIFF20 from internet, where

WEB101 consists of the same 101 action categories as

UCF101, and DIFF20 consists of 20 action categories that

are different from the ones in UCF101. The action defini-

tion of DIFF20 can be found in our supplementary mate-

rial. Second, VOC is built from VOC 2012 Action Dataset

[6]. It consists of 10 action categories in which 4 categories

are overlapped with UCF101 (i.e., Jumping, PlayingInstru-

ment, RidingBike, RidingHorse). To avoid ambiguity of ac-

tions from multiple targets, we crop the squared bounding

box as one image sample in our VOC. Furthermore, we ex-

clude all samples in the ’other’ class of VOC Action 2012 in

our experiments, as our main goal is to evaluate if temporal

features hallucinated from video can boost action recogni-

tion with few still images. Finally, the number of test im-

ages in WEB101/DIFF20 is 5,032/1,000 (around 50 test im-

ages per action category), and the number of test images in

VOC is 2,658. Note that, we choose these data sets, since

we aim at evaluating our HVM, when action difference be-

tween image and video domains is gradually increasing. We

use the published protocol [28, 36, 37] to report classifica-

tion accuracy for all the data sets.

Implementation Details. Unless stated otherwise, we

perform our HVM machine with the following implemen-

tation details. First, we choose a widely-used two-stream

CNN, i.e., Temporal Segment Net (TSN) [37], to obtain

action representations of videos and images. Specifically,

we use the published TSN that is trained on UCF101 split1

(i.e., our video memory). The spatial and temporal fea-

tures are respectively generated from the 5b layer of two

streams (1,024 dimension vector after global pooling). All

deep features are then processed with l2 normalization and

zero-mean operation. Second, the kernel of GP is chosen

as the popular linear kernel (i.e., dot product), and all the

hyper-parameters are carefully initialized. Third, we col-

lect 1/5/10 training images from each action category of

image sets to show the performance of HVM. Finally, we

randomly select 50 videos from each action category of

UCF101 (i.e., training set of split1), and pick the middle

frame of each video to construct the video bag. Our video

selection module picks the top 1/5/10 videos (per category)

from this bag, and use them as our video memory.

4.1. Properties of Our HVM Machine

In this section, we mainly investigate different properties

in HVM. To be fair, when we explore different strategies of

one property, all other properties follow the basic strategy

in the implementation details.

Key Modules of HVM. We evaluate the key modules

of HVM in Table 1, where the baseline for comparison is

that, we use spatial features of training images to perform

the standard GP, without considering the proposed hybrid

video memory structure. Additionally, the ‘rand’ setting

is to randomly select 1/5/10 videos (per category from our

video bag) as video memory, while the ‘our’ setting is to

use the proposed video selection module to automatically

select 1/5/10 videos (per category from our video bag) as

video memory. (I) Temporal and Spatial Memory Mod-

ules. We examine the classification accuracy of temporal

predicting (TP) in temporal memory module, spatial pre-

dicting (SP) in spatial memory module, and HVM (spatial-

temporal fusion). First, ‘our’ TP and SP consistently out-

perform the baseline, especially when the training set is

scarce (such as 1 image per category). It illustrates that,

temporal and spatial memory modules can effectively take

advantage of video memory to boost action recognition with

few still images. Second, ‘our’ HVM achieves the best ac-

curacy by fusing SP and TP, showing that spatial and tem-

poral memory modules of HVM are complementary. Third,

‘our’ HVM works well for all data sets, even though action

difference between image and video domains is increas-

ing. It shows that the domain adaptation design in temporal

and spatial predicting of HVM can successfully reduce the

negative influence of domain difference and action differ-

ence. (II) Video Selection Module. First, the ‘our’ setting

consistently outperforms the ’rand’ setting, demonstrating

that our video selection module learns a strongly-relevant

video memory for still images. Second, the ‘rand’ TP is

even worse than baseline for the 1-image setting in VOC

and DIFF20. It illustrates that the ‘rand’ setting is prone to

have more negative influence on temporal predicting, com-

pared to spatial predicting. The main reason is that, the

randomly-selected video memory may deteriorate temporal

hallucinating of still images, and consequently reduce the

performance of temporal predicting. This phenomenon is

getting worse, when the difference of action categories be-

tween video and image is larger (such as VOC and DIFF20),

and the number of training images is smaller (such as 1-

image case). On the contrary, our video selection module

adaptively finds a powerful video memory, which can boost

both spatial and temporal predicting with few still images.

Different Model Choices. We evaluate two important
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Data sets WEB101 VOC DIFF20

No. of images 1-image 5-image 10-image 1-image 5-image 10-image 1-image 5-image 10-image

Baseline 26.6 48.6 57.3 39.0 59.1 64.7 57.4 81.9 84.5

rand TP 30.9 49.3 57.5 38.2 58.9 64.8 53.9 81.4 84.9

rand SP 31.5 50.7 58.5 39.0 59.4 65.7 58.0 83.2 84.8

rand HVM 33.1 51.3 58.6 39.3 59.7 66.0 59.1 83.4 85.7

our TP 33.2 50.5 57.6 42.0 59.1 65.1 59.1 82.5 85.5

our SP 33.0 51.3 58.8 39.3 59.7 66.3 58.3 83.4 85.2

our HVM 35.4 52.3 59.2 42.2 60.1 66.5 60.2 83.5 86.4

Table 1. Key modules of our HVM. Baseline: we perform the standard GP on the training images, without considering the proposed hybrid

video memory structure. ‘rand’: we randomly select 1/5/10 videos (per category from video bag) as video memory. ‘our’: we use our

video selection module to automatically select 1/5/10 videos (per category from video bag) as video memory. One can see that ‘our’ HVM

achieves the best accuracy. More explanations can be found in the text.

Kernel Choice WEB101 VOC DIFF20

of HVM 1-image 5-image 10-image 1-image 5-image 10-image 1-image 5-image 10-image

linKer 35.4 52.3 59.2 42.2 60.1 66.5 60.2 83.5 86.4

nonlinKer 37.5 53.1 60.8 41.2 60.4 66.7 60.8 83.7 86.3

Table 2. Different choices of kernel functions in HVM. linKer/nonlinKer: The kernel is linear/nonlinear in HVM, where linKer is the linear

kernel (i.e., dot product), and nonlinKer is a popular neural network kernel in [24]. Our HVM with linear kernel is competitive to the one

with nonlinear kernel. It illustrates that HVM is robust to different kernel choices.

model choices of HVM. (I) Choices of Deep Action Rep-

resentations. We examine the performance of HVM, ac-

cording to different choices of action representations. Here

we choose the widely-used two-stream CNN architectures

for comparison, i.e., Towards Good-Practice Net (TGPN) in

[36] and Temporal Segment Net (TSN) in [37]. Both deep

models are pre-trained on UCF101 (i.e., our video mem-

ory), where spatial and temporal features for TGPN are gen-

erated from the conv5−3 layer with global pooling (512 di-

mension vector), and the features for TSN are the same as

before. As shown in Fig. 5, HVM achieves better accuracy

with action representations from TSN. This is mainly be-

cause that, TSN is a deeper two-stream CNN which gener-

ates more discriminative features than TGPN. (II) Choices

of Kernel Functions. We explore our HVM machine with

different linear or nonlinear kernel functions. The linear

kernel is the same as before, while the nonlinear kernel is

a popular neural network kernel in [24]. In Table 2, HVM

with linear kernel is competitive to the one with nonlinear

kernel. This indicates that our HVM machine is robust to

different kernel choices. For consistency, we use TSN and

linear kernel in all our experiments.

Exploratory Analysis on HVM. We further analyze

which types of action categories can be improved by HVM,

compared to the baseline. For this reason, we choose the

most challenging training setting (1-image per category),

and compute the accuracy difference (%) between baseline

and our memory modules in Fig. 6. As expected, temporal

(or spatial) memory module is helpful to improve the mo-

tion (or appearance) related action categories, and HVM can

leverage both spatial and temporal features to enhance the

final prediction. Furthermore, the improvement of temporal

memory module is generally larger than the one of spatial

memory module. It illustrates that, the hallucinated tempo-

ral features can generate more discriminative motion char-

acteristics for still images, especially when the training set

is scarce. Finally, we investigate the largest-improved ac-

tion category by HVM, i.e., BlowingCandles / RidingHorse

/ AmericanFootball for WEB101 / VOC / DIFF20. The re-

sults in Table 3 show that, the mistakes introduced by the

most confused category (i.e., BrushingTeeth / RidingBike /

PlayingHandball) can be significantly decreased by HVM.

Hence, our HVM machine can effectively leverage video

memory for action recognition with few still images.

4.2. Comparison with Related Works

We compare our HVM machine with a number of related

works. Since temporal hallucinating is designed to boost ac-

tion recognition with few still images, we choose the most

challenging 1-image case to show the effectiveness. Specif-

ically, we categorize the related works into three groups. (I)

Traditional classifiers, i.e., K Nearest Neighbors (KNN) and

SVM. Since 1 training image is available for each action

category, we choose the nearest neighbor (K=1) in KNN.

All the hyper parameters of SVM are selected by grid search

algorithm in LIBSVM. We train both approaches with deep

features of training images. (II) Transfer learning with deep

models in action recognition. Following the transfer strat-

egy in [40], we fine-tune the last layer of popular deep mod-

els in action recognition, i.e., TGPN [36], TSN [37] and
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Figure 5. Different choices of deep action representations in our HVM. We examine our HVM, according to action representations of

different two-stream CNN architectures, i.e., Towards Good-Practice Net (TGPN) in [36] and Temporal Segment Net (TSN) in [37]. Our

HVM achieves better accuracy with action representations from TSN. This is mainly because that, TSN is a deeper two-stream CNN which

generates more discriminative features than TGPN.

Figure 6. Exploratory action analysis of HVM. We choose the most challenging training setting (1-image per category), and compute the

accuracy difference (%) between baseline and our memory modules. First, temporal (or spatial) memory module is helpful to improve the

motion (or appearance) related categories, and our HVM can leverage both spatial and temporal features to enhance the final prediction.

Second, the improvement of temporal memory module is generally larger than the one of spatial memory module. It illustrates that, the

hallucinated temporal features can generate more discriminative characteristics for still images.

R*CNN [8]. All deep models are pre-trained on UCF101

(i.e., our video memory). Additionally, R*CNN requires

ground truth bounding boxes of human actions in the im-

age set. It can be an expensive annotation procedure, which

is beyond our goal in this paper. Hence, we show its re-

sult on VOC, where the bounding boxes are available. (III)

Well-known memory machines in deep learning commu-

nity, i.e., KV-MemNNs [21] and Matching Network [34].

For KV-MemNNs, we use spatial video memory as key and

temporal video memory as value. Similar to our HVM ma-

chine, its final prediction for query is based on both key and

value. For Matching Network, LSTM is trained with spa-

tial features of video bag, where the number of randomly-

sampled action categories (per minibatch) is the same as

the one of action categories in the target image sets. The

results are shown in Table 4. First, our HVM outperforms

the traditional classifiers (KNN and SVM) and deep trans-

ferred models (TGPN, TSN and R*CNN), showing the ef-

fectiveness of video memory. Second, our HVM outper-

forms the recent KV-MemNNs and Matching Network. It

demonstrates that our HVM can be a preferable video mem-

ory network to boost action recognition with few images.

4.3. Visualization

An important merit of our HVM machine is temporal

hallucinating in the temporal memory module, since this

procedure can unsupervisedly generate temporal features

that are originally non-existent for still images. After eval-

uating it quantitatively in the previous sections, we choose

DIFF20 to visualize temporal hallucinating. This choice is

based on the fact that, action categories of DIFF20 are dif-

ferent from our video memory (i.e., UCF101). Using this
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Action WEB101 VOC DIFF20

Confusion BlowingCandles→BrushingTeeth RidingHorse→RidingBike AmericanFootball→PlayingHandball

Baseline 20 mistaken images 103 mistaken images 20 mistaken images

Our HVM 6 mistaken images 62 mistaken images 11 mistaken images

Table 3. Confusion Reduction by HVM. The largest-improved action category in HVM is BlowingCandles / RidingHorse / American-

Football for WEB101 / VOC / DIFF20, where the mistakes introduced by the most confused category (i.e., BrushingTeeth / RidingBike /

PlayingHandball) can be significantly decreased by our HVM machine.

Figure 7. Visualization of temporal hallucinating (DIFF20 with 1-

image case). Temporal hallucinating correctly compares similari-

ties between query images and videos in memory, and unsupervis-

edly generates temporal features with motion cues for still images.

data can further confirm the unsupervised learning bene-

fits of our temporal hallucinating. The results for the most

challenging 1-image setting are shown in Fig. 7, where we

demonstrate the query images (RGB) and two most rele-

vant videos (RGB and optical flows) in our video memory.

Approaches WEB101 VOC DIFF20

KNN 26.1 38.3 55.7

SVM 22.3 32.0 54.2

TGPN [36] 15.5 30.5 35.2

TSN [37] 26.1 40.3 56.3

R*CNN [8] n/a 28.3 n/a

KV-MemNNs [21] 24.4 39.5 52.1

Matching Network [34] 26.6 39.9 56.7

Our HVM 35.4 42.2 60.2

Table 4. Comparison with related works (most challenging 1-

image case). More explanations can be found in the text.

The relevant videos in memory is obtained by computing

the weight vector of temporal hallucinating in Eq. (4). One

can clearly see that, temporal hallucinating can correctly

compare similarities between a query image and videos

in memory, and unsupervisedly generate temporal features

with motion characteristics for still images.

5. Conclusion

In this paper, we propose a novel hybrid video memory

(HVM) machine to boost action recognition with few train-

ing images. First, temporal memory module can unsuper-

visedly hallucinate temporal features of still images from

video memory, and effectively make temporal prediction for

query images, with consideration of domain difference be-

tween images and videos. Second, spatial memory mod-

ule can make spatial prediction of query images. Due to

complementary properties of spatial and temporal features,

we apply spatial-temporal prediction fusion to further en-

hance the performance. Finally, video selection module can

select the strongly-relevant videos as memory, which can

reduce prediction bias while preserving computation effi-

ciency. In our experiments, HVM outperforms a number of

recent works, showing that it is a preferable video memory

machine for action recognition with few images.
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