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Abstract

Deep neural networks have demonstrated state-of-the-
art performance in a variety of real-world applications. In
order to obtain performance gains, these networks have
grown larger and deeper, containing millions or even bil-
lions of parameters and over a thousand layers. The trade-
off is that these large architectures require an enormous
amount of memory, storage, and computation, thus limiting
their usability. Inspired by the recent tensor ring factoriza-
tion, we introduce Tensor Ring Networks (TR-Nets), which
significantly compress both the fully connected layers and
the convolutional layers of deep neural networks. Our re-
sults show that our TR-Nets approach is able to compress
LeNet-5 by 11 x without losing accuracy, and can compress
the state-of-the-art Wide ResNet by 243 x with only 2.3%
degradation in Cifarl0 image classification. Overall, this
compression scheme shows promise in scientific comput-
ing and deep learning, especially for emerging resource-
constrained devices such as smartphones, wearables, and
IoT devices.

1. Introduction

Deep neural networks have made significant improve-
ments in a variety of applications, including recommender
systems [45, 53], time series classification [49], nature lan-
guage processing [ 16, 21, 50], and image and video recogni-
tion [51]. These accuracy improvements require developing
deeper and deeper networks, evolving from AlexNet [33]
(with P = 61 M parameters), VGG19 [41] (P = 114 M),
and GoogleNet (P = 11 M) [43], to 32-layer ResNet (P =
0.46 M) [24, 25], 28-layer WideResNet [52] (P = 36.5 M),
and DenseNets [27]. Unfortunately, with each evolution in
architecture comes a significant increase in the number of
model parameters.

On the other hand, many modern use cases of deep neu-
ral networks are for resource-constrained devices, such as

mobile phones [28], wearables and IoT devices [34], etc. In
these applications, storage, memory, and test runtime com-
plexity are extremely limited in resources, and compression
in these areas is thus essential.

After prior work [8] observed redundancy in trained neu-
ral networks, a useful area of research has been compression
of network layer parameters (e.g., [9, 23, 22, 18]). While a
vast majority of this research has been focused on the com-
pression of fully connected layer parameters, the latest deep
learning architectures are almost entirely dominated by con-
volutional layers. For example, while only 5% of AlexNet
parameters are from convolutional layers, over 99% of Wide
ResNet parameters are from convolutional layers. This ne-
cessitates new techniques that can factorize and compress
the multi-dimensional tensor parameters of convolutional
layers.

We propose compressing deep neural networks using
Tensor Ring (TR) factorizations [54], which can be viewed
as a generalization of a single Canonical Polyadic (CP) de-
composition [26, 30, 6], with two extensions:

1. the outer vector products are generalized to matrix
products, and

2. the first and last matrix are additionally multiplied
along their outer edges, forming a “ring” structure.

The exact formulation is described in more detail in Sec-
tion 3. Note that this is also a generalization of the Tensor
Train factorization [39], which only includes the first exten-
sion. This is inspired by previous results in image process-
ing [47], which demonstrate that this general factorization
technique is extremely expressive, especially in preserving
spatial features.

Specifically, we introduce Tensor Ring Nets (TRN), in
which layers of a deep neural network are compressed us-
ing tensor ring factorization. For fully connected layers,
we compress the weight matrix, and investigate different
merge/reshape orders to minimize real-time computation
and memory needs. For convolutional layers, we carefully
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compress the filter weights such that we do not distort the
spatial properties of the mask. Since the mask dimensions
are usually very small (5 x 5,3 x 3 or even 1 x 1) we do not
compress along these dimensions at all, and instead com-
press along the input and output channel dimensions.

To verify the expressive power of this formulation, we
train several compressed networks. First, we train LeNet-
300-100 and LeNet-5 [36] on the MNIST dataset, com-
pressing LeNet-5 by 11x without degradation and achiv-
ing 99.31% accuracy, and compressing LeNet-300-100 by
13x with a degrading of only 0.14% (obtaining overall ac-
curacy of 97.36%). Additionally, we examine the state-of-
the-art 28-layer Wide-ResNet [52] on Cifarl0, and find that
TRN can be used to effectively compress the Wide-ResNet
by 243 x with only 2.3% decay in performance, obtaining
92.7% accuracy. The compression results demonstrates the
capability of TRN to compress state-of-the-art deep learn-
ing models for new resources constrained applications.

Section 2 discusses related work in neural network com-
pression. The compression model is introduced in Sec-
tion 3, which discusses general tensor ring factorizations,
and their specific application to fully connected and con-
volutional layers. The compression method for convolu-
tional layers is a key novelty, as few previous papers ex-
tend factorization-based compression methods beyond fully
connected layers. Finally, we show our experimental results
improve upon the state-of-the-art in compressibility without
significant performance degradation in Section 4. Section 6
concludes the paper with possible future directions.

2. Related Work

Past deep neural network compression techniques have
largely applied to fully connected layers, which previously
have dominated the number of parameters of a model. How-
ever, since modern models like ResNet and WideResNet
are moving toward wider convolutional layers and omitting
fully connected layers altogether, it is important to consider
compression schemes that work on both fronts.

Many modern compression schemes focus on post-
processing techniques, such as hashing [9] and quantization
[20]. A strength of these methods is that they can be ap-
plied in addition to any other compression scheme, and are
thus orthogonal to other methods. More similar to our work
are novel representations like circulant projections [10] and
truncated SVD representations [ 18].

Low-rank tensor approximation of deep neural networks
has been widely investigated in the literature for effec-
tive model compression, low generative error, and fast pre-
diction speed [42, 28, 35]. Tensor Networks (TNs) [I1,

] have recently drawn considerable attention in multi-
dimensional data representation [46, 47, 17, 48], and deep
learning [14, 15, 13, 31].

One of the most popular methods of tensor factorization

is the Tucker factorization [44], and has been shown to ex-
hibit good performance in data representation [17, 5, 4] and
in compressing fully connected layers in deep neural net-
works [31]. In [28], a Tucker decomposition approach is
applied to compress both fully connected layers and convo-
lution layers.

Tensor train (TT) representation [39] is another example
of TN that factorizes a tensor into boundary two matrices
and a set of 3" order tensors, and has demonstrated its ca-
pability in data representation [40, 46, 7] and deep learning
[37, 51]. In [47], the TT model is compared against TR
for multi-dimensional data completion, showing that for the
same intermediate rank, TR can be far more expressive than
TT, motivating the generalization. In this paper, we investi-
gate TR for deep neural network compression.

3. Tensor Ring Nets (TRN)

In this paper, X € R**1d is a d mode tensor with
Hle I; degrees of freedom. A tensor ring decomposi-
tion factors such an X into d independent 3-mode tensors,
UMD, ..., U@ such that each entry inside the tensor X is
represented as

_ (1) 2) (d)
xila"' Jid Z urd,il,rlurl,ig,TQ U urd_l,id,rd’ (1)
T1,00,Td

where U ¢ REXIixE and R is the tensor ring rank. '
Under this low-rank factorization, the number of free pa-
rameters is reduced to R? Z?:l I; in the tensor ring factor
form, which is significantly less than Hle I;in X.

For notational ease, let U = {UM) .- UD}, and de-
fine decomp(X; R, d) as the operation to obtain d factors
U@ with tensor ring rank R from X, and construct(Ul) as
the operation to obtain X from U.

Additionally, for 1 < k < 5 < d, define the merge oper-
ation as M = merge(U, k, j) such that Uy, Up41,--- ,U;
are merged into one single tensor M of dimension R X I}, x
Ip41 % --- x I; x R, and each entry in M is

M

Th—1,8k oSkt 1,70 85,75
k k+1 j

Sou® oty @
k—1:2ksTk  Tkylk+1,Tk+1 Tj—1525,T5

Tl sTj—1

Note that construct operator is the merge operation
merge(U, 1, d), which results in a tensor of shape R x I; X
I x ---x I; x R, followed by summing along mode 1 and
mode d+ 2, resulting in a tensor of shape I7 X I3 X - -+ X I;

e.g.
R
construct(U) = Zmerge(u, Ld)y:

r=1

'More generally, U(?) € RFi*TiXFit1 and each R; may not be the
same. For simplicity, we assume R1 = --- = Rg = R.
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Figure 1: Tensor diagrams. Left: A graphical representa-
tion of a length n vector x, a n X m matrix A, and a 3rd order
I x Iy x I5 tensor U. Right: factorized forms for a dot prod-
uct 7y, matrix product AB where A and B have k rows
and columns respectively, and the tensor product of U and V
along a common axis. More explicitly, the tensor product on
the bottom right has 4 orders and the i1, 72, 73, i4-th element
is Z;“:l uil,iz,j\?i&“’j for ’ik = 1, “ee 7Ik, k= 1, 2, 3, 4.

Tensor diagrams Figure | introduces the popular tensor
diagram notation [38], which represents tensor objects as
nodes and their axes as edges of an undirected graph. An
edge connecting two nodes indicates multiplication along
that axis, and a “dangling” edge shows an axis in the re-
maining product, with the dimension given as the edge
weight. This compact notation is useful in representing var-
ious factorization methods (Figure 2).

Merge ordering The computation complexity in this pa-
per is measured in flops (counting additions and multiplica-
tions). The number of flops for a construct depends on the
sequence of merging U, i = 1,--- ,d. (See figure 3). A
detailed analysis of the two schemes is given in appendix A,
resulting in the following conclusions.

Theorem 1. Suppose Iy = ---=1;>2and I = Hle I;.
Then
1. any merge order costs between 2R3I and 4RI flops,
2. any merge order costs requires storing between R?I
and 2R?1 floats, and
3. if d is a power of 2, then a hierarchical merge order
achieves the minimum flop count.

Proof. See appendix A. O

Several interpretations can be made from these observa-
tions. First, though different merge orderings give different
flop counts, the worst choice is at most 2x more expensive
than the best choice. However, since we have to make some
kind of choice, we note that since every merge order is a
combination of hierarchical and sequential merges, striving
toward a hierarchical merging is a good heuristic to min-
imize flop count. Thus, in our paper, we always use this
Strategy.

A Tensor Ring Network (TRN) is a tensor factorization
of either fully connected layers (FCL) or convolutional lay-
ers (ConvL), trained via back propagation. If a pre-trained

(c) Tensor Train (TT)

(d) Tensor Ring(TR)

Figure 2: Tensor decompositions. Tensor diagrams for
four popular tensor factorization methods: (a) the CP de-
composition (unnormalized), (b) the Tucker decomposition,
(c) the Tensor Train (TT) decomposition, and (d) the Tensor
Ring (TR) decomposition used in this paper. As shown, TR
can be viewed as a generalization of both CP (with r > 1)
and TT (with an added edge connecting the first and last
tensors). In Section 4.3, we also compare against Tucker
decomposition compression schemes.

model is given, a good initialization can be obtained from
the tensor ring decomposition of the layers in the pre-trained
model.

3.1. Fully Connected Layer Compression

In feed-forward neural networks, an input feature vector
x € R! is mapped to an output feature vectory = Ax €
RO via a fully connected layer A € R/*P. Without loss
of generality, x, A, and y can be reshaped into higher order
tensors X, A, and Y with

yol, 04 Z -Azl, 38d,01,...,0 5 le,...,id (3)

.....

where d and d are the modes of X and Y respectively, and
ix’s ad op’s span from 1 to I} and 1 to O, respectively, and

To compress a feed-forward network, we decompose as
U= {uUD, ... u@td} = decomp(A; R, d + d) and re-
place A with its decomposed version in (3). A tensor dia-
gram for this operation is given in Figure 4, which shows
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Figure 3: Merge ordering. A 4th order tensor is
merged from its factored form, either hierarchically via
(a)—(b)—(d), or sequentially via (a)—(c)—(d). Note that
the computational complexity of forming (b) is 73(Iy I +
I31,) and for (c) is 73(I1 Iy + I1121y), and (c) is generally
more expensive (if I; ~ Iy = I3 =~ I4). This is discussed
in detail in Appendix A.

JoAe| 1xau Jo 1ndu

Figure 4: Fully connected layer. Tensor diagram of a fully
connected TRN, divided into input and weights. The com-
posite tensor is the input into the next layer.

how each multiplication is applied and the resulting dimen-
sions.

Computational cost The computational cost again de-
pends on the order of merging X and U. Note that there
is no need to fully construct the tensor A, and a tensor rep-
resentation of A is sufficient to obtain Y from X. To reduce
the computational cost, a layer separation approach is pro-

posed by first using hierarchical merging to obtain
FU = merge(U, 1,d) € RFxIxxTaxR "
F® — merge(W,d + 1,d + d) € RF¥O1x <0< R

which is upper bounded by 4R3(I + O) flops. By replac-
ing A in (3) with F) and 3 and switching the order of
summation, we obtain
_ (1)
Z - Z ngd,_,_(j,il,”',id,TdXilv--'viW ®)

T1yeeny

st
_ § : (2)
%01,...,0& - Zrd7rd+&?rd,ol,--~,Od,Td+J' (6)

Ta4dTd

TdTa+d

The summation (5) is equivalent to a feed-forward layer of
shape (I ---I3) x R?, which takes 2R*I flops. Addition-
ally, the summation over 7, ; and r4 is equivalent to an-
other feed-forward layer of shape R? x (O; - - - O;), which
takes 2R?O flops. Such analysis demonstrates that the layer
separation approach to a FCL in a tensor ring net is equiva-
lent to a low-rank matrix factorization to a fully-connected
layer, thus reducing the computational complexity when R
is relatively smaller than I and O.

Define Pgc and Cgc as the complexity saving in param-
eters and computation, respectively, for the tensor net de-
composition over the typical fully connected layer forward
propagation. Thus we have

10
Prc = y = . @)
Rr? (Zz I; + Zj Oj)
and 2BIO
Crc > (®)

(4R3® + 2BR2)(I + O)’
where B is the batch size of testing samples. Here, we see
the compression benefit in computation; when B is very
large, (8) converges to I0/(R?(I + O)), which for large 1,
O and small R is significant. Additionally, though the ex-
pensive reshaping step grows cubically with R (as before),
it does not grow with batch size; conversely, the multipli-
cation itself (which grows linearly with batch size) is only
quadratic in R. In the paper, the parameter is selected by
picking small R and large d to achieve the optimal C' since
R needs to be small enough for computation saving.

3.2. Convolutional Layer Compression

In convolutional neural networks (CNNs), an input ten-
sor X € REXWXI is convoluted with a 4th order kernel
tensor L € RP*P*IxO and mapped to a 3rd order tensor
Y € REXWXO a4 follows

D I
Vhw,o = g E X w iKdy da 00
dy,da=1 1=1 (9)

h'=(h—1)s+dy — p,
w' = (w—1)s+dy —p,
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where s is stride size, p is zero-padding size. Computed as
in (9), the flop costis D% - IO - HW. ?

In TRN, tensor ring decomposition is applied onto the
kernel tensor K and factorizes the 4th order tensor into four
3rd tensors. With the purpose to maintain the spatial infor-
mation in the kernel tensor, we do not factorize the spatial
dimension of K via merging the spatial dimension into one

4th order tensor VgB,Dl,DQ,RQ’ thus we have

R
ICdl,d2~,i,0 = E Vry dydo,roUrs iyrsUrs 0,r, - (10)

r1,72,r3=1

In the scenario when I and O are large, the tensors U
and U are further decomposed into UM, ... U@ and
U@HD Ul respectively. (See also Figure 5.)

The kernel tensor factorization in (10) combined with the
convolution operation in (9) can be equivalently solved in
three steps:

I
E : (2)
:Ph//7'll}/77'2,'l"3 xiz’,uy’,iurz7i)7~3 (11)
=1
D R
§ : } : (1)
Qh»w,TmTl ?h’,w’ﬂbﬂ“s ur1 \dy ,dwélz)
dy,da=1 72
3
Z'h,w,o E , Qh,w,r3,r1u£3),o,r1- (13)
71,73

where (11) is a tensor multiplication along one slice, with
flop count HW R2I, (12) is a 2-D convolution with flop
count HW R?D?, and (13) is a tensor multiplication along
3 slices with flop count HW R?O. This is also equivalent
to a three-layer convolutional networks without non-linear
transformations, where (11) is a convolutional layer from 7
feature maps to R? feature maps with a 1 x 1 patch, (12)
contains R convolutional layers from R feature maps to R
feature maps with a D x D patch, and (13) is a convolu-
tional layer from R? feature maps to O feature maps with
with a 1 x 1 patch. This is a common sub-architecture
choice in other deep CNNs, like the inception module in
GoogleNets [43], but without nonlinearities between 1 x 1
and D x D convolution layers.

Complexity: We employ the ratio between complex-
ity in CNN layer and the complexity in tensor ring layer
to quantify the capability of TRN in reducing computation
(Ceony) and parameter (Peopy) cOSts,

_ D210
N D2R? 4 IR? + OR?’ (14)
10 - D?
C(conv =

R2] + R3D? + R20°

2For small filter sizes D < log(HW ), as is often the case in deep neu-
ral networks for image processing, often direct multiplication to compute
convolution is more efficient than using an FFT, which for this problem
has order IO(HW (log(HW))) flops. Therefore we only consider direct
multiplication as a baseline.

Figure 5: Convolutional layer. Dashed lines show the con-
volution operation (9). Here, UD, U and UB) decom-
pose U and UM, UG, and U®) decompose U in (10). The
dashed line between X and V represent the convolution op-
eration as expressed in (9). Note that I1 x Is X I3 decompose
the number of channels entering the layer (which is 1 at the
first input), where in Figure 4 they decompose the feature
dimension entering the layer.

If, additionally, the tensors UD and UP) are further decom-
posed to d and d tensors, respectively, then

D210
Pconv = d q ;
D2R? + R2(37 I; + 35 O5) (15)
BIO - D?
C’conv =

AR3(I+0)+ BR?(I+O) + BR3D?’

Note that in the second scenario, we have a further compres-
sion in storage requirements, but lose gain in computational
complexity, which is a design tradeoff. In our experiments,
we further factorize U(") and U®) in to higher order tensors
in order to achieve our gain in model compression.

Initialization In general nonconvex optimization (espe-
cially for deep learning), the choice of initial variables can
dramatically effect the quality of the model training. In par-
ticular, we have found that initializing each parameter ran-
domly from a Gaussian distribution is effective, with a care-
fully chosen variance. If we initialize all tensor factors as
drawn iid. from N(0,0?), then after merging d factors
the merged tensor elements will have mean 0 and variance
R??? (See appendix B). By picking 0 = (%)Ud ﬁ,
where N is the amount of parameters in the uncompressed
layer, the merged tensor will have mean 0, variance 1/2/N,
and in the limit will also be Gaussian. Since this latter dis-
tribution works well in training the uncompressed models,
choosing this value of ¢ for initialization is well-motivated,
and observed to be necessary for faster convergence.

4. Experiments

We now evaluate the effectiveness of TRN-based com-
pression on several well-studied deep neural networks and
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datasets: LeNet-300-100 and LeNet-5 on MNIST, and
ResNet and WideResNet on Cifarl10 and Cifar100. These
networks are trained using Tensorflow [3]. All the exper-
iments on LeNet are implemented on Nvidia GTX 1070
GPUs, and all the experiments for ResNet and WideRes-
Net are implemented on Nvidia GTX Titan X GPUs. In all
cases, the same tensor ring rank r is used in the networks,
and all the networks are trained from randomly initializa-
tion using the the proposed initialization method. Overall,
we show that this compression scheme can give significant
compression gains for small accuracy loss, and even negli-
gible compression gains for no accuracy loss.

4.1. Fully connected layer compression

The goal of compressing the LeNet-300-100 network is
to assess the effectiveness of compressing fully connected
layers using TRNs; as the name suggests, LeNet-300-100
contains two hidden fully connected layers with output di-
mension 300 and 100, and an output layer with dimension
10 (= # classes). Table 1 gives the parameter settings for
LeNet-300-100, both in its original form (uncompressed)
and in its tensor factored form. A compression rate greater
than 1 is achieved for all » < 54, and a reduction in compu-
tational complexity for all » < 6; both are typical choices.

Table 2 shows the performance results on MNIST clas-
sification for the original model (as reported in their pa-
per), and compressed models using both matrix factoriza-
tion and TRNs. For a 0.14% accuracy loss, TRN can com-
press up to 13x, and for no accuracy loss, can compress
1.2x. Note also that matrix factorization, at 16 x compres-
sion, performs worse than TRN at 117 compression, sug-
gesting that the high order structure is helpful. Note also
that low rank Tucker approximation in [28] is equivalent
to low rank matrix approximation when compressing fully
connected layer.

4.2. Convolutional layer compression

We now investigate compression of convolutional layers
in a small network. LeNet-5 is a (relatively small) convolu-
tional neural networks with 2 convolution layers, followed
by 2 fully connected layers, which achieves 0.79% error
rate on MNIST. The dimensions before and after compres-
sion are given in Table 3. In this wider network we see a
much greater potential for compression, with positive com-
pression rate whenever r < 57. However, the reduction in
complexity is more limited, and only occurs when r < 4.

However, the performance on this experiment is still pos-
itive. By setting r = 20, we compress LeNet-5 by 11x
and a lower error rate than the original model as well as the
Tucker factorization approach. If we also require a reduc-
tion in flop count, we incur an error of 2.24%, which is still
quite reasonable in many real applications.

0.8
206
g
=
3
< 04
——— r=10/(train) r =2 (train)
02 ——— r="10 (test) r=2 (test)
’ ——— r=6(train) Tucker (train)
——— r=6 (test) Tucker (test)
O 1 1 1 1
0 2 4 6 8
Iteration x10*

Figure 6: Evolution. Evolution of training compressed 32
layer ResNet on Cifar100, using TRNs with different values
of r and the Tucker factorization method.

4.3. ResNet and Wide ResNet Compression

Finally, we evaluate the performance of tensor ring nets
(TRN) on the Cifar10 and Cifar100 image classification
tasks [32]. Here, the input images are colored, of size
32 x 32 x 3, belonging to 10 and 100 object classes re-
spectively. Overall there are 50000 images for training and
10000 images for testing.

Table 5 gives the dimensions of ResNet before and af-
ter compression. A similar reshaping scheme is used for
WideResNet. Note that for ResNet, we have compression
gain for any r < 22; for WideResNet this bound is closer to
r < 150, suggesting high compression potential.

The results are given in Table 6 demonstrates that
TRNs are able to significantly compress both ResNet and
WideResNet for both tasks. Picking » = 10 for TRN
on ResNet gives the same compression ratio as the Tucker
compression method [28], but with almost 3% performance
lift on Cifar10 and almost 10% lift on Cifar 100. Compared
to the uncompressed model, we see only a 2% performance
degradation on both datasets.

The compression of WideResNet is even more success-
ful, suggesting that TRNs are well-suited for these ex-
tremely overparametrized models. At a 243 x compression
TRNs give a better performance on Cifarl0 than uncom-
pressed ResNet (but with fewer parameters) and only a 2%
decay from the uncompressed WideResNet. For Cifar100,
this decay increases to 8%, but again TRN of WideResNet
achieves lower error than uncompressed ResNet, with over-
all fewer parameters. Compared against the Tucker com-
pression method [28], at 5x compression rate TRNs incur
only 2-3% performance degradation on both datasets, while
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Uncompressed dims. TRN dimensions
layer shape # params | flops shape of composite tensor # params flops
fcl | 784 x 300 235K 470K | (4x7x4x7)x(3x4x5x5) 39r2 117773 + 1084r2
fc2 | 300 x 100 30K 60K (3x4x5x5)x(4x5x5) 31r? 45773 + 40072
fc3 100 x 10 IK 2K (4x5x5)x(2x5) 2172 12713 + 10772
Total - 266K | 532K - 91r® | 1761r” + 159177

Table 1: Fully connected compression. Dimensions of the three-fully-connected layers in the uncompressed (left) and
TRN-compressed (right) models. The computational complexity includes tensor product merging (O(r?)) and feed-froward
multiplication (O(r?)).

Method Params CR Err % Test (s) Train (s/epoch) | LR
LeNet-300-100 [36] 266K 1x 2.50 | 0.011 +£ 0.002 3.5+1.0 2¢4
M-EC[ 18, 28](r = 10) | 16.4K 16.3x 3.91 | 0.016 £0.010 6.4+1.2 le
M-FC (r = 20) 31.2K 5.3% 3.0 0.014 £ 0.010 5.2+ 1.2 le
M-FC (r = 50) 75.7K 3.9% 2.62 | 0.021 £ 0.012 8.1+1.2 le
TRN (r = 3) 0.8K 325.5x | 853 | 0.015 4 0.007 79+14 le~3
TRN (r = 5) 2.3K 117.2x | 3.75 | 0.015 £ 0.007 78+14 2e3
TRN (r = 15) 20.5K 13.0x 2.64 | 0.015+0.007 8.1+14 5e~4
TRN (r = 50) 227.5K 1.2x 2.31 | 0.022 £ 0.008 11.1+14 5e~0

Table 2: Fully connected results. LeNet-300-100 on MNIST datase, trained to 40 epochs, using a minibatch size 50.
Trained from random weight initialization. ADAM [29] is used for optimization. Testing time is per 10000 samples. CR =
Compression ratio. LR = Learning rate.

Uncompressed dims. TRN dimensions
layer shape # params | flops shape # params flops
convl | 5x5x1x20 0.5K 784K 5x5x1x(4x5) 1972 3340872 + 3924513
conv2 | 5 x5 x 20 x 50 25K 5000K 5x5x (4x%x5)x(5x10) 3472 1784072 + 509573
fcl 1250 x 320 400K 800K | (5x5x5x10)x(5x8x8) 4612 15702 + 168513
fc2 320 x 10 3K 6K (5x8x8)x10 31r2 33072 + 36073
Total - 429K | 6590K - 130r? | 53148r% + 4638513

Table 3: Small convolution compression. Dimensions of LeNet-5 layers in its original form (left) and TRN-compressed
(right). The computational complexity includes tensor product merging and convolution operation in (12) of O(r?3), and
convolution in (11) (13) of O(r?).

Table 4: Small convolution results. LeNet-5 on MNIST dataset, trained to 20 epochs, using a minibatch size 128. ADAM

Method Params CR | Err % Test (s) Train (s/epoch) | LR
LeNet-5 [36] 429K 1x 0.79 | 0.038 +£0.027 1.6+1.9 5e—4
Tucker [28] 189K 2X 0.85 | 0.066 4+ 0.025 77+3 5e~4
TRN (r = 3) 1.5K | 286x | 2.24 | 0.058 £+ 0.026 8.3+4.5 5e—4
TRN (r = 5) 3.6K 120x | 1.64 | 0.072+0.039 10.6 £ 7.1 5e—4
TRN (r =10) | 11.0K | 39x 1.39 | 0.080 + 0.025 15.6 + 4.6 2e4
TRN (r = 15) | 234K | 18x 0.81 | 0.039+0.019 20.1 +16.0 2e4
TRN (r =20) | 40.7K | 11x 0.69 | 0.052+0.028 278+ 7.4 le™®

[29] is used for optimization. Testing time is per 10000 samples. CR = Compression ratio. LR = Learning rate.

Tucker incurs 5% and 11% performance degradation. The
compressibility is even more significant for WideResNet,

where to achieve the same performance as Tucker [

] at

5x compression, TRNs can compress up to 243x on Ci-
far10 and 286x on Cifar100. The tradeoff is runtime; we

than TRNs for the WideResNet compression. However, for
memory-constrained devices, this tradeoff may still be de-

sirable.

Evolution Figure 6 shows the train and test errors during

observe the Tucker model trains at about 2 or 3 times faster training of compressed ResNet on the Cifar100 classifica-
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Uncompressed dims. TRN dimensions

layer shape # params shape of composite tensor # params
convl 3x3x3x16 432 9x3x(4x2x2) 2072
unitl ResBlock(3, 16, 16) 4608 Ox (4x2x2)x(4%x2x2) 5072
ResBlock(3, 16, 16) x 4 18432 | 9x (4x2x2)x (4x2x%x2) 20072
unit2 ResBlock(3, 16, 32) 13824 | 9x (4x2x%x2)x (4x4x2) 5672
ResBlock(3, 32,32) x4 | 73728 Ox (4x4x2)x(4x4x2) 23272
unit3 ResBlock(3, 32, 64) 55296 | 9x (4x4x2)x (4x4x4) 6472
ResBlock(3, 64, 64) x 4 | 294912 | 9x (4 x4 x4) X (4x4x4) 26472
fcl 64 x 10 650 (4x4x4)x10 2272
Total - 0.46M - 908r?

Table 5: Large convolution compression. Dimensions of 32 layer ResNes on Cifarl0 dataset. Each ResBlock(p,I,0)
includes a sequence: input — Batch Normalization — ReLU — p x p x I x O convolution layer — Batch Normalization
— ReLU — p x p x O x O convolution layer. The input of length [ is inserted once at the beginning and again at the end of

each unit. See [

] for more details.

Cifarl0 Cifar100

Method Params CR Err % | Params CR Err %
ResNet(RN)-32L 0.46M 1x 7.50[2] | 0.47M 1x 31.9[2]
Tucker-RN [28] 0.09M 5x 12.3 0.094M 5x 42.2
TT-RN(r = 13) [19,37] | 0.096M | 4.8x 11.7 0.102M | 4.6x 37.1
TRN-RN (r = 2) 0.004M | 115x 22.2 0.012M | 39x 51.3
TRN-RN (r = 6) 0.03M 15x% 19.2 0.041M | 12x 36.6
TRN-RN (r = 10) 0.09M 5x 94 0.097M 5x 33.3
WideResNet(WRL)-28L | 36.2M 1x 5.0[2] | 36.3M 1x 21.7 [2]
Tucker-WRN [28] 6.7M 59 7.8 6.7M 5% 30.8
TT-RN(r = 13) [19,37] | 0.18M 201 x 8.4 0.235M | 154x 31.9
TRN-WRN (r = 2) 0.03M | 1217x 16.3 0.087M | 417x 43.9
TRN-WRN (7 = 6) 0.07M 521 x 9.7 0.126M | 286 % 30.3
TRN-WRN (r = 10) 0.15M 243 x 7.3 0.2IM | 173x 28.3
TRN-WRN(r=15) 0.30M 122 7.0 0.36M | 100x 25.6

Table 6: Large convolution results. 32-layer ResNet (first 5 rows) and 28-layer Wide-ResNet (last 4 rows) on Cifarl0
dataset and Cifar100 dataset, trained to 200 epochs, using a minibatch size of 128. The model is trained using SGD with
momentum 0.9 and a decaying learning rate. CR = Compression ratio.

tion task, for various choices of r and also compared against
Tucker tensor factorization. In particular, we note that the
generalization gap (between train and test error) is particu-
larly high for the Tucker tensor factorization method, while
for TRNs (especially for smaller values of r) it is much
smaller. For » = 10, both the generalization error and fi-
nal train and test errors improve upon the Tucker method,
suggesting that TRNs are easier to train.

5. Conclusion

We have introduced a tensor ring factorization approach
to compress deep neural networks for resource-limited de-
vices. This is inspired by previous work that has shown ten-
sor rings to have high representative power in image com-
pletion tasks. Our results show significant compressibility
using this technique, with little or no hit in performance on
benchmark image classification tasks.

One area for future work is the reduction of computa-
tional complexity. Because of the repeated reshaping needs

in both fully connected and convolutional layers, there is
computational overhead, especially when r is moderately
large. This tradeoff is reasonable, considering our consid-
erable compressibility gains, and is appropriate in memory-
limited applications, especially if training is offloaded to the
cloud. Additionally, we believe that the actual wall-clock-
time will decrease as tensor-specific hardware and low-level
routines continue to develop—we observe, for example, that
numpy’s dot function is considerably more optimized than
Tensorflow’s tensordot. Overall, we believe this is a
promising compression scheme and can open doors to using
deep learning in a much more ubiquitous computing envi-
ronment.
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