
Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs

Xiaolong Wang∗ Yufei Ye∗ Abhinav Gupta

The Robotics Institute, Carnegie Mellon University

Abstract

We consider the problem of zero-shot recognition: learn-

ing a visual classifier for a category with zero training ex-

amples, just using the word embedding of the category and

its relationship to other categories, which visual data are

provided. The key to dealing with the unfamiliar or novel

category is to transfer knowledge obtained from familiar

classes to describe the unfamiliar class. In this paper, we

build upon the recently introduced Graph Convolutional

Network (GCN) and propose an approach that uses both

semantic embeddings and the categorical relationships to

predict the classifiers. Given a learned knowledge graph

(KG), our approach takes as input semantic embeddings for

each node (representing visual category). After a series of

graph convolutions, we predict the visual classifier for each

category. During training, the visual classifiers for a few

categories are given to learn the GCN parameters. At test

time, these filters are used to predict the visual classifiers of

unseen categories. We show that our approach is robust to

noise in the KG. More importantly, our approach provides

significant improvement in performance compared to the cur-

rent state-of-the-art results (from 2 ∼ 3% on some metrics

to whopping 20% on a few).

1. Introduction

Consider the animal category “okapi”. Even though we

might have never heard of this category or seen visual ex-

amples in the past, we can still learn a good visual classi-

fier based on the following description: ”zebra-striped four

legged animal with a brown torso and a deer-like face” (Test

yourself on figure 1). On the other hand, our current recogni-

tion algorithms still operate in closed world conditions: that

is, they can only recognize the categories they are trained

with. Adding a new category requires collecting thousands

of training examples and then retraining the classifiers. To

tackle this problem, zero-shot learning is often used.

The key to dealing with the unfamiliar or novel category

is to transfer knowledge obtained from familiar classes to de-

scribe the unfamiliar classes (generalization). There are two

∗Indicates equal contribution.

Figure 1. Can you find “okapi” in these images? Okapi is ” zebra-

striped four legged animal with a brown torso and a deer-like

face”. In this paper, we focus on the problem of zero-shot learning

where visual classifiers are learned from semantic embeddings and

relationships to other categories.

paradigms of transferring knowledge. The first paradigm

is to use implicit knowledge representations, i.e. semantic

embeddings. In this approach, one learns a vector represen-

tation of different categories using text data and then learns

a mapping between the vector representation to visual clas-

sifier directly [34, 13]. However, these methods are limited

by the generalization power of the semantic models and the

mapping models themselves. It is also hard to learn semantic

embeddings from structured information.

The alternative and less-explored paradigm for zero-shot

learning is to use explicit knowledge bases or knowledge

graphs. In this paradigm, one explicitly represents the knowl-

edge as rules or relationships between objects. These rela-

tionships can then be used to learn zero-shot classifiers for

new categories. The simplest example would be to learn

visual classifiers of compositional categories. Given clas-

sifiers of primitive visual concepts as inputs, [33] applies

a simple composition rule to generate classifiers for new

complex concepts. However, in the general form, the rela-

tionships can be more complex than simple compositionality.

An interesting question we want to explore is if we can use

structured information and complex relationships to learn

visual classifiers without seeing any examples.

In this paper, we propose to distill both the implicit knowl-

edge representations (i.e. word embedding) and explicit

relationships (i.e. knowledge graph) for learning visual clas-

sifiers of novel classes. We build a knowledge graph where

each node corresponds to a semantic category. These nodes

are linked via relationship edges. The input to each node of

the graph is the vector representation (semantic embedding)

of each category. We then use Graph Convolutional Network

16857



(GCN) [22] to transfer information (message-passing) be-

tween different categories. Specifically, we train a 6-layer

deep GCN that outputs the classifiers of different categories.

We focus on the task of image classification. We consider

both of the test settings: (a) final test classes being only zero-

shot classes (without training classes at test time); (b) at test

time the labels can be either the seen or the unseen classes,

namely “generalized zero-shot setting” [16, 6, 50]. We

show surprisingly powerful results and huge improvements

over classical baselines such as DeVise [13] , ConSE [34]

,and current state-of-the-art [5]. For example, on standard

ImageNet with 2-hop setting, 43.7% of the images retrieved

by [5] in top-10 are correct. Our approach retrieves 62.4%
images correctly. That is a whopping 18.7% improvement

over the current state-of-the-art. More interestingly, we

show that our approach scales amazingly well and giving

a significant improvement as we increase the size of the

knowledge graph even if the graph is noisy.

2. Related Work

With recent success of large-scale recognition sys-

tems [45], the focus has now shifted to scaling these sys-

tems in terms of categories. As more realistic and practical

settings are considered, the need for zero-shot recognition

– training visual classifiers without any examples – has in-

creased. Specifically, the problem of mapping text to visual

classifiers is very interesting.

Early work on zero-shot learning used attributes [11,

24, 19] to represent categories as vector indicating pres-

ence/absence of attributes. This vector representation can

then be mapped to learn visual classifiers. Instead of using

manually defined attribute-class relationships, Rohrbach et

al. [40, 38] mined these associations from different internet

sources. Akata et al. [1] used attributes as side-information to

learn a semantic embedding which helps in zero-shot recog-

nition. Recently, there have been approaches such as [37]

which trys to match Wikipedia text to images by modeling

noise in the text description.

With the advancement of deep learning, most recent ap-

proaches can be mapped into two main research directions.

The first approach is to use semantic embeddings (implicit

representations). The core idea is to represent each category

with learned vector representations that can be mapped to

visual classifiers [48, 44, 13, 41, 25, 15, 14, 18, 23, 4, 5, 55,

54]. Socher et al. [44] proposed training two different neural

networks for image and language in an unsupervised manner,

and then learning a linear mapping between image repre-

sentations and word embeddings. Motivated by this work,

Frome et al. [13] proposed a system called DeViSE to train a

mapping from image to word embeddings using a ConvNet

and a transformation layer. By using the predicted embed-

ding to perform nearest neighbor search, DeViSE scales up

the zero-shot recognition to thousands of classes. Instead of

training a ConvNet to predict the word embedding directly,

Norouzi et al. [34] proposed another system named ConSE

which constructs the image embedding by combining an

existing image classification ConvNet and word embedding

model. Recently, Changpinyo et al [4] proposed an approach

to align semantic and visual manifolds via use of ‘phantom’

classes. They report state-of-the-art results on ImageNet

dataset using this approach. One strong shortcoming of

these approaches is they do not use any explicit relation-

ships between classes but rather use semantic-embeddings

to represent relationships.

The second popular way to distill the knowledge is to

use knowledge graph (explicit knowledge representations).

Researchers have proposed several approaches on how to

use knowledge graphs for object recognition [12, 43, 30, 35,

39, 9, 8, 29, 49, 47, 26]. For example, Salakhutdinov et

al. [43] used WordNet to share the representations among

different object classifiers so that objects with few training

examples can borrow statistical strength from related objects.

On the other hand, the knowledge graph can also be used to

model the mutual exclusion among different classes. Deng

et al. [9] applied these exclusion rules as a constraint in the

loss for training object classifiers (e.g. an object will not be

a dog and a cat at the same time). They have also shown

zero-shot applications by adding object-attribute relations

into the graph. In contrast to these methods of using graph as

constraints, our approach used the graph to directly generate

novel object classifiers [33, 10, 2].

In our work, we propose to distill information both via

semantic embeddings and knowledge graphs. Specifically,

given a word embedding of an unseen category and the

knowledge graph that encodes explicit relationships, our ap-

proach predicts the visual classifiers of unseen categories. To

model the knowledge graph, our work builds upon the Graph

Convolutional Networks [22]. It was originally proposed for

semi-supervised learning in language processing. We extend

it to our zero-short learning problem by changing the model

architecture and training loss.

3. Approach

Our goal is to distill information from both implicit (word-

embeddings) and explicit (knowledge-graph) representations

for zero-shot recognition. But what is the right way to extract

information? We build upon the recent work on Graph Con-

volutional Network (GCN) [22] to learn visual classifiers. In

the following, we will first introduce how the GCN is applied

in natural language processing for classification tasks, and

then we will go into details about our approach: applying

the GCN with a regression loss for zero-shot learning.

3.1. Preliminaries: Graph Convolutional Network

Graph Convolutional Network (GCN) was introduced

in [22] to perform semi-supervised entity classification.

26858



�"

�#

�$

�
�$

�("

�(#

�($

�

�$(�×�$)

Conv.

�.(�./$×�)

Conv.

⋯

�"

�#

Inputs: Word Embeddings �

(� dimensions )
Outputs: Object classifiers �3

(� dimensions )

Hidden states

(�$ dimensions)

Figure 2. An example of our Graph Convolutional Network. It takes word embeddings as inputs and outputs the object classifiers. The

supervision comes from the ground-truth classifiers w2 and w3 highlighted by green. During testing, we input the same word embeddings

and obtain classifier for x1 as ŵ1. This classifier will be multiplied with the image features to produce classification scores.

Given object entities, represented by word embeddings or

text features, the task is to perform classification. For ex-

ample, entities such as “dog” and “cat” will be labeled as

“mammal”; “chair” and “couch” will be labeled “furniture”.

We also assume that there is a graph where nodes are entities

and the edges represent relationships between entities.

Formally, given a dataset with n entities (X,Y ) =
{(xi, yi)}

n

i=1
where xi represents the word embedding for

entity i and yi ∈ {1, ..., C} represents its label. In semi-

supervised setting, we know the ground-truth labels for the

first m entities. Our goal is to infer yi for the remaining

n − m entities, which do not have labels, using the word

embedding and the relationship graph. In the relationship

graph, each node is an entity and two nodes are linked if they

have a relationship in between.

We use a function F (·) to represent the Graph Convolu-

tional Network. It takes all the entity word embeddings X

as inputs at one time and outputs the SoftMax classification

results for all of them as F (X). For simplicity, we denote

the output for the ith entity as Fi(X), which is a C dimen-

sion SoftMax probability vector. In training time, we apply

the SoftMax loss on the first m entities, which have labels as

1

m

m∑

i=1

Lsoftmax(Fi(X), yi). (1)

The weights of F (·) are trained via back-propagation with

this loss. During testing time, we use the learned weights

to obtain the labels for the n −m entities with Fi(X), i ∈
{m+ 1, ..., n}.

Unlike standard convolutions that operate on local region

in an image, in GCN the convolutional operations compute

the response at a node based on the neighboring nodes de-

fined by the adjacency graph. Mathematically, the convo-

lutional operations for each layer in the network F (·) is

represented as

Z = ÂX ′W (2)

where Â is a normalized version of the binary adjacency

matrix A of the graph, with n × n dimensions. X ′ is the

input n × k feature matrix from the former layer. W is

the weight matrix of the layer with dimension k × c, where

c is the output channel number. Therefore, the input to a

convolutional layer is n× k ,and the output is a n× c matrix

Z. These convolution operations can be stacked one after

another. A non-linear operation (ReLU) is also applied after

each convolutional layer before the features are forwarded to

the next layer. For the final convolutional layer, the number

of output channels is the number of label classes (c = C).

For more details, please refer to [22].

3.2. GCN for Zeroshot Learning

Our model builds upon the Graph Convolutional Network.

However, instead of entity classification, we apply it to the

zero-shot recognition with a regression loss. The input of our

framework is the set of categories and their corresponding

semantic-embedding vectors (represented by X = {xi}
n

i=1
).

For the output, we want to predict the visual classifier for

each input category (represented by W = {wi}
n

i=1
).

Specifically, the visual classifier we want the GCN to

predict is a logistic regression model on the fixed pre-trained

ConvNet features. If the dimensionality of visual-feature

vector is D, each classifier wi for category i is also a D-

dimensional vector. Thus the output of each node in the

GCN is D dimensions, instead of C dimensions. In the

zero-shot setting, we assume that the first m categories in

the total n classes have enough visual examples to estimate

their weight vectors. For the remaining n−m categories, we

want to estimate their corresponding weight vectors given

their embedding vectors as inputs.

One way is to train a neural network (multi-layer percep-

tron) which takes xi as an input and learns to predict wi as

an output. The parameters of the network can be estimated

using m training pairs. However, generally m is small (in

the order of a few hundreds) and therefore, we want to use

the explicit structure of the visual world or the relationships

between categories to constrain the problem. We represent

36859



these relationships as the knowledge-graph (KG). Each node

in the KG represents a semantic category. Since we have a

total of n categories, there are n nodes in the graph. Two

nodes are linked to each other if there is a relationship be-

tween them. The graph structure is represented by the n× n

adjacency matrix, A. Instead of building a bipartite graph

as [22, 52], we replace all directed edges in the KG by undi-

rected edges, which leads to a symmetric adjacency matrix.

As Fig. 2 shows, we use a 6-layer GCN where each layer

l takes as input the feature representation from previous layer

(Zl−1) and outputs a new feature representation (Zl). For

the first layer the input is X which is an n× k matrix (k is

the dimensionality of the word-embedding vector). For the

final-layer the output feature-vector is Ŵ which has the size

of n × D; D being the dimensionality of the classifier or

visual feature vector.

Loss-function: For the first m categories, we have predicted

classifier weights Ŵ1...m and ground-truth classifier weights

learned from training images W1...m. We use the mean-

square error as the loss function between the predicted and

the ground truth classifiers.

1

m

m∑

i=1

Lmse(ŵi, wi). (3)

During training, we use the loss from the m seen cate-

gories to estimate the parameters for the GCN. Using the

estimated parameters, we obtain the classifier weights for

the zero-shot categories. At test time, we first extract the

image feature representations via the pre-trained ConvNet

and use these generated classifiers to perform classification

on the extracted features.

3.3. Implementation Details

Our GCN is composed of 6 convolutional layers with out-

put channel numbers as 2048 → 2048 → 1024 → 1024 →
512 → D, where D represents the dimension of the object

classifier. Unlike the 2-layer network presented in [22], our

network is much deeper. As shown in ablative studies, we

find that making the network deep is essential in generat-

ing the classifier weights. For activation functions, instead

of using ReLU after each convolutional layer, we apply

LeakyReLU [27, 51] with the negative slope of 0.2. Empiri-

cally, we find that LeakyReLU leads to faster convergence

for our regression problem.

While training our GCN, we perform L2-Normalization

on the outputs of the networks and the ground-truth clas-

sifiers. During testing, the generated classifiers of unseen

classes are also L2-Normalized. We find adding this con-

straint important, as it regularizes the weights of all the

classifiers into similar magnitudes. In practice, we also find

that the last layer classifiers of the ImageNet pre-trained

networks are naturally normalized. That is, if we perform

L2-Normalization on each of the last layer classifiers during

testing, the performance on the ImageNet 2012 1K-class

validation set changes marginally (< 1%).

To obtain the word embeddings for GCN inputs, we use

the GloVe text model [36] trained on the Wikipedia dataset,

which leads to 300-d vectors. For the classes whose names

contain multiple words, we match all the words in the trained

model and find their embeddings. By averaging these word

embeddings, we obtain the class embedding.

4. Experiment

We now perform experiments to showcase that our ap-

proach: (a) improves the state-of-the-art by a significant

margin; (b) is robust to different pre-trained ConvNets and

noise in the KG. We use two datasets in our experiments. The

first dataset we use is constructed from publicly-available

knowledge bases. The dataset consists of relationships and

graph from Never-Ending Language Learning (NELL) [3]

and images from Never-Ending Image Learning (NEIL) [8].

This is an ideal dataset for: (a) demonstrating that our ap-

proach is robust even with automatically learned (and noisy)

KG; (b) ablative studies since the KG in this domain is rich,

and we can perform ablations on KG as well.

Our final experiments are shown on the standard Ima-

geNet dataset. We use the same settings as the baseline ap-

proaches [13, 34, 4] together with the WordNet [32] knowl-

edge graph. We show that our approach surpasses the state-

of-the-art methods by a significant margin.

4.1. Experiments on NELL and NEIL

Dataset settings. For this experiment, we construct a new

knowledge graph based on the NELL [3] and NEIL [8]

datasets. Specifically, the object nodes in NEIL correspond

to the nodes in NELL. The NEIL dataset offers the sources

of images and the NELL dataset offers the common sense

knowledge rules. However, the NELL graph is incredibly

large 1: it contains roughly 1.7M types of object entities and

around 2.4M edges representing the relationships between

every two objects. Furthermore, since NELL is constructed

automatically, there are noisy edges in the graph. Therefore,

we create sub-graphs for our experiments.

The process of constructing this sub-graph is straightfor-

ward. We perform Breadth-first search (BFS) starting from

the NEIL nodes. We discover paths with maximum length

K hops such that the first and last node in the path are NEIL

nodes. We add all the nodes and edges in these paths into our

sub-graph. We set K = 7 during BFS because we discover

a path longer than 7 hops will cause the connection between

two objects noisy and unreasonable. For example, “jeep”

can be connected to “deer” in a long path but they are hardly

semantically related.

Note that each edge in NELL has a confidence value that

is usually larger than 0.9. For our experiments, we create two

1http://rtw.ml.cmu.edu/

46860



All NEIL Nodes

Dataset Nodes (Train/Test) Edges

High Value Edges 8819 431/88 40810

All Edges 14612 616/88 96772

Table 1. Dataset Statistics: Two different sizes of knowledge graphs

in our experiment.

different versions of sub-graphs. The first smaller version is

a graph with high value edges (larger than 0.999), and the

second one used all the edges regardless of their confidence

values. The statistics of the two sub-graphs are summarized

in Table 1. For the larger sub-graph, we have 14K object

nodes. Among these nodes, 704 of them have corresponding

images in the NEIL database. We use 616 classes for training

our GCN and leave 88 classes for testing. Note that these

88 testing classes are randomly selected among the classes

that have no overlap with the 1000 classes in the standard

ImageNet classification dataset. The smaller knowledge

graph is around half the size of the larger one. We use the

same 88 testing classes in both settings

Training details. For training the ConvNet on NEIL images,

we use the 310K images associated with the 616 training

classes. The evaluation is performed on the randomly se-

lected 12K images associated with the 88 testing classes,

i.e. all images from the training classes are excluded during

testing. We fine-tune the ImageNet pre-trained VGGM [7]

network architecture with relatively small fc7 outputs (128-

dimension). Thus the object classifier dimension in fc8 is

128. For training our GCN, we use the ADAM [21] opti-

mizer with learning rate 0.001 and weight decay 0.0005. We

train our GCN for 300 epochs for every experiment.

Baseline method. We compare our method with one of the

state-of-the-art methods, ConSE [34], which shows slightly

better performance than DeViSE [13] in ImageNet. As a

brief introduction, ConSE first feedforwards the test image

into a ConvNet that is trained only on the training classes.

With the output probabilities, ConSE selects top T predic-

tions {pi}
T

i=1
and the word embeddings {xi}

T

i=1
[31] of

these classes. It then generates a new word embedding by

weighted averaging the T embeddings with the probability
1

T

∑
T

i=1
pixi. This new embedding is applied to perform

nearest neighbors in the word embeddings of the testing

classes. The top retrieved classes are selected as the final

result. We enumerate different values of T for evaluations.

Quantitative Results. We perform evaluations on the task

of 88 unseen categories classification. Our metric is based

on the percentage of correctly retrieved test data (out of top k

retrievals) for a given zero-shot class. The results are shown

in Table 2. We evaluate our method on two different sizes

of knowledge graphs. We use “High Value Edges” to denote

the knowledge graph constructed based on high confidence

edges. “All Edges” represents the graph constructed with all

the edges. We denote the baseline [34] as “ConSE(T)” where

Hit@k (%)

Test Set Model 1 2 5 10

High Value

ConSE(5) 6.6 9.6 13.6 19.4

Edges

ConSE(10) 7.0 9.8 14.2 20.1

ConSE(431) 6.7 9.7 14.9 20.5

Ours 9.1 16.8 23.2 47.9

All Edges

ConSE(5) 7.7 10.1 13.9 19.5

ConSE(10) 7.7 10.4 14.7 20.5

ConSE(616) 7.7 10.5 15.7 21.4

Ours 10.8 18.4 33.7 49.0

Table 2. Top-k accuracy for different models in different settings.

Figure 3. We randomly drop 5% to 50% of the edges in the “All

Edges” graph and show the top-1, top-5 and top-10 accuracies.

we set T to be 5, 10 and the number of training classes.

Our method outperforms the ConSE baseline by a large

margin. In the “All Edges” dataset, our method outperforms

ConSE 3.6% in top-1 accuracy. More impressively, the ac-

curacy of our method is almost 2 times as that of ConSE

in top-2 metric and even more than 2 times in top-5 and

top-10 accuracies. These results show that using knowl-

edge graph with word embeddings in our method leads to

much better result than the state-of-the-art results with word

embeddings only.

From small to larger graph. In addition to improving per-

formance in zero-shot recognition, our method obtains more

performance gain as our graph size increases. As shown in

Table 2, our method performs better by switching from the

small to larger graph. Our approach has obtained 2 ∼ 3% im-

provements in all the metrics. On the other hand, there is lit-

tle to no improvements in ConSE performance. It also shows

that the KG does not need to be hand-crafted or cleaned. Our

approach is able to robustly handle the errors in the graph

structure.

Resilience to Missing Edges We explore how the perfor-

mance of our model changes if we randomly drop 5% to

50% of the edges in the “All Edges” graph. As Fig. 3 shows,

by dropping from 5% to 10% of edges, the performance of

our model changes negligibly. This is mainly because the

56861



Figure 4. We compute the minimum Euclidean distances between

predicted and training classifiers. The distances are plotted by

sorting them from small to large.

knowledge graph can have redundant information with 14K

nodes and 97K edges connecting them. This again implies

that our model is robust to small noisy changes in the graph.

As we start deleting more than 30% of the edges, the accura-

cies drop drastically. This indicates that the performance of

our model is highly correlated to the size of the knowledge

graph.

Random Graph? It is clear that our approach can handle

noise in the graph. But does any random graph work? To

demonstrate that the structure of the graph is still critical

we also created some trivial graphs: (i) star model: we

create a graph with one single root node and only have edges

connecting object nodes to the root node; (ii) random graph:

all nodes in the graph are randomly connected. Table 3

shows the results. It is clear that all the numbers are close to

random guessing, which means a reasonable graph plays an

important role and a random graph can have negative effects

on the model.

Hit@k (%)

Test Set Trivial KG 1 2 5 10

All Edges

Star Model 1.1 1.6 4.8 9.7

Random Graph 1.0 2.2 5.6 11.3

Table 3. Top-k accuracy on trivial knowledge graphs we create.

How important is the depth of GCN? We show that mak-

ing the Graph Convolutional Network deep is critical in our

problem. We show the performance of using different num-

bers of layers for our model on the “All Edges” knowledge

graph shown in Table 4. For the 2-layer model we use 512
hidden neurons, and the 4-layer model has output channel

numbers as 2048 → 1024 → 512 → 128. We show that

the performance keeps increasing as we make the model

deeper from 2-layer to 6-layer. The reason is that increasing

the times of convolutions is essentially increasing the times

of message passing between nodes in the graph. However,

we do not observe much gain by adding more layers above

Hit@k (%)

Test Set Model 1 2 5 10

All Edges

Ours (2-layer) 5.3 8.7 15.5 24.3

Ours (4-layer) 8.2 13.5 27.1 41.8

Ours (6-layer) 10.8 18.4 33.7 49.0

Table 4. Top-k accuracy with different depths of our model.

the 6-layer model. One potential reason might be that the

optimization becomes harder as the network goes deeper.

Is our network just copying classifiers as outputs? Even

though we show our method is better than ConSE baseline, is

it possible that it learns to selectively copy the nearby classi-

fiers? To show our method is not learning this trivial solution,

we compute the Euclidean distance between our generated

classifiers and the training classifiers. More specifically, for

a generated classifier, we compare it with the classifiers from

the training classes that are at most 3-hops away. We calcu-

late the minimum distance between each generated classifier

and its neighbors. We sort the distances for all 88 classi-

fiers and plot Fig. 4. As for reference, the distance between

“wooden spoon” and “spoon” classifiers in the training set is

0.26 and the distance between “wooden spoon” and “opti-

mus prime” is 0.78. We can see that our predicted classifiers

Figure 5. t-SNE visualizations for our word embeddings and GCN

output visual classifiers in the “All Edges” dataset. The test classes

are shown in red.

66862



Hit@k (%)

Test Set Model ConvNets 1 2 5 10 20

2-hops

ConSE [4] Inception-v1 8.3 12.9 21.8 30.9 41.7

ConSE(us) Inception-v1 12.4 18.4 25.3 28.5 31.8

SYNC [4] Inception-v1 10.5 17.7 28.6 40.1 52.0

EXEM [5] Inception-v1 12.5 19.5 32.3 43.7 55.2

Ours Inception-v1 18.5 31.3 50.1 62.4 72.0

Ours ResNet-50 19.8 33.3 53.2 65.4 74.6

3-hops

ConSE [4] Inception-v1 2.6 4.1 7.3 11.1 16.4

ConSE(us) Inception-v1 3.2 4.9 7.6 9.7 11.4

SYNC [4] Inception-v1 2.9 4.9 9.2 14.2 20.9

EXEM [5] Inception-v1 3.6 5.9 10.7 16.1 23.1

Ours Inception-v1 3.8 6.9 13.1 18.8 26.0

Ours ResNet-50 4.1 7.5 14.2 20.2 27.7

All

ConSE [4] Inception-v1 1.3 2.1 3.8 5.8 8.7

ConSE(us) Inception-v1 1.5 2.2 3.6 4.6 5.7

SYNC [4] Inception-v1 1.4 2.4 4.5 7.1 10.9

EXEM [5] Inception-v1 1.8 2.9 5.3 8.2 12.2

Ours Inception-v1 1.7 3.0 5.8 8.4 11.8

Ours ResNet-50 1.8 3.3 6.3 9.1 12.7

(a) Top-k accuracy for different models when testing on only unseen

classes.

Hit@k (%)

Test Set Model ConvNets 1 2 5 10 20

2-hops

DeViSE [13] AlexNet 0.8 2.7 7.9 14.2 22.7

(+1K)

ConSE [34] AlexNet 0.3 6.2 17.0 24.9 33.5

ConSE(us) Inception-v1 0.2 7.8 18.1 22.8 26.4

ConSE(us) ResNet-50 0.1 11.2 24.3 29.1 32.7

Ours Inception-v1 7.9 18.6 39.4 53.8 65.3

Ours ResNet-50 9.7 20.4 42.6 57.0 68.2

3-hops

DeViSE [13] AlexNet 0.5 1.4 3.4 5.9 9.7

(+1K)

ConSE [34] AlexNet 0.2 2.2 5.9 9.7 14.3

ConSE(us) Inception-v1 0.2 2.8 6.5 8.9 10.9

ConSE(us) ResNet-50 0.2 3.2 7.3 10.0 12.2

Ours Inception-v1 1.9 4.6 10.9 16.7 24.0

Ours ResNet-50 2.2 5.1 11.9 18.0 25.6

All

DeViSE [13] AlexNet 0.3 0.8 1.9 3.2 5.3

(+1K)

ConSE [34] AlexNet 0.2 1.2 3.0 5.0 7.5

ConSE(us) Inception-v1 0.1 1.3 3.1 4.3 5.5

ConSE(us) ResNet-50 0.1 1.5 3.5 4.9 6.2

Ours Inception-v1 0.9 2.0 4.8 7.5 10.8

Ours ResNet-50 1.0 2.3 5.3 8.1 11.7

(b) Top-k accuracy for different models when testing on both seen and

unseen classes (a more practical and generalized setting).

Table 5. Results on ImageNet. We test our model on 2 different settings over 3 different datasets.

are quite different from its neighbors.

Are the outputs only relying on the word embeddings?

We perform t-SNE [28] visualizations to show that our out-

put classifiers are not just derived from the word embeddings.

We show the t-SNE [28] plots of both the word embeddings

and the classifiers of the seen and unseen classes in the “All

Edges” dataset. As Fig. 5 shows, we have very different clus-

tering results between the word embeddings and the object

classifiers, which indicates that our GCN is not just learning

a direct projection from word embeddings to classifiers.

4.2. Experiments on WordNet and ImageNet

We now perform our experiments on a much larger-scale

ImageNet [42] dataset. We adopt the same train/test split

settings as [13, 34]. More specifically, we report our results

on 3 different test datasets: “2-hops”, “3-hops” and the

whole “All” ImageNet set. These datasets are constructed

according to how similar the classes are related to the classes

in the ImageNet 2012 1K dataset. For example, “2-hops”

dataset (around 1.5K classes) includes the classes from the

ImageNet 2011 21K set which are semantically very similar

to the ImageNet 2012 1K classes. “3-hops” dataset (around

7.8K classes) includes the classes that are within 3 hops of

the ImageNet 2012 1K classes, and the “All” dataset includes

all the labels in ImageNet 2011 21K. There are no common

labels between the ImageNet 1K class and the classes in

these 3-dataset. It is also obvious to see that as the number

of class increases, the task becomes more challenging.

As for knowledge graph, we use the sub-graph of the

WordNet [32], which includes around 30K object nodes2.

Training details. Note that to perform testing on 3 differ-

2http://www.image-net.org/explore

ent test sets, we only need to train one set of ConvNet and

GCN. We use two different types of ConvNets as the base

network for computing visual features: Inception-v1 [46]

and ResNet-50 [17]. Both networks are pre-trained using

the ImageNet 2012 1K dataset and no fine-tuning is required.

For Inception-v1, the output feature of the second to the

last layer has 1024 dimensions, which leads to D = 1024
object classifiers in the last layer. For ResNet-50, we have

D = 2048. Except for the changes of output targets, other

settings of training GCN remain the same as those of the pre-

vious experiments on NELL and NEIL. It is worthy to note

that our GCN model is robust to different sizes of outputs.

The model shows consistently better results as the represen-

tation (features) improves from Inception-v1 (68.7% top-1

accuracy in ImageNet 1K val set) to ResNet-50 (75.3%).

We evaluate our method with the same metric as the

previous experiments: the percentage of hitting the ground-

truth labels among the top k predictions. However, instead

of only testing with the unseen object classifiers, we include

both training and the predicted classifiers during testing, as

suggested by [13, 34]. Note that in these two settings of

experiments, we still perform testing on the same set of

images associated with unseen classes only.

Testing without considering the training labels. We first

perform experiments excluding the classifiers belonging to

the training classes during testing. We report our results in

Table. 5a. We compare our results to the recent state-of-the-

art methods SYNC [4] and EXEM [5]. We show experiments

with the same pre-trained ConvNets (Inception-v1) as [4, 5].

Due to unavailability of their word embeddings for all the

nodes in KG, we use a different set of word embeddings

(GloVe) ,which is publicly available.

76863



Word Hit@k (%)

Model Embedding 1 2 5 10 20

[53] GloVe 7.8 11.5 17.2 21.2 25.6

Ours GloVe 18.5 31.3 50.1 62.4 72.0

[53] FastText 9.8 16.4 27.8 37.6 48.4

Ours FastText 18.7 30.8 49.6 62.0 71.5

[53] GoogleNews 13.0 20.6 33.5 44.1 55.2

Ours GoogleNews 18.3 31.6 51.1 63.4 73.0

Table 6. Results with different word embeddings on ImageNet (2

hops), corresponding to the experiments in Table 5a.

Therefore, we first investigate if the change of word-

embedding is crucial. We show this via the ConSE baseline.

Our re-implementation of ConSE, shown as “ConSE(us)”

in the table, uses the GloVe whereas the ConSE method

implemented in [4, 5] uses their own word embedding. We

see that both approaches have similar performance. Ours is

slightly better in top-1 accuracy while the one in [4, 5] is

better in top-20 accuracy. Thus, with respect to zero-shot

learning, both word-embeddings seem equally powerful.

We then compare our results with SYNC [4] and

EXEM [5]. With the same pre-trained ConvNet Inception-

v1, our method outperforms almost all the other methods on

all the datasets and metrics. On the “2-hops” dataset, our ap-

proach outperforms all methods with a large margin: around

6% on top-1 accuracy and 17% on top-5 accuracy. On the

“3-hops” dataset, our approach is consistently better than

EXEM [5] around 2 ∼ 3% from top-5 to top-20 metrics.

By replacing the Inception-v1 with the ResNet-50, we

obtain another performance boost in all metrics. For the

top-5 metric, our final model outperforms the state-of-the-art

method EXEM [5] by a whooping 20.9% in the “2-hops”

dataset, 3.5% in the “3-hops” dataset and 1% in the “All”

dataset. Note that the gain is diminishing because the task

increases in difficulty as the number of unseen classes in-

creases.

Sensitivity to word embeddings. Is our method sensitive

to word embeddings? What will happen if we use different

word embeddings as inputs? We investigate 3 different word

embeddings including GloVe [36] (which is used in the other

experiments in the paper), FastText [20] and word2vec [31]

trained with GoogleNews. As for comparisons, we have

also implemented the method in [53] which trains a direct

mapping from word embeddings to visual features without

knowledge graphs. We use the Inception-v1 ConvNet to ex-

tract visual features. We show the results on ImageNet (with

the 2-hops setting same as Table 5a). We can see that [53]

highly relies on the quality of the word embeddings (top-5

results range from 17.2% to 33.5%). On the other hand, our

top-5 results are stably around 50% and are much higher

than [53]. With the GloVe word embeddings, our approach

has a relative improvement of almost 200% over [53].

This again shows graph convolutions with knowledge graphs

Test Image ConSE (10) Ours

t) panthera tigris(train) 

tiger cat (train) 

felis onca (train) 

leopard (train) 

tiger shark (train)

tigress (test) 

bengal tiger (test) 

panthera tigris (train) 

tiger cub (test) 

tiger cat (train) 

n) 

est) 

rock beauty (train) 

ringlet (train) 

flagpole (train) 

large slipper (test) 

yellow slipper (train)

butterfly fish (test) 

rock beauty (train) 

damselfish (test) 

atoll (test) 

barrier reef (test) 

n) 

 

tractor (train) 

reaper (train) 

thresher (train) 

trailer truck (train) 

motortruck (test)

tracked vehicle (test) 

tractor (train) 

propelled vehicle (test) 

reaper (train) 

forklift (train)

Figure 6. Visualization of top 5 prediction results for 3 different

images. The correct prediction results are highlighted by red bold

characters. The unseen classes are marked with a red “test” in the

bracket. Previously seen classes have a plain “train” in the bracket.

play a significant role in improving zero-shot recognition.

Testing with the training classifiers. Following the sug-

gestions in [13, 34], a more practical setting for zero-shot

recognition is to include both seen and unseen category clas-

sifiers during testing. We test our method in this generalized

setting. Since there are very few baselines available for

this setting of experiment, we can only compare the results

with ConSE and DeViSE. We have also re-implemented the

ConSE baselines with both Inception-v1 and ResNet-50 pre-

trained networks. As Table 5b shows our method almost

doubles the performance compared to the baselines on ev-

ery metric and all 3-datasets. Moreover, we can still see

the boost in of performance by switching the pre-trained

Inception-v1 network to ResNet-50.

Visualizations. We finally perform visualizations using our

model and ConSE with T = 10 in Fig. 6 (Top-5 prediction

results). We can see that our method significantly outper-

forms ConSE(10) in these examples. Although ConSE(10)

still gives reasonable results in most cases, the output labels

are biased to be within the training labels. On the other hand,

our method outputs the unseen classes as well.

5. Conclusion
We have presented an approach for zero-shot recogni-

tion using the semantic embeddings of a category and the

knowledge graph that encodes the relationship of the novel

category to familiar categories. Our work also shows that a

knowledge graph provides supervision to learn meaningful

classifiers on top of semantic embeddings. Our results indi-

cate a significant improvement over current state-of-the-art.

Acknowledgement: This work was supported by ONR MURI

N000141612007, Sloan, Okawa Fellowship to AG and NVIDIA Fellowship

to XW. We would also like to thank Xinlei Chen, Senthil Purushwalkam,

Zhilin Yang and Abulhair Saparov for many helpful discussions.

86864



References

[1] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label

embedding for attribute-based classification. In CVPR, 2013.

2

[2] J. L. Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predict-

ing Deep Zero-Shot Convolutional Neural Networks using

Textual Descriptions. In ICCV, 2015. 2

[3] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr.,

and T. M. Mitchell. Toward an architecture for never-ending

language learning. In AAAI, 2010. 4

[4] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthesized

Classifiers for Zero-Shot Learning. In CVPR, 2016. 2, 4, 7, 8

[5] S. Changpinyo, W.-L. Chao, and F. Sha. Predicting Visual

Exemplars of Unseen Classes for Zero-Shot Learning. In

ICCV, 2017. 2, 7, 8

[6] W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An Empiri-

cal Study and Analysis of Generalized Zero-Shot Learning

for Object Recognition in the Wild. In ECCV, 2016. 2

[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convolu-

tional nets. In BMVC, 2014. 5

[8] X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting

visual knowledge from web data. ICCV, 2013. 2, 4

[9] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio,

Y. Li, H. Neven, and H. Adam. Large-Scale Object Classifi-

cation Using Label Relation Graphs. In ECCV, 2014. 2

[10] M. Elhoseiny, B. Saleh, and A. Elgammal. Write a Classifier:

Zero-Shot Learning Using Purely Textual Descriptions. In

ICCV, 2013. 2

[11] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing

objects by their attributes. In CVPR, 2009. 2

[12] R. Fergus, H. Bernal, Y. Weiss, and A. Torralba. Semantic

Label Sharing for Learning with Many Categories. In ECCV,

2010. 2

[13] A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean, and

T. Mikolov. Devise: A deep visual-semantic embedding

model. In NIPS, 2013. 1, 2, 4, 5, 7, 8

[14] Y. Fu and L. Sigal. Semi-supervised Vocabulary-informed

Learning. In CVPR, 2016. 2

[15] Z. Fu, T. Xiang, E. Kodirov, and S. Gong. Zero-Shot Object

Recognition by Semantic Manifold Distance. In CVPR, 2015.

2

[16] B. Hariharan and R. Girshick. Low-shot Visual Recognition

by Shrinking and Hallucinating Features. In CoRR, 2017. 2

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 7

[18] C. Huang, C. C. Loy, and X. Tang. Local similarity-aware

deep feature embedding. In NIPS, 2016. 2

[19] D. Jayaraman and K. Grauman. Zero-shot recognition with

unreliable attributes. In NIPS, pages 3464–3472, 2014. 2

[20] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou,

and T. Mikolov. Fasttext.zip: Compressing text classification

models. arXiv preprint arXiv:1612.03651, 2016. 8

[21] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. CoRR, abs/1412.6980, 2014. 5

[22] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. ICLR, 2017. 2, 3, 4

[23] E. Kodirov, T. Xiang, and S. Gong. Semantic Autoencoder

for Zero-Shot Learning. In CVPR, 2017. 2

[24] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning

to detect unseen object classes by between-class attribute

transfer. In CVPR, 2009. 2

[25] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-

Based Classification for Zero-Shot Visual Object Categoriza-

tion. In TPAMI, 2014. 2

[26] Y. Lu. Unsupervised learning on neural network outputs: with

application in zero-shot learning. In IJCAI, 2016. 2

[27] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlineari-

ties improve neural network acoustic models. In ICML, 2013.

4

[28] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9(Nov):2579–2605,

2008. 7

[29] K. Marino, R. Salakhutdinov, and A. Gupta. The More You

Know: Using Knowledge Graphs for Image Classification. In

CVPR, 2017. 2

[30] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric

Learning for Large Scale Image Classification: Generalizing

to New Classes at Near-Zero Cost. In ECCV, 2012. 2

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

estimation of word representations in vector space. ICLR,

2013. 5, 8

[32] G. A. Miller. Wordnet: a lexical database for english. Com-

munications of the ACM, 38(11):39–41, 1995. 4, 7

[33] I. Misra, A. Gupta, and M. Hebert. From Red Wine to Red

Tomato: Composition with Context. In CVPR, 2017. 1, 2

[34] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens,

A. Frome, G. S. Corrado, and J. Dean. Zero-shot learning by

convex combination of semantic embeddings. In ICLR, 2014.

1, 2, 4, 5, 7, 8

[35] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell.

Zero-shot Learning with Semantic Output Codes. In NIPS,

2009. 2

[36] J. Pennington, R. Socher, and C. D. Manning. Glove: Global

vectors for word representation. In EMNLP, pages 1532–

1543, 2014. 4, 8

[37] R. Qiao, L. Liu, C. Shen, and A. van den Hengel. Less is

more: zero-shot learning from online textual documents with

noise suppression. In CVPR, 2016. 2

[38] M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a

transductive setting. In NIPS, 2013. 2

[39] M. Rohrbach, M. Stark, and B. Schiele. Evaluating Knowl-

edge Transfer and Zero-Shot Learning in a Large-Scale Set-

ting. In CVPR, 2011. 2

[40] M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and

B. Schiele. What helps where - and why? semantic relat-

edness for knowledge transfer. In CVPR, 2010. 2

[41] B. Romera-Paredes and P. H. S. Torr. An embarrassingly

simple approach to zero-shot learning. In ICML, 2015. 2

[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge. IJCV,

115(3):211–252, 2015. 7

96865



[43] R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning

to Share Visual Appearance for Multiclass Object Detection.

In CVPR, 2011. 2

[44] R. Socher, M. Ganjoo, C. D. Manning, and A. Y. Ng. Zero-

Shot Learning Through Cross-Modal Transfer. In ICLR, 2013.

2

[45] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting

unreasonable effectiveness of data in deep learning era. In

ICCV, 2017. 2

[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going Deeper

with Convolutions. In CVPR, 2015. 7

[47] P. Wang, Q. Wu, C. Shen, A. van den Hengel, and A. Dick.

FVQA: Fact-based Visual Question Answering. In CoRR,

2016. 2

[48] J. Weston, S. Bengio, and N. Usunier. Large Scale Image

Annotation: Learning to Rank with Joint Word-Image Em-

beddings. In ECML, 2010. 2

[49] Q. Wu, P. Wang, C. Shen, A. Dick, and A. van den Hengel.

Ask me anything: Free-form visual question answering based

on knowledge from external sources. In CVPR, 2016. 2

[50] Y. Xian, B. Schiele, and Z. Akata. Zero-Shot Learning - The

Good, the Bad and the Ugly. In CVPR, 2017. 2

[51] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evalua-

tion of rectified activations in convolutional network. CoRR,

abs/1505.00853, 2015. 4

[52] Z. Yang, W. Cohen, and R. Salakhutdinov. Revisiting semi-

supervised learning with graph embeddings. In ICML, 2016.

4

[53] L. Zhang, T. Xiang, and S. Gong. Learning a deep embedding

model for zero-shot learning. In CVPR, 2017. 8

[54] Z. Zhang and V. Saligrama. Zero-shot learning via semantic

similarity embedding. In ICCV, 2015. 2

[55] Z. Zhang and V. Saligrama. Zero-shot learning via joint latent

similarity embedding. In CVPR, 2016. 2

106866


