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Abstract

This paper provides a very simple yet effective character-

level architecture for learning bidirectional retrieval mod-

els. Aligning multimodal content is particularly challeng-

ing considering the difficulty in finding semantic correspon-

dence between images and descriptions. We introduce an

efficient character-level inception module, designed to learn

textual semantic embeddings by convolving raw characters

in distinct granularity levels. Our approach is capable of

explicitly encoding hierarchical information from distinct

base-level representations (e.g., characters, words, and sen-

tences) into a shared multimodal space, where it maps

the semantic correspondence between images and descrip-

tions via a contrastive pairwise loss function that minimizes

order-violations. Models generated by our approach are far

more robust to input noise than state-of-the-art strategies

based on word-embeddings. Despite being conceptually

much simpler and requiring fewer parameters, our models

outperform the state-of-the-art approaches by 4.8% in the

task of description retrieval and 2.7% (absolute R@1 val-

ues) in the task of image retrieval in the popular MS COCO

retrieval dataset. We also show that our models present

solid performance for text classification, specially in mul-

tilingual and noisy domains.

1. Introduction

The problem that we address in this paper is bidirectional

retrieval, also regarded as multimodal content retrieval or

image-text alignment. In this scenario, the main target is to

retrieve content from a modality (e.g., image) given some

input content from another modality (e.g., textual descrip-

tion). Several important applications benefit from success-

ful retrieval strategies, such as image and video retrieval,

captioning [23, 30], and navigation for the blind.

State-of-the-art results for bidirectional retrieval [5,

10, 29, 31] are based on networks trained over word-

embeddings [20] that encode the sentences with either Re-

current Neural Networks (LSTMs [9], GRUs [3]) or with

handcrafted non-linear transformations such as Fisher vec-

tors [16]. Despite showing promising results, these strate-

gies present several drawbacks. First, they are costly due to

the need of training word-embeddings within a latent space

to capture semantic relationships among words. Second,

it takes a considerable amount of storage and memory for

dealing with these embeddings depending on the size of the

dictionary, in which often larger is better in terms of results.

We address those two problems by proposing an ap-

proach that does not rely on RNNs or handcrafted transfor-

mations over pre-trained word-embeddings. Our architec-

ture learns from scratch, in a character basis, how to retrieve

descriptions from images and images from descriptions, and

for that it relies exclusively on convolutional layers. It does

not make assumptions on specific templates, guidelines, or

previous knowledge since it learns everything from scratch

using the available training data.

Bearing in mind that bidirectional retrieval can be seen

as a special case of a single visual-semantic hierarchy over

words, sentences, and images, we employ a loss function

based on order embeddings [29], which are designed to

model the partial order structure of the visual-semantic hier-

archy existing in image descriptions. While typical strate-

gies for bidirectional retrieval rely on distance-preserving

strategies, our approach performs order-preserving opti-

mization, making the process of relating the naturally-

hierarchical concepts within descriptions much easier.

We perform thorough experiments in order to evaluate

multiple aspects of our architecture. In particular, we an-

alyze the impact of using (1) distinct number of filters;

(2) depth-wise convolutions; and (3) distinct latent embed-

ding size. Moreover, we measure the robustness of our ap-

proach to input noise. We compare our proposed architec-

ture with the current state-of-the-art approaches in the well-

known MS COCO [17] retrieval dataset, and we show that

it outperforms all other approaches while presenting a much

lighter and simpler retrieval architecture. Finally, we show

that our models perform well for text classification tasks.
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2. CHAIN-VSE

We propose a bidirectional retrieval architecture

that relies on novel inception-based [28] modules

named Character-level Inception for Visual-Semantic

Embeddings (CHAIN-VSE). These modules are designed

to understand descriptions directly from raw characters

(similarly to [4,35]), projecting the sentence semantics onto

a R
d representation that explicitly encodes information in

a hierarchical fashion for leveraging both fine-grained and

global-level features.

State-of-the-art approaches for multimodal align-

ment/retrieval are often based on word-embeddings and

either RNNs or handcrafted transformations for encoding

sentences. Such a strategy presents some drawbacks: (i) it

requires training word-embeddings and RNNs in very large

corpora (with millions or billions of words), consuming

a lot of time and demanding high computational power;

(ii) to encode a single word or sentence, it is necessary to

have at disposal the whole word-dictionary containing all

known words, largely increasing the memory requirements

to store all data; (iii) for multilingual or informal domains

such as tweets and search queries, the number of words in

the dictionary increases with the number of languages; (iv)

a preprocessing step is required for correcting typos and

standardizing the words.

The idea behind CHAIN-VSE is to replace both word-

embeddings and RNNs/handcrafted transformations by a

simple yet effective architecture that is exclusively based on

character-level convolutions. The advantage of using con-

volutions instead of RNNs is that one can use parallelism

for convolving temporal data, while in RNNs a given tem-

poral iteration depends on the previous one. This allows for

much faster computation, especially in GPUs. By employ-

ing a character-level textual representation instead of word-

level (as in [19]), we can build descriptions across several

languages with a small finite set of characters. With word-

embeddings, on the other hand, we would need to store

thousands or millions of word-vectors.

Our architectures depend on two main hyper-parameters:

p, that regulates the number of filters in the convolutional

layers, and d, which defines the latent-embedding size.

Next, we describe two main variations of our architecture,

namely CHAIN-VSE-[v1, v2].

2.1. CHAIN­VSE­v1

Figure 1 depicts the overall structure of the first version

of CHAIN-VSE. It consists of two inception modules [28]

for capturing distinct granularity levels of the original sen-

tence. The first module maps the binary character-level con-

tent from the sentences to a dense representation by con-

volving the characters with filter sizes f ∈ {7, 5, 3}, gener-

ating word-embedding-like vectors.

Input

Concat

Conv (3)

Conv (5)

Conv (7)

Global Pool

Conv (5)

Conv (7)

Global Pool

Pooling

Conv (7)

Global Pool

Conv (7)
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Concat

Figure 1. CHAIN-VSE-v1 module.

This dense representation is then fed to the second mod-

ule, which consists in using four independent convolutional

streams. The first stream comprises three convolutional lay-

ers with filter sizes f ∈ {7, 5, 3}, which are capable of

learning relationships among a reduced set of words, de-

pending on the word length. For instance, it could general-

ize trigram-like features. The second and fourth streams are

mostly responsible for understanding fine-grained informa-

tion (e.g., similar to bigrams and unigrams), being capable

of learning from single words and short character sequences

(e.g., :), : /, and goood). The third stream first performs an

average pooling that reduces by half the temporal dimen-

sion, and is thus designed to feature-wise average sequences

of characters, helping in exploiting the receptive field for

learning mid-term dependencies (see Figure 2). The final

layer of each convolutional stream within CHAIN-VSE-v1

performs a Max Global Pooling (often called max[average]-

over-time-pooling [13]) that summarizes the temporal di-

mension. Each vector is then concatenated for building the

final textual semantic representation. Finally, by adopting

an inception-like architecture, our models (with four convo-

lutional streams of 256 filters) present a reduced number of

parameters when compared to a similar network built over a

single convolutional stream of three layers with 1024 filters.

2.2. CHAIN­VSE­v2

We also designed lighter modules that are based on sep-

arable depth-wise convolutions. Figure 3 depicts an exam-

ple of a separable depth-wise convolutional layer being ap-

plied to bidimensional data such as character-based inputs.

This layer comprises two steps: (i) a separable convolution,

which processes each channel of the input data individu-

ally; and (ii) a regular convolution with filter size f = 1,
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T H E M A N I S R U N N I N

Pooling (5, 2)
RF = 5

Conv (7, 1)
RF = 17

G

Figure 2. Impact of the pooling layer (filter size of 5 and stride of

2) in the receptive field of a character-based textual representation.

For simplicity, we are ignoring the existence of the first inception

module.

which merges information across all features. By using this

particular strategy, one can basically halve the number of

parameters and floating-point operations. Note that this ar-

chitecture employs separable convolutions after the first in-

ception layer. Hence, convolutions applied directly to the

character-level input use filters 7× η, where η is the alpha-

bet size.

Figure 3. Illustration of a depth-wise separable convolution ap-

plied to a bidimensional input of size t × ft−1, where t denotes

the size of the temporal dimension (text length), and ft−1 is the

number of filters of the previous convolutional layer. The filter

length in the example is set to l = 5, as seen in the second convo-

lutional layers within CHAIN-VSE streams.

Formally, note that convolving a W × H input with a

filter P ×Q implies a complexity of O(W ×H × P ×Q).
When using a separable filter, the first-step complexity is

O(W ×H ×P ), while the second-step is O(W ×H ×Q),
resulting in a total complexity of O(W ×H × (P +Q)) or

O(W×H×P×2) if P = Q. Therefore, the computational

advantage in using separable filters against regular ones is

P ×Q/(P +Q). For a 7× 7 filter, it results in a theoretical

speed-up of 3.5. A final note regarding the use of separable

filters is that the application of 1 × 1 convolutions intro-

duce, per se, extra non-linearity to the model, eliminating

the need of additional activation functions. Nevertheless,

we notice that using Maxout over the feature maps lead to

far better performance.

2.3. Overall Architecture

We approximate two encoding functions, ft(T ) and

fi(I), whose goal is to project both description T and im-

age I into the same embedding space. In such a space,

correlated image-text pairs should be close to each other,

and the distance of non-correlated pairs should necessar-

ily be larger than the correlated ones. For the text encod-

ing function ft(T ), we make use of the CHAIN-VSE mod-

ules described in Sections 2.1 and 2.2. For the image en-

coding function fi(I), we extract image features from the

global layer of a ConvNet (VGG-19, Inception-ResNet-

v2 [IRv2], or ResNet-152) [8, 26, 27] pre-trained in the Im-

ageNet dataset [25]. Each image I is then represented by

c-long vectors, extracted using the 10-crop strategy. Re-

spectively, VGG-19, IRv2 and ResNet-152 present c =
4096, 1536, 2048. Let C(I) be features extracted from im-

age I by the convolutional neural network; images are pro-

jected onto the Rd
+ embedding-space based on a linear map-

ping:

fi(I) = |Wi · C(I)| (1)

where Wi ∈ Rd×c is a learned weight matrix and d is the

number of dimensions of the embedding space.

For embedding text, we use the proposed character-

based approach ft(·) with the two main variations previ-

ously discussed. Our models provide a l-long vector rep-

resentation that carries the textual semantic information,

where l depends on the number of filters used. For instance,

CHAIN-VSE-v1 (p = 1) produces a l = 1024 vector. Sim-

ilarly to fi(·), we linearly project such representation onto

Rd
+ by using a learned Wt ∈ Rd×l weight matrix.

Note that one of the best approaches for image-text

alignment [29] makes use of GRU networks fed with word-

embeddings, requiring ≈ 15M parameters for the word-

embeddings (considering 50, 000 words) and ≈ 5M param-

eters for the GRU itself. Our largest architecture contains

roughly the same amount of parameters, while the small-

est architecture contains only 1.5M parameters, which is

more than one order of magnitude lighter. Another top-

performing approach employs two-way nets [5], with fully-

connected layers that result in more than 100M total param-

eters, which also depends on pre-trained word-embeddings

and handcrafted nonlinear transformations.

2.4. Loss function

Let ft(T ) = m be the sentence embedding vector and

fi(I) = v be the image embedding. We first scale m and

v to have unit norm, so that the inner product of both re-

sults in the cosine distance. Instead of directly optimizing

the cosine distance as in [15], we follow [29] by optimiz-

ing the alignment preserving the order relationships among

the visual-semantic hierarchy, given that asymmetric dis-

tances are naturally more well-suited for image-sentence

alignment. Hence, we apply an order-violation constraint

by penalizing an ordered pair (x, y) of points in RN
+ :

s(x, y) = −|max{0, y − x}|2 (2)
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The order violation penalties are used as a similarity dis-

tance, and optimized by the following constrastive pairwise

ranking loss:

L =
∑

m

∑

k

max{0, α− s(m,v) + s(m,vk)}

+
∑

v

∑

k

max{0, α− s(v,m) + s(v,mk)} (3)

where mk and vk are the sentence and image contrastive

examples (i.e., uncorrelated). This loss function encourages

the similarity s(x, y) for proper image-text pairs to be larger

than the contrastive pairs by a margin of at least α.

3. Experimental Setup

3.1. Dataset

For analyzing the performance of our proposed ap-

proach, we make use of the Microsoft COCO dataset [17].

We have used the same data splits from [12]: 113,287 im-

ages for training, 5,000 images for validation, and 5,000

images for testing.

MS COCO has been extensively employed in the recent

years for image-text retrieval challenges. Note that, for the

5k images in the test set, there are three distinct evaluation

protocols employed by the research community, because the

test images were further divided into 5 folds of 1k images

each. Some studies present results on the entire test set of 5k
images, a protocol we refer to as COCO-5k; others present

results only for a subset of 1k images, which we refer to as

COCO-1k; finally, there are studies that present the average

result over the 5 folds, referred to as COCO-5cv.

3.2. Hyper­Parameters and Training Details

We choose hyper-parameters via non-exhaustive random

search based on the results over the validation data. We em-

ploy Adam for optimization, given its capacity in adjusting

per-weight learning rates during training. We use Adam’s

default initial learning rate of 1 × 10−3. In addition, we

found it was beneficial to reduce the learning rate by 10×
whenever the validation error plateaus. Inspired by [29], we

use a batch size of 128 (127 contrastive examples) and mar-

gin α = 0.05. Neither weight decay nor dropout were used,

since we believe the loss function itself is enough to regu-

larize the model by including several contrastive examples

that naturally inject some amount of noise during training.

The three convolutions in the first inception module

comprise 32 filters for all of our models. For the second

inception module, the width varies according to p. The de-

fault number of convolutional filters for each layer in the

second module is set to 256. This means that a network

with p = 1 has 256 filters in each convolutional layer, while

a network with p = 0.5 comprises layers with 128 filters. In

addition, the default size of the latent multimodal space is

set to d = 1024. We early-stop the training when the sum of

all metrics calculated in the validation data stops improving

for 10 consecutive epochs.

3.3. Evaluation Measures

For evaluating the results, we use the same measures as

those in [29]: R@K (reads “Recall at K”) is the percent-

age of queries in which the ground-truth term is one of the

first K retrieved results. The higher its value, the better. We

also show the results of Med r and Mean r, which repre-

sent respectively the median and mean of the ground-truth

ranking. Since they are ranking-based measures, the smaller

their values the better.

4. Experimental Analysis

In this section, we provide a thorough analysis of the

performance of our proposed approach. First, we analyze

the impact of different architectural choices for CHAIN-

VSE by looking exclusively to results on validation data.

Then, we compare our best approach with the state-of-the-

art in bidirectional retrieval (results over the test set).

4.1. Impact of p

We also analyze the impact of the hyper-parameter p
that regulates the width of the network. We vary p ∈
{0.5, 0.75, ..., 1.50}, allowing us to discover the minimum

number of neurons that are required for achieving good per-

formance. It is also useful for finding models that present a

good performance-complexity trade-off.

We report in Table 1 results for both CHAIN-VSE-v1

(top section) and CHAIN-VSE-v2 (bottom section). Both

architectures employ Maxout activations. Note that tradi-

tional approaches for separable convolutions make use of

linear layers (no activations), given that the single-sized

depth-wise convolution itself is responsible for increasing

the non-linearity of the model. Nevertheless, we achieved

top performance by using Maxout activations.

Table 1. Impact of p (width) in CHAIN-VSE. Bidirectional results

on MS COCO validation set.

Image to text Text to image

CHAIN-VSE (p) R@1 Mean r R@1 Mean r #Params Flops ×1010

v1 (0.50) 48.5 4.8 39.7 6.3 1.47M 4.55

v1 (0.75) 48.7 4.4 40.9 6.3 2.52M 8.43

v1 (1.00) 50.6 4.3 41.3 6.3 3.79M 13.41

v1 (1.25) 49.2 4.4 40.9 6.9 5.27M 19.48

v1 (1.50) 48.8 4.7 40.6 6.7 6.96M 26.64

v2 (0.50) 46.5 4.8 38.6 6.5 1.16M 2.93

v2 (0.75) 47.0 4.8 39.3 6.7 1.80M 4.75

v2 (1.00) 47.9 4.7 39.4 6.5 2.50M 6.83

v2 (1.25) 48.6 4.5 39.8 6.5 3.26M 9.15

v2 (1.50) 47.7 4.6 40.0 6.6 4.06M 11.73
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Figure 4. Values of R@1 during training. We compare the impact of latent embedding sizes d ∈ {24, 26, ..., 214}.

The use of separable convolutions does not seem to be

recommended for reaching top performance, though it be-

comes an interesting option when the goal is to gener-

ate faster and lighter models, requiring roughly half the

floating-point operations. Also note that using p = 0.75
leads to an ≈ 2% drop in terms of R@1, but also reducing

≈ 1.6× the required floating-point operations and requir-

ing 1.27M fewer parameters. Models with p = 0.5 perform

similarly to p = 0.75 while being much lighter.

4.2. Impact of the Latent Embedding Size

Our architecture for training both image and text en-

coders rely on the use of a contrastive loss function that

optimizes a metric so that correlated image-text pairs lie

close in a multimodal embedding space. As far as we know,

this is the first study to investigate the impact of the result-

ing multimodal embedding size. We trained several models

of CHAIN-VSE-v1 by varying d ∈ {24, 26, ..., 214}. The

training behavior can be observed in Figure 4, where we re-

port values of R@1 on the validation set across all training

epochs. For the text to image retrieval task, note that us-

ing d = 2048 leads to much better results than using the

default embedding size (1024). In addition, it seems that

d = 16384 brings little to no impact when compared to

d = 8192 for that same task, but it seems to definitely help

for the description retrieval. In a nutshell, we conclude that

suitable high-performing d values are 512 < d < 16384.

4.3. Robustness to Input Noise

Our models are built based on character-level inputs.

Theoretically, this strategy is much more robust to input

noise such as typos and prolonged words (e.g., thorought,

gooood). This advantage is inherent to the fact that us-

ing the atomic part of the sentence for learning semantics

makes it easier to learn syntactic and semantic similarities

across words. Note that input noise is challenging for word-

embedding-based approaches. For handling noise in those

approaches, we must implement ad-hoc strategies such as

dictionary look-ups to correct typos. This poses an unnec-

essary cost that can be avoided by character-based models.

For evaluating the robustness of our models to input

noise, we randomly change a given ratio of the descrip-

tion characters. We compute validation set results (R@1
and R@10) while varying the noise ratio in the interval

∈ {1%, 2%, 3%, ..., 25%}. We make sure that when the

noise ratio is set to >= 1% at least one character is changed

in the original description. This is necessary because MS

COCO dataset is mostly comprised of short descriptions.

Figure 5 confirms our hypothesis that character-level

models are far more robust to input noise. Our approach

only suffers a significant drop in R@10 when we set the

noise ratio to > 15% (i.e., 15% of the original text is ran-

domly changed). On the other hand, the word-embedding

based approach by Vendrov et al. [29] presents a dra-

matic drop of both evaluation measures even for very small

amounts of noise. This result was expected given that by

changing a single character, the word may not be found in

the trained word-embedding.

0.00 0.05 0.10 0.15 0.20 0.25
Input noise ratio

0

20

40

60

80

R@
k

Ours OE (Vendrov et al. 2016)

Figure 5. Analysis of performance given random input noise. Con-

tinuous lines depict R@10 values whereas dotted lines depict R@1

values.

4.4. CHAIN­VSE vs. State­of­the­art

For comparing our models with the state-of-the-art, we

selected those models from each CHAIN-VSE’s variation

that presented the best performance on validation data.

Our models are compared to the published state-of-the-
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Table 2. Bidirectional results on COCO-1k test set. Bold values indicate the current state-of-the-art results. Underlined values outperform

the best published results.

Image to text Text to image

Method ConvNet R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r

m-CNN (Ens) [19] VGG-19 42.80 - 84.10 2.00 - 32.60 - 82.80 3.00 -

UVS [15] VGG-19 43.40 - 85.80 2.00 - 31.00 - 79.90 3.00 -

Embedding Network [31] VGG-19 50.40 79.30 89.40 - - 39.80 75.30 86.80 2.00 -

sm-LSTM [10] VGG-19 52.40 81.70 90.80 1.00 - 38.60 73.40 84.60 2.00 -

2WayNet [5] VGG-19 55.80 - 75.20 - - 39.70 - 63.30 - -

Order (d=1024) VGG-19 47.80 81.60 91.30 2.00 4.90 39.40 75.70 87.00 2.00 7.20

Order (d=8192) VGG-19 52.00 82.30 92.20 1.00 4.60 41.30 76.40 87.60 2.00 6.90

Order (d=1024) IRv2 49.10 80.90 90.30 1.00 5.30 39.80 75.00 86.80 2.00 7.30

Order (d=8192) IRv2 50.60 81.80 90.80 1.00 4.60 40.10 75.90 87.50 2.00 6.90

CHAIN-VSE-v1 (d=1024, p=1) VGG-19 53.10 82.40 91.50 1.00 5.20 38.30 75.10 86.60 2.00 6.70

CHAIN-VSE-v1 (d=8192, p=1) VGG-19 54.00 83.70 91.80 1.00 5.00 40.30 76.40 87.80 2.00 6.10

CHAIN-VSE-v1 (d=1024, p=1) IRv2 52.50 84.40 92.50 1.00 4.00 41.10 77.80 89.90 2.00 5.90

CHAIN-VSE-v1 (d=8192, p=1) IRv2 55.80 87.00 94.90 1.00 3.40 42.60 79.20 90.40 2.00 5.40

RFF-Net [18] ResNet-152 56.40 85.30 91.50 - - 43.90 78.10 88.60 - -

Order (d=2084) ResNet-152 55.00 86.70 94.50 1.00 3.40 43.30 79.70 89.20 2.00 6.30

CHAIN-VSE-v1 (d=1024, p=1) ResNet-152 57.80 87.90 95.60 1.00 3.25 44.18 80.40 90.66 2.00 5.39

CHAIN-VSE-v1 (d=2048, p=1) ResNet-152 59.90 89.50 94.80 1.00 3.18 45.08 80.64 90.54 2.00 5.76

CHAIN-VSE-v1 (d=8192, p=1) ResNet-152 61.20 89.30 95.80 1.00 2.85 46.60 81.90 90.92 2.00 5.21

art approaches for multimodal retrieval, namely UVS [15],

DVSA [12], FV [16], m-CNN [19], Order-Embeddings

(OE) [29], Embedding Network [31], sm-LSTM [10],

2WayNet [5], SEAM-C [32], and RFF-Net [18]. For pro-

viding a fair comparison, we replicated the OE [29] results

using their own source code, both with their default param-

eters and also with varied latent embedding sizes.

Note that several baselines employ text representation

based on word-embeddings, which inflicts a minimum

memory cost of |V| × |D|, where V is the vocabulary that

contains all known words and D is the word-vector. For

instance, the vocabulary of the MS COCO dataset contains

roughly 50,000 words (as in [29]), which inflicts a mini-

mum cost of 50, 000 × 300 (assuming |D| = 300). On

the other hand, our approach is capable of fully learning

compact vectors for sentence encoding, not requiring pre-

trained dictionary-based vectors nor handcrafted transfor-

mations. Note that our approach presents a constant data

cost that is related to the alphabet size alone, i.e., it is in-

dependent of the number of words, which is an interesting

property especially for multilingual learning (see Section 5

for results in multilingual and noisy data learning).

Table 2 presents results for the best selected versions

of CHAIN-VSE alongside the state-of-the-art approaches

when considering COCO-1k. Note that CHAIN-VSE’s ver-

sion using ResNet-152, d = 8192, and p = 1 establishes it-

self as the new state-of-the-art for both description and im-

age retrieval tasks, outperforming RFF-Net by ≈ 6.1% for

image-to-text task in absolute R@1 values. Whereas using a

better ConvNet definitely helps in achieving state-of-the-art

results, note that the versions of CHAIN-VSE that employ

either a IRv2 or a VGG-19 also outperform all baselines

for all evaluation measures and retrieval tasks, with the ex-

ception of R@1 in the description retrieval task, where it

is outperformed by 2WayNet (with a VGG-19). However,

note that 2WayNet performs poorly regarding R@10, and

that all versions of CHAIN-VSE are far superior in the im-

age retrieval task. In addition, CHAIN-VSE is about two

orders of magnitude lighter than 2WayNet.

In Table 3, we present results for the best selected ver-

sions of CHAIN-VSE along OE [29] (and its modified ver-

sions), OECC [34], and SEAM-C [32], since those stud-

ies explicitly provide average results on COCO-5cv. Once

again CHAIN-VSE (d ∈ {4096, 8192}), provides superior

results for all evaluation measures and retrieval tasks re-

gardless of the ConvNet it uses.

For better visualizing the trade-off between model com-

plexity and predictive performance of CHAIN-VSE, we

present in Figure 6 the effect of varying the amount of pa-

rameters versus R@1, and how CHAIN-VSE compares to

OE [29] and Embedding Network [31], which are the two

baselines that present the smallest amount of parameters.

The ideal position is in the upper-left position (largest re-

call and smallest amount of parameters). For generating

this visualization, we computed the number of trainable pa-

rameters for each method. Note that the word-embeddings

are considered trainable parameters as well, considering all

hyper-parameters and settings defined in [29] and [31].

Note that our models in Figure 6 present fewer parame-

ters than the baselines. There are several models that are al-

most an order of magnitude lighter while presenting better

results for both tasks. Our models seem to respond much

better to larger embedding sizes than OE [29]. Moreover,

using features from IRv2 provides a large gain for CHAIN-

VSE, whereas that does not seem to be the case for OE.

Finally, 2WayNet [5] is not included in Figure 6 since it has

about two orders of magnitude more parameters than our

models.
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Table 3. Bidirectional results on COCO-5cv test set. Bold values indicate the current state-of-the-art results.

Image to text Text to image

Method ConvNet R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r

Order [29] VGG-19 46.70 - 88.90 2.00 - 37.90 - 85.90 2.00 -

OECC [34] VGG-19 47.20 78.60 88.90 2.00 5.60 37.50 74.60 87.00 2.00 7.30

SEAM-C [32] VGG-19 50.70 81.40 90.90 1.40 4.90 40.30 75.70 87.40 2.00 7.40

Order (d=1024) VGG-19 46.20 78.80 89.10 2.00 5.40 37.70 73.40 85.60 2.00 7.90

Order (d=4096) VGG-19 48.80 79.20 89.70 1.60 5.20 38.70 74.10 86.40 2.00 7.60

Order (d=8192) VGG-19 50.10 80.20 90.30 1.40 5.10 39.10 74.40 86.30 2.00 7.60

CHAIN-VSE-v1 (d=1024, p=1) VGG-19 49.50 80.80 90.00 1.60 5.30 36.80 73.60 85.90 2.00 7.30

CHAIN-VSE-v1 (d=4096, p=1) VGG-19 52.00 82.30 90.70 1.20 5.00 38.30 74.80 87.00 2.00 6.80

CHAIN-VSE-v1 (d=8192, p=1) VGG-19 51.60 82.00 91.30 1.20 4.70 38.60 75.10 87.20 2.00 6.70

OECC [34] IRv2 49.50 81.70 91.30 1.60 4.50 40.40 77.40 88.60 2.00 6.80

Order (d=1024) IRv2 47.30 78.60 88.70 1.80 5.50 37.70 73.10 85.50 2.00 7.80

Order (d=4096) IRv2 49.10 79.40 89.50 1.40 5.20 38.20 74.50 86.50 2.00 7.60

Order (d=8192) IRv2 50.20 79.50 89.20 1.20 5.30 38.20 74.20 86.30 2.00 7.40

CHAIN-VSE-v1 (d=1024, p=1) IRv2 50.50 83.60 92.20 1.60 4.30 39.00 76.20 88.10 2.00 6.80

CHAIN-VSE-v1 (d=4096, p=1) IRv2 52.80 84.40 92.60 1.00 4.10 40.70 77.40 88.90 2.00 6.50

CHAIN-VSE-v1 (d=8192, p=1) IRv2 53.70 85.10 93.10 1.00 3.90 40.70 77.60 89.00 2.00 6.30

CHAIN-VSE-v1 (d=1024, p=1) ResNet-152 55.14 86.08 93.86 1.00 3.76 41.20 78.01 89.22 2.00 6.38

CHAIN-VSE-v1 (d=4096, p=1) ResNet-152 57.76 87.88 94.46 1.00 3.42 42.96 79.20 90.01 2.00 6.05

CHAIN-VSE-v1 (d=8192, p=1) ResNet-152 59.40 87.98 94.24 1.00 3.37 43.47 79.78 90.22 2.00 5.90

Table 4. Impact of text length. d=2048, cnn=ResNet152.

Image to text Text to image

Method Length R@1 Mean r R@1 Mean r

OE 100 longest 86.0 1.3 76.4 1.5

CHAIN-VSE 100 longest 92.0 1.3 74.2 1.6

OE 100 shortest 85.0 1.4 69.8 1.7

CHAIN-VSE 100 shortest 80.0 1.6 81.0 1.5

Impact of text length. We also evaluate the impact of

the text length in our retrieval results. In order to accom-

plish that, we separate 100 images that present the longest

and shortest captions. Results are shown in Table 4. Our

findings are twofold: (i) CHAIN-VSE is much better for

annotating images with long captions; and (ii) it works bet-

ter for retrieving images given short captions, probably due

to the fact that our approach explicitly exploits short and

mid-term aspects of the sentences. Finally, it seems to be

hard for both methods to retrieve the correct images given

long captions. This might be due to the data distribution in

MS COCO, since it presents mostly short captions.

4.5. Limitations

CHAIN-VSE’s main limitation comes from the fact that

it learns textual features from scratch rather than using

external corpora for learning word semantics: CHAIN-

VSE may suffer from overfitting when dealing with smaller

datasets, such as Flickr30k [22]. Apparently, those datasets

do not present enough textual data to properly learn textual

semantics from raw characters. We achieve R@1 ≈ 36 (40)
for caption retrieval and R@1 ≈ 26 (31) for image retrieval

using VGG-19 (IRv2), which outperforms [14, 16, 19, 29],

but is outperformed by some recent approaches that employ

external corpora to some extent.

Table 5. Text classificaton results.

Method Tweets AgNews DBPedia

Conv [13, 33] 71.8% - -

ConvChar [35] 70.6% 87.2% 98.3%

FastText [11] 71.3% 91.5% 98.1%

VCDNN [4] - 91.3% 98.7%

CHAIN-VSE-v1 73.5% 91.5% 98.6%

CHAIN-VSE-v2 72.1% 91.0% 98.2%

5. Text Classification

We designed CHAIN-VSE in order to provide a simple

yet efficient and robust method for learning textual seman-

tics directly from characters. One of our findings was that

CHAIN-VSE is far more robust to noise than state-of-the-

art approaches. In this section we provide an analysis re-

garding the suitability of CHAIN-VSE for learning multi-

language sentiment analysis models from noisy data and in

widely used text classification datasets.

We test CHAIN-VSE on a multi-language Twitter cor-

pora as well as on the widely used AGNews and DBPedia

datasets. The Twitter corpora from [21] does not provide

the tweet itself, but rather a URL that leads to the tweets.

Due to this particularity, some tweets are no longer avail-

able. We adapt CHAIN-VSE by replacing the multimodal

embedding layer with a fully-connected softmax layer for

performing the final classification. Since the data used in

this experiment contains about 5× fewer textual instances

than MS COCO, we optimized the hyper-parameters for

properly regularizing the network.

We optimized the width of the network, the latent space,

regularization, and activation function. CHAIN-VSE is by

far the lightest method in terms of parameters (DBPedia and

Tweets require a vocabulary of 200,000 words). Our total
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Figure 6. Trade-off between model complexity (#parameters) and predictive performance (R@10) in the COCO-1k test set. Results are

for both image-to-text (left) and text-to-image (right) retrieval. Dashed lines are architectures that make use of IRv2 networks whereas

continuous lines are architectures that use VGG-19. Each point in the line indicate a distinct latent embedding size. From left to right:

d = 1024, 2048, 4096, 8192.

architecture comprises about 1.5M parameters, 400× fewer

parameters than FastText [11] and Conv [13]. It is also 10×
lighter than VCDNN [4].

6. Related Work

Karpathy and Fei-Fei [12] propose an architecture that

makes use of features from detection-based systems, align-

ing image regions with a proper sentence fragment. Ma et

al. [19] propose a multimodal ConvNet for aligning image

and text by jointly convolving word-embeddings and image

features. The learned similarity score predicts whether a

pair is correlated or not. Vendrov et al. [29] propose sen-

tence order-embeddings, which aim to preserve the partial

order structure of a visual-semantic hierarchy. It allows

learning ordered representation by applying order-penalties,

and they show that asymmetric measures are better suited

for image-sentence retrieval tasks.

Wang et al. [31] introduce a two-branch neural network

for learning a multimodal embedding space. They en-

code text based on 300-d word-embeddings, where they

apply ICA and construct a codebook with 30 centers us-

ing first and second-order information, resulting in a 18k-

dimensional representation. Next, they apply PCA to re-

duce the representation to 6k dimensions in order to reduce

memory requirements and training time. The projection

into the joint space is performed with dense layers.

Huang et al. [10] propose a selective multimodal

LSTM (sm-LSTM). They introduce a multimodal context-

modulated attention scheme at each time-step, which is ca-

pable of focusing on a text-image pair by predicting pair-

wise instance-aware saliency maps. Sentences are pro-

cessed by a bidirectional LSTM that runs over word-

embeddings. Image features are selected by using a strat-

egy of instance candidates, which extracts local information

from a 512×14×14 tensor. They also make use of the 4096-

d vectors for a global image representation, leveraging local

and global information from both text and image.

In [5], the authors introduce a 2-Way-Network for map-

ping a modality into another. Similarly to [31], they use

Fisher Vectors applied over word2vec for sentence encod-

ing. They concatenate the Fisher Vector encoding (GMM)

and the Fisher Vector of the HGLMM distribution, resulting

in a 36k-dimensional vector per sentence.

In [32], the authors propose a fast approach for multi-

modal retrieval. They employ a self-attention mechanism in

order to embed word-vectors onto a sentence-level embed-

ding space. They achieved good results while their mod-

els were much faster for training and deployment than the

RNN-based approaches.

7. Conclusions

In this paper, we presented a simple architecture for

bidirectional retrieval capable of learning textual embed-

ding based on raw characters, namely CHAIN-VSE. Even

though it is conceptually a much simpler architecture than

those found in related work, our approach achieves state-of-

the-art results in both text to image and image to text tasks

considering the most well-known retrieval dataset, namely

MS COCO [17]. CHAIN-VSE is simple, effective, requires

fewer parameters, and it is robust to input noise due to the

fact that it learns sentence representation from character-

level convolutions. In addition, it presents sound perfor-

mance for text classification tasks, specially in noisy and

multilingual scenarios. For future work, we intend to ana-

lyze the impact of CHAIN-VSE in recent work [6,7] and its

performance in other tasks, such as VQA [1, 2] and video

retrieval [24].
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