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Abstract

Representing local image patches in an invariant and

discriminative manner is an active research topic in com-

puter vision. It has recently been demonstrated that local

feature learning based on deep Convolutional Neural Net-

work (CNN) can significantly improve the matching perfor-

mance. Previous works on learning such descriptors have

focused on developing various loss functions, regulariza-

tions and data mining strategies to learn discriminative CN-

N representations. Such methods, however, have little anal-

ysis on how to increase geometric invariance of their gener-

ated descriptors. In this paper, we propose a descriptor that

has both highly invariant and discriminative power. The

abilities come from a novel pooling method, dubbed Sub-

space Pooling (SP) which is invariant to a range of geo-

metric deformations. To further increase the discriminative

power of our descriptor, we propose a simple distance ker-

nel integrated to the marginal triplet loss that helps to focus

on hard examples in CNN training. Finally, we show that

by combining SP with the projection distance metric [13],

the generated feature descriptor is equivalent to that of the

Bilinear CNN model [22], but outperforms the latter with

much lower memory and computation consumptions. The

proposed method is simple, easy to understand and achieves

good performance. Experimental results on several patch

matching benchmarks show that our method outperforms

the state-of-the-arts significantly.

1. Introduction

Matching local patches across images has been one of

the most extensively studied topics in computer vision. It is

often used as an essential step in a wide range of vision tasks

such as structure from motion [26], stereo matching [43],

image stitching [7], image retrieval [27] and image classifi-

cation [21], to name a few. In general, the patch matching

accuracy strongly depends on the quality of the feature de-

scriptors extracted from the local patches. Designing good

feature descriptors is a very challenging problem. On one

hand, the feature descriptor must be able to handle varia-

tions between two matching patches caused by viewpoint

and illumination changes, occlusions, differences in camera

settings, etc. On the other hand, it must be highly discrimi-

native for non-matching patches with similar appearances.

In the past decades, a lot of research efforts have been

made in the literature to seek for invariant and discrimina-

tive local descriptors. Many early works focused on devel-

oping hand-crafted feature descriptors such as SIFT, SUR-

F, HOG, DAISY, ORB, LIOP, etc. [23, 5, 8, 35, 28, 39],

while more recent works adopted machine learning meth-

ods to learn high-quality feature descriptors from large im-

age datasets [6, 36, 33, 10, 31, 4]. Together with the great

success of deep CNN in various vision related tasks, it has

recently been demonstrated that patch matching using C-

NNs can significantly improve the matching performance

accuracies [42, 14, 30, 3, 20, 41, 34, 9]. Machine learning

methods for local patch matching can be mainly classified

into two categories: (1) methods that treat the local patch

matching problem as a binary classification problem, and

output a matching score for each input patch pair; (2) meth-

ods that learn a feature extractor, and output a feature rep-

resentation (descriptor) for each input local patch. An obvi-

ous drawback of the first approach is that the computational

cost is expensive as it requires all combinations of patches

to be tested against each other in a brute-force manner. In

contrast, the second approach treats each image patch inde-

pendently and produces feature descriptors that can be used

in a broad range of vision tasks. Many research studies in

this category have focused on developing new loss function-

s, regularization terms, and data mining strategies to learn

discriminative feature descriptors. Such methods, however,

have no theoretical guarantee to be invariant to geometric

changes described above.

In this paper, we propose a novel CNN pooling method,

namely Subspace Pooling (SP) to learn highly invariant and

discriminative feature descriptors. The proposed pooling

function is invariant to circular shift, flipping, in-plane ro-

tation, and many kinds of in-plane deformations. More

specifically, we take the output of the last convolution layer

of a given CNN, and use it to form a matrix F where each

row i represents the i’th feature map stacked to a 1D vec-

tor, and each column corresponds to a spatial location of the

feature maps. We then compute the Singular Value Decom-
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position (SVD) of the matrix and use its principal singular

vectors as the feature representation of the input patch. We

show that the feature descriptor produced this way is invari-

ant to all the geometric changes that can be expressed as

the column permutations of the matrix F . The proposed

SP method is differentiable and thus can be readily applied

to a given CNN using the standard Back Propagation (BP)

training method. Comprehensive experimental evaluations

on three popular patch matching benchmarks show supe-

rior performance accuracies to the representative methods

in the literature. Moreover, we propose a simple Gaussian

kernel to further improve its discriminative power. The dis-

tance kernel together with the marginal triplet loss makes

the training procedure focus more on hard examples, thus

helps to push the envelope further.

In summary, our contributions include: (1) we propose a

novel CNN subspace pooling method that can remarkably

improve the patch matching accuracy; (2) we show that the

SP method is invariant to all geometric changes that can be

expressed as the column permutations of the matrix F ; (3)

to increase its discriminative power, we further proposed a

distance kernel integrated to the marginal triplet loss which

is helpful to focus on hard examples in CNN training; (4)

we finally show that our SP method combined with the pro-

jection distance metric [13] is equivalent to the Bilinear C-

NN, but outperforms the latter with much lower memory

and computation consumptions.

2. Related Work

2.1. Invariant and Discriminative Feature Learning

A general framework for building robust local descrip-

tors is to first compute local statistics (e.g. gradients) and

then pool them together. The first stage aims to extract

discriminative and photometric invariant features and the

second stage is helping to increase geometric invariance.

Most conventional feature descriptors are hand-crafted and

use a fixed configuration for region pooling. For example,

SIFT [23] and its variants [5, 1] use rectangular regions

organized in a grid, GLOH [24] uses a polar arrangemen-

t of summing regions, while DAISY [35] employs a set

of multi-size circular regions grouped into rings. To im-

prove performance, several learning based methods were

proposed to select pooling regions in a principled way.

Brown et al. [6] proposed a Powell optimisation method to

find the best configuration of DAISY-like descriptors. Pool-

ing region selection using boosting was explored in [36],

achieving good performance. It is also shown in [31] that

learning the pooling regions can be performed by optimis-

ing a sparsity-inducing L1 regulariser, yielding a convex

problem which has a global optimal solution. Though these

methods achieve remarkable performance, they are much

more sophisticated than our method and are difficult to be

applied into CNNs.

Other works handle geometric invariance from differen-

t perspectives. Hassner et al. [15] proposed scale invariant

SIFT, as an alternative to single-scale descriptors. They em-

ployed a linear subspace representation of multi-scale SIFT

descriptors which is similar to our representation but in d-

ifferent domain. This idea was further extended in [40]

to produce an affine invariant descriptor of a set of affine

warped pathes. Our proposed method differs from them in

that our method operates on spatial domain and can han-

dle more general transforms such as the non-rigid defor-

mation. Furthermore, these methods lack a learning proce-

dure to learn descriptors from data, but using a pre-defined

configuration to compute the linear subspace representation

by generating helper images at multiple scales or using d-

ifferent affine transforms. This greatly limits the deforma-

tion types that can be handled by those methods. On the

contrary, our method is an end-to-end framework, thus can

improve invariance to such transforms by directly adding

helper images into our training set as a data augmentation

process. There are also descriptors to handle the non-rigid

deformation. One representative is the DaLI method [29]

(DALI), which uses the heat diffusion theory to build a de-

formation and illumination invariant descriptor. Compared

to DaLI, our method is simpler and performs better.

2.2. Local Patch Matching via CNNs

Motivated by tremendous successes of deep learning

techniques in visual classification and recognition problem-

s. Researchers have paid attention to using deep CNNs in

local feature learning. Han et al. [14] (MATCHNET) pro-

posed to jointly learn a deep network for patch represen-

tation as well as a network for robust feature comparison.

It significantly improves previous results, showing a great

potential of CNNs in descriptor learning. Zagoruyko and

Komodakis [42] (DC-S2S) explored different kinds of net-

work architectures for patch matching. They found that a

2-channel model, which simply considers the two patches

of an input pair as a 2-channel image, achieves the best re-

sult. This kind of methods is computational expensive since

they require all combinations of patches to be tested against

each other in a brute-force manner.

Another class of works tries to learn local descriptors us-

ing existing distance metric such as the L2 distance. Simo-

Serra et al. [30] (DEEPDESC) trained a siamese network us-

ing a mining strategy to select hard pairs. Kumar et al. [20]

(TNET-TGLOSS) used triplet network and proposed a glob-

al loss function to minimize the overall classification error

in the training set. Balntas et al. [3] (TF-M) also adopted a

triplet network, together with an in-triplet mining method of

hard negatives. Tian et al. [34] (L2-NET) proposed an ef-

ficient sampling strategy, and several regularizations on the

intermediate feature maps and the output descriptor to im-
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prove performance. Mishchuk et al. [25] (HARDNET) pro-

posed an effective mining strategy which mimics the fea-

ture matching procedure in a batch fashion, achieving the

currently best performance.

This paper aims to develop an invariant and discrimi-

native descriptor that can be measured with existing dis-

tance metric efficiently. The proposed method is distinctive

in that it designs a novel pooling method which is invari-

ant to many kinds of in-plane transforms and is robust to a

wide range of deformations validated by various challeng-

ing benchmarks. Such properties are important and have

long been pursued in local descriptor engineering.

3. Kernelized Subspace Pooling

3.1. Preliminaries

A typical CNN consists of mainly three building blocks:

convolution, active function, and pooling fuction. The con-

ventional convolution operation in CNN uses a fixed size

kernel to extract features in a sliding window fashion. Each

element of the kernel is used at every position (except per-

haps some of the boundary pixels), thus the convolution

can be considered as a spatially invariant filtering which has

been intensively studied in the image processing communi-

ty [11]. The spatially invariant filtering, however, dose not

ensure that the output feature map is invariant to geometric

transforms since the spatial locations of feature elements are

maintained. Nevertheless, the learned kernels together with

the non-linear active functions can be robust to photometric

variations when trained on large data.

In order to handle geometric changes, pooling methods

are necessary. A pooling function replaces the output of the

network at a certain location with a summary statistic of its

nearby outputs. For example, the max pooling computes the

maximum output within a rectangular neighborhood. Other

popular pooling functions include the average pooling, the

L2 norm of a rectangular neighborhood, or a weighted av-

erage based on the distance from the central pixel [12]. The

fully-connected layer can also be treated as a pooling lay-

er which consists of several weighted average operations.

If the pooling area is the whole feature map, several pop-

ular pooling functions are invariant to in-plane transforms.

For example, the max pooling and the average pooling both

pool a feature map regardless of the location of each ele-

ment. On the contrary, the fully-connected operation does

not have such a property in general.

Though the max pooling and average pooling are invari-

ant to a range of deformations, they both have low discrim-

inative power. For example, if we decrease all the elements

except for the maximum one in a max pooling layer, the

output is unchanged. And for the average pooling, the input

feature map can vary significantly even if the average value

remains. Our aim is to develop a pooling function that is

invariant to deformations like the max pooling and average

pooling, but also equipped with high discriminative power.

3.2. Linear Subspace Pooling

We now present the proposed pooling method. The ba-

sic idea is to model the convolutional feature maps with

the linear subspace spanned by its principal components.

Formally, we write the CNN features of an input patch as

a matrix F ∈ R
m×p. Where each row i represents the

i’th feature map stacked to a 1D vector, and each column

corresponds to a spatial location of the feature maps. The

CNN features can then be represented by the linear sub-

space spanned by r (r < p,m) principal components of F .

Specifically, let UΣV T be the SVD of F , thus the column-

s of U corresponding to the largest r singular values give

the r principal orthonormal bases. The pooled CNN fea-

tures obtained in this manner are r-dimensional linear sub-

spaces of the m-dimensional Euclidean space, which lie on

the (m, r) Grassmann manifold [13, 37], denoted by Gr
m.

Limiting r to be smaller than p and m has two reasons. One

is helpful to decrease the effect of noise, shading, occlusion,

and other fine variations which are not useful for recogni-

tion. Another one is to reduce feature dimension. A point

on the Gr
m manifold is generally represented by a matrix

Y ∈ R
m×r whose columns store an orthonormal basis of

the subspace. Previously, such linear subspace representa-

tion is often used to build a robust model of an image set or

a video sequence [38] in computer vision.

We can easily justify that the linear subspace represen-

tation is independent to column permutation, leading up to

the following proposition.

Proposition 1. The proposed subspace pooling is invariant

to all the geometric changes that can be expressed as the

column permutations of the matrix F .

Proof. Let P be a permutation matrix and UΣV T be the

SVD of F , we have

FP = UΣV TP = UΣ(PTV )T , (1)

thus UΣ(PTV )T is the SVD of FP with the left singu-

lar vectors unchanged and the right singular vectors row-

permuted.

The main computation of the proposed subspace pool-

ing is based on the singular value decomposition. How-

ever, back-propagation in neural network for SVD is non-

trivial. Previously, such kinds of matrix back-propagation

is explored in [18]. Here we directly write the conclusion

for completeness and refer interested readers to [17, 18] for

proof.

Proposition 2. (Back-propagation) Let F = UΣV T be the

SVD with X ∈ R
m×p and m ≥ p, and Σp ∈ R

p×p be the
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top p rows of Σ. Let ∂ℓ
∂U be the gradient of the loss function

ℓ : Rn → R w.r.t. U and consider the block decomposition
∂ℓ
∂U =

((

∂ℓ
∂U

)

1

∣

∣

(

∂ℓ
∂U

)

2

)

with
(

∂ℓ
∂U

)

1
∈ R

m×p,
(

∂ℓ
∂U

)

2
∈

R
m×m−p. Denote Asym = 1

2

(

A+AT
)

, Adiag be A with

all off-diagonal elements set to 0, and ◦ be the element-wise

product. Then the gradient of the loss function ℓ w.r.t. F is

∂ℓ

∂F
= DV T + U

(

−UTD
)

diag
V T

+ 2UΣ
(

KT ◦
(

−DTUΣ
))

sym
V T ,

(2)

where

D =

(

∂ℓ

∂U

)

1

Σ−1
p − U2

(

∂ℓ

∂U

)T

2

U1Σ
−1
p , (3)

and

Kij =

{
(

σ2
i − σ2

j

)

−1
, i 6= j

0, i = j
. (4)

3.3. Kernelized Subspace Pooling

There exist various distance metrics in the Grassman

manifold and a good choice is the projection distance [13].

Specifically, for two points Y1 and Y2 on the Gr
m manifold,

the projection distance is defined as

dP (Y1, Y2) = 2−1/2
∥

∥Y1Y
T
1 − Y2Y

T
2

∥

∥

F
, (5)

or more conveniently, using the squared form

d2P (Y1, Y2) = 2−1
∥

∥Y1Y
T
1 − Y2Y

T
2

∥

∥

2

F

= r −
∥

∥Y T
1 Y2

∥

∥

2

F
,

(6)

where the last equation holds for the fact that Y T
1 Y1 =

Y T
2 Y2 = Ir and Ir is the identity matrix. The first for-

mula in Equation (5) requires calculating the Frobenius

L2 distance between Y1Y
T
1 and Y2Y

T
2 , both of which are

m × m matrixes. Since m > r, the direct computation of
∥

∥Y1Y
T
1 − Y2Y

T
2

∥

∥

F
is inefficient. Equation (6) shows that it

is sufficient to compute only the Frobenius norm of Y T
1 Y2,

an r × r matrix, to compare Y1 and Y2. Though inefficien-

t, the first formula implies that we can map Y1 and Y2 on

the Gr
m manifold to the points Y1Y

T
1 and Y2Y

T
2 in the Eu-

clidean space, and compare them using the Frobenius L2

distance directly. We will show later that the form Y1Y
T
1 is

also related to the bilinear CNN model. Mapping a point to

the Euclidean space may be more convenient for some al-

gorithms that adopt Euclidean structures such as norm and

inner product. Nevertheless, many machine learning algo-

rithms can be applied in the original manifold directly for

various tasks such as clustering and classification [19].

To further increase the discriminative power of SP, we

propose a simple distance kernel integrated to the marginal

triplet loss which is helpful to focus more on the hard ex-

amples during CNN training. Specifically, we define the

projection Gaussian kernel on the Grassman manifold as

kP : (Gr
m × Gr

m) → R : kP (Y1, Y2) := e
d2
P

(Y1,Y2)

γ , (7)

where d2P (Y1, Y2) is defined in Equation (6) and γ > 0.

For a given triplet (a, p, n) represents the anchor, positive

and negative example, we consider the marginal triplet loss

combined with the projection Gaussian kernel,

J(a, p, n) = max(0, µ+ kP (a, p)− kP (a, n)), (8)

where µ is the margin parameter. The Gaussian kernel func-

tion (γ > 0) is monotonic increasing and grows faster at

larger distances. Thus if d2P (a, p) is large (i.e., hard posi-

tives), Equation (8) gives an even larger penalty; whereas

if d2P (a, n) is large (easy negatives), the loss becomes more

subdued. That is, the Gaussian kernel helps the triplet loss

focus more on hard examples to push the envelope further.

We denote the pooling method together with the projection

Gaussian kernel by Kernelized Subspace Pooling (KSP).

3.4. Connection to the Bilinear CNN model

Recently, the bilinear CNN model [22] has yielded im-

pressive performance on a range of visual tasks. Given two

CNN feature matrixes F1 ∈ R
m×p and F2 ∈ R

n×p or-

ganized in the same manner as described in Sec. 3.2. The

bilinear CNN model forms a descriptor as

b(F1, F2) = F1F
T
2 . (9)

It can be easily verified that the bilinear pooling function

is equivalent to spatial reordering. Thus the resulted de-

scriptor has the same geometric invariant properties as ours

described in Proposition 1.

From Equation (5) and (9) we can see that, the proposed

subspace pooling together with the projection distance is

equivalent to the bilinear pooling function, but using a s-

ingle CNN. The bilinear CNN model incorporates two fea-

ture extractors, which can increase its discriminative power.

However, the model size, memory consumption, and com-

putational cost is roughly twice as its single counterpart.

Another drawback of the bilinear CNN is that the produced

descriptor is of high dimensionality. Equation (9) shows

that the dimension of a bilinear descriptor F1F
T
2 ∈ R

m×n

is the product of m and n. In addition, for a typical CNN

architecture, like VGG [32] or ResNet [16], the number of

feature maps m or n is often much larger than the number

of spatial locations p after all the convolution layers, thus

F1F
T
2 is rank deficient. Also, as analysed in Sec. 3.2, the

feature maps may be contaminated by fine variations such

as noise, shading and occlusion that are not useful for recog-

nition. This motivates us to find a robust low-rank model,
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Figure 1: Network Architecture. Conv = Convolution +

Batch Normalization + ReLU.

which comes up to the proposed subspace representation.

We show that the performance of our method with a single

CNN is comparable or superior to the bilinear CNN on sev-

eral patch matching benchmarks, and a produced descriptor

with much lower dimensionality.

4. Implementation

Network architecture. Figure 1 displays our network

architecture. Our network consists of 6 convolution layers

and a pooling layer. Batch normalization followed by Re-

LU non-linearity is added after each layer, except the last

one. The spatial resolution is down-sampled twice, each

of which is performed by the convolution with a stride of

2. This network is similar to the one adopted in the L2-

NET and HARDNET, except for the last convolution layer

which is replaced with the proposed subspace pooling lay-

er. Our network takes a 32 × 32 image patch as input and

outputs 128× 8× 8 feature maps after all convolution lay-

ers. We then reshape the feature maps to a 128× 64 matrix

and extract 16 principal components for our subspace rep-

resentation. Thus the dimension of the resulted descriptor is

128× 16 = 2048. We also test an alternative configuration

to reduce the feature dimension by decreasing the feature

maps from 128 to 64 in the last two convolution layers and

using 8 principal components in the pooling layer.

Loss function and data mining strategy. We use the

marginal triplet loss with the projection Gaussian kernel

defined in (8) to train our model. The projection distance

d2P (Y1, Y2) is first divided by r to be normalized in [0, 1] and

then modulated by the Gaussian kernel. We set the margin

parameter µ and bandwidth of Gaussian kernel γ to 10 and

0.3 respectively for all our experiments except for specifi-

cation. It is shown in previous works [30, 34, 25] that hard

data mining is important to train the triplet objective. We

employ the same mining strategy as HARDNET which is to

find the hardest negative example for each patch in a mini-

batch. This strategy enables the network to access the most

useful training samples efficiently.

Training. We train our network from scratch using the

PyTorch library. The network is optimized by SGD with a

start learning rate at 0.1, momentum of 0.9 and weight de-

cay of 0.0001. We train our model within 20 epochs and the

(a) UBC [6] (b) HPatches [2] (c) DaLI [29]

Figure 2: Sample images and patches in the UBC, HPatches

and DaLI datasets.

learning rate is linearly decreased to zero. The data are aug-

mented by random flipping and rotating 90o online, which

is the same setup as L2-NET and HARDNET.

5. Empirical Evaluation

We conduct extensive experiments on widely used

benchmarks, with particular emphasis on testing the in-

variant ability of descriptors to geometric and photometric

changes. Sample images and patches in the benchmarks are

displayed in Figure 2. We report the results of the proposed

SP and KSP methods on all three benchmarks, together

with their low-dimensionality counterparts which are denot-

ed by SP∗ and KSP∗, respectively. We also compare our

methods to the original bilinear CNN model (BILINEAR).

We use the same network architecture as ours for each of its

two CNNs, and the same loss function, data mining strategy

etc., to ensure a fair comparison.

5.1. UBC Dataset

Most of learning based descriptors report their results on

the UBC PhotoTourism, also known as Brown’s dataset [6].

It consists of three subsets: Liberty, Notre-Dame, and

Yosemite. Keypoints are detected by the Difference of Gaus-

sian (DoG) detector and correspondences are established by

multi-view 3D reconstruction.

We use the standard evaluation protocol for the UBC

dataset, which calculates the false positive rate (FPR) at

the point of 95% true positive recall for the task of patch

correspondence verification. Table 1 lists the results of pro-

posed methods and state-of-the-arts using different subset

as training data. Our KSP method outperforms state-of-the-

arts in all categories. Our SP method achieves comparable
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Training Feature Notre-Dame Yosemite Liberty Yosemite Liberty Notre-Dame
Mean

Test Dimension Liberty Notre-Dame Yosemite

SIFT [23] 128 29.84 22.53 27.29 26.55

MATCHNET [14] 4096 6.90 10.77 3.87 5.67 10.88 8.39 7.74

DC-S2S [42] 512 6.45 11.51 3.05 5.29 9.02 10.44 7.63

D-DESC [30] 128 10.90 4.40 5.69 6.99

TNET-TGLOSS [20] 256 9.91 13.45 3.91 5.43 10.65 9.47 8.80

TF-M [3] 128 7.22 9.79 3.12 3.85 7.82 7.08 6.47

L2-NET [34] 128 2.36 4.70 0.72 1.29 2.57 1.71 2.23

HARDNET [25] 128 2.34 3.31 0.60 1.00 2.19 2.28 1.97

BILINEAR 16384 1.39 2.06 0.38 0.59 1.68 1.53 1.27

SP 2048 1.56 2.10 0.39 0.62 1.70 1.92 1.38

KSP 2048 0.82 1.36 0.29 0.47 0.60 0.51 0.68

SP∗ 512 1.95 2.62 0.49 0.77 2.24 2.48 1.76

KSP∗ 512 1.63 2.11 0.48 0.62 1.47 1.38 1.28

Table 1: Performance on the UBC [6] dataset. Numbers are the false positive rate at 95% recall.

performance to the bilinear CNN but uses much lower di-

mensionality. It can also be seen that this dataset is nearly

saturated due to the recent improvements on local descrip-

tors learning. Therefore, we use more challenging datasets

in the following sections for comprehensive comparison. In

the rest of paper, we use our model trained on the Liberity

sequence, which is a common practice [25] to allow a fair

comparison.

5.2. HPatches Dataset

Recently, Balntas et al. [2] proposed a large dataset for

local descriptor evaluation. It contains 116 sequences with

6 images for each. The dataset is split into two parts: view-

point (VIEWPT) - 59 sequences with significant viewpoint

change and illumination (ILLUM) - 57 sequences with sig-

nificant illumination change. Keypoints are detected by

DoG, Hessian-Hessian and Harris-Laplace detectors in the

reference image and projected to the rest of the images in

each sequence, using the ground-truth homographies with 3

levels of geometric noise: EASY, HARD and TOUGH. The

HPatches benchmark defines three tasks: patch correspon-

dence verification, image matching, and patch retrieval.

Results are shown in Figure 3. Similar to UBC, HARD-

NET was also the best performer on HPatches in previous

literature, while BILINEAR, the proposed SP and KSP al-

l outperform it by a noticeable margin. Our KSP method

achieves the best results on all three tasks. The advantage

is larger on image matching and patch retrieval tasks where

KSP outperforms HARDNET 7 percentage points on both.

SP and BILINEAR achieve equal performance on the verifi-

cation task while SP performs better on the image matching

and patch retrieval task. This demonstrates that our SP de-

scriptor is more compact and robust than that of BILINEAR
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Figure 4: Performance (mAP) vs. the number of distractors,

evaluated on the patch retrieval task of HPatches [2] dataset.

for the reason that SP only using the leading principal com-

ponents. We also plot the patch retrieval accuracies when

varying the number of distractors (non-matching patches)

in Figure 4. The results of earlier CNN based methods DC-

S2S, D-DESC and TF-M are remarkably better than hand-

crafted descriptors SIFT and RSIFT in the presence of low

numbers of distractors. However, their accuracies degrade

quickly as the size of the database grows. On the other hand,

our SP and KSP outperform all the others and the differ-

ences are more significant in large numbers of distractors.

5.3. DaLI Dataset

In order to evaluate the non-rigid deformation and illu-

mination invariant properties of local descriptors properly,

Simo-Serra et al. [29] collected a dataset of deformable ob-

jects under varying illumination conditions. The dataset

consists of 12 objects of different materials with four de-
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Figure 3: Verification, matching and retrieval results for HPatches [2] dataset. Colour of the marker indicates EASY, HARD,

and TOUGH noise. The type of the marker corresponds to the variants of the experimental settings. The bar is the average of

the variants of each task.

formation levels and four illumination conditions each, for

a total of 192 images. Keypoints are detected by the DoG

detector and correspondences are manually annotated.

We compare our methods to state-of-the-arts which have

reported their performances on this dataset, including SIFT,

DAISY, DALI and D-DESC. The standard evaluation pro-

tocol is spliting the dataset into deformation (Def.), illumi-

nation (Ill.) and deformation with illumination (Def.+Ill.)

subsets. The results are shown in Table 2. Our SP and K-

SP methods significantly improve on previous results in all

three splits. Figure 5 displays the results for the deforma-

tion subset. As can be seen that our KSP performs best in

all deformation levels and shows more advantage on higher-

level deformations. What is worth to notice is that the image

patches in this dataset are cropped to be circular, while our

descriptors are trained on square patches. This shows that

our methods have good generalization ability.

5.4. Model Analysis

Compared to max pooling and average pooling. The

max pooling (MP) and average pooling (AP) are also in-

variant to some geometric changes when used as global op-

erations. Here we replace the proposed SP with the MP

and AP and evaluate their performances on the HPatches

dataset. As can be seen from Table 3 that the results of MP

and AP are inferior to our SP due to their low discrimina-

tive abilities.

The influence of subspace dimension. As analysed in

previous sections, one reason that we choose r principal

components for our subspace representation rather than all

Descriptor Training Def. Ill. Def.+Ill.

SIFT [23] - 55.82% 60.76% 53.43%

DAISY [35] - 67.37% 75.40% 66.20%

DALI [29] - 70.58% 89.90% 72.91%

D-DESC [30] Lib.+Yos. 76.57% 88.43% 75.93%

BILINEAR Lib. 81.12% 92.48% 81.29%

SP Lib. 82.08% 95.07% 83.00%

KSP Lib. 83.60% 97.17% 84.81%

SP∗ Lib. 81.31% 92.84% 81.12%

KSP∗ Lib. 81.61% 95.17% 82.55%

Table 2: Results on the DaLI [29] dataset. We show the

mean accuracy of descriptor matches and highlight the top-

performing descriptor for each of setting, in bold.

Descriptor Verification Matching Retrieval

MP 84.63% 39.54% 48.90%

AP 86.08% 45.01% 54.61%

SP 88.95% 54.67% 63.22%

Table 3: Subspace pooling (SP) compared to max pooling

(MP) and average pooling (AP).

the orthonormal bases is to reduce the effect of small use-

less variations in the CNN features. This section explores

the performance of the SP descriptor w.r.t. the number of

principal components. Figure 6 (a) shows the experimental
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Figure 5: Results when increasing the deformation levels while keeping the illumination constant on the DaLI [29] dataset.
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Figure 6: The effect of subspace dimension for SP and the

bandwidth of the projection Gaussian kernel for KSP.

results. Using smaller or larger amount of principal compo-

nents are both harmful to the SP descriptor. A good com-

promise on performance and feature size is achieved when

using 16 principal components, while decreasing the num-

ber of principal components will lose valuable information

and increasing it introduce trivial details.

The influence of Gaussian bandwidth. All experi-

ments on the UBC, HPatches and DaLI datasets show that

KSP consistently performs better than SP. The projection

Gaussian kernel adopted in KSP contains one parameter γ

that determines the bandwidth of the Gaussian distribution.

In fact, γ can be learned from data, using the standard BP

training method for CNN. However, our preliminary exper-

iments show that the learned γ causes overfitting on several

datasets. Thus this paper treats γ as a free parameter. Fig-

ure 6 (b) displays the performance of KSP w.r.t. several γs.

Performance on another network architecture. The

proposed subspace pooling method is applicable to a giv-

en CNN architecture to increase its invariant ability. Here

we test another network which is adopted in the TF-M [3]

descriptor. We replace the fully-connected layer in TF-M

with our subspace pooling layer and reserve other settings.

As can be seen from Table 4 that our proposed methods re-

markably improve the performance of TF-M.

Descriptor Verification Matching Retrieval

TF-M [3] 81.90% 32.64% 39.40%

TF-M+SP 82.54% 36.07% 43.25%

TF-M+KSP 82.78% 38.42% 45.68%

Table 4: The performance of TF-M can be significantly im-

proved when incorporating our subspace pooling layer.

6. Concluding Remarks

This paper proposes a pooling method to learn invariant

and discriminative descriptors using CNNs. We first anal-

yse that the convolution operation in CNNs is not invari-

ant to various geometric changes. In order to achieve such

invariance, pooling methods are necessary. However, the

widely used max pooling and average pooling have low dis-

criminative power when adopted as global operations. The

proposed subspace pooling (SP), on the contrary, has both

highly invariant and discriminative power. The proposed

SP, as well as the max pooling, average pooling and bilinear

CNN, do not use any spatial information of the CNN fea-

tures which makes it convenient to handle complex trans-

forms that do not have a parametric model, e.g., the non-

rigid deformation. In fact, this representation is more rea-

sonable for a local descriptor rather than the global descrip-

tion of a large region. Especially for scenes obtained from

certain situations such as vision-based navigation, where

the relative positions of feature elements provide useful in-

formation. A potential solution to describe relationships of

feature elements is to use graph embedding techniques. We

will explore this direction in the future.
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