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Abstract

This paper addresses a new problem - jointly inferring

human attention, intentions, and tasks from videos. Given

an RGB-D video where a human performs a task, we answer

three questions simultaneously: 1) where the human is look-

ing - attention prediction; 2) why the human is looking there

- intention prediction; and 3) what task the human is per-

forming - task recognition. We propose a hierarchical mod-

el of human-attention-object (HAO) which represents tasks,

intentions, and attention under a unified framework. A task

is represented as sequential intentions which transition to

each other. An intention is composed of the human pose,

attention, and objects. A beam search algorithm is adopt-

ed for inference on the HAO graph to output the attention,

intention, and task results. We built a new video dataset of

tasks, intentions, and attention. It contains 14 task classes,

70 intention categories, 28 object classes, 809 videos, and

approximately 330,000 frames. Experiments show that our

approach outperforms existing approaches.

1. Introduction

While recognizing what a human is doing in videos has

been extensively studied over the past decades, inferring

what a human is thinking is a rarely-investigated but impor-

tant problem. For example, in a scene of human-robot col-

laboration, a human standing still is looking around without

any body actions. To collaborate with the human, the robot

needs to know what the human is thinking, e.g. is the human

searching for anything or checking any object’s state?

Answering these questions involves inferring human at-

tention and intentions in tasks. A task is a complex goal-

driven human activity [18] and performing a task is a pro-

cess of eye-hand coordination [23], as the task mop floor

shown in Fig. 1. Human attention describes where a human

Figure 1: Human attention and intention in the task mop floor.

While mopping the floor, the person is looking at the floor and his

intention is checking if the floor has been cleaned or not.

is looking [38]. It includes the attributes of 3D location, 3D

direction, and 2D location, as shown in Fig. 1.

Human intentions in our work describe the mental mo-

tivation why a human is looking at a place. In cognitive

studies, Land et al. [16] defined four basic types of human

fixation roles - locate, direct, guide, and check. As shown

in Fig. 2, we extend the four fixation roles to explain human

intentions in complex tasks: 1) locate is to identify the loca-

tion of an object in a scene; 2) direct means a human directs

the hands to something or to do something; 3) guide means

a human guides an object to approach another; 4) check is

to check the object states. With different compositions of

objects and actions in various tasks, the four basic types can

be expanded into numerous categories, such as locate mop,

locate coffee jar, etc. We define these expanded categories

as human intentions in tasks. Intention prediction is to label

each video frame with one of the intention categories.

As the saying goes, ‘eyes are the windows to the soul’.

Human attention and intentions are closely related to each

other in a task. By perceiving where a human is looking, we

can infer the human’s intentions. For example, in the task
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Figure 2: Four basic types of intentions when humans perform tasks.

make coffee shown in Fig. 2, while fetching water from the

dispenser, the person’s attention focuses on the mug and his

intention is to check the mug’s state (full or not). On the

other hand, human intentions drive human attention, which

makes attention present different characteristics in different

intentions [38]. For example, in Fig. 2, when the person’s

intention is to check the mug’s state, his attention focuses on

the mug; when the person’s intention is to locate the mug,

his attention rapidly moves on the desk.

In this paper, we propose a hierarchical graph model of

human-attention-object (HAO) to jointly represent and in-

fer human attention, intentions, and tasks in videos. A task

is represented as sequential intentions which transition to

each other. An intention is composed of the human pose,

the human attention, and the intention-related objects. The

attention bridges the human and objects in both spatial and

temporal domains. For an RGB-D video, we adopt a beam

search algorithm to jointly infer the task label, the inten-

tion, the 3D attention direction, the 2D and 3D attention

locations in each video frame. We collected a new large-

scale video dataset of tasks, intentions, and attention (TIA).

Experimental results prove the strength of our method.

This paper makes three major contributions:

1) It studies a new problem and develops video under-

standing from recognizing what a human is doing to

inferring what a human is thinking.

2) It proposes a hierarchical model to represent tasks as

transitional intentions which are described with human

poses, attention, and objects.

3) It presents an RGB-D video dataset of tasks, intention-

s, and attention.

1.1. Related Work

Human Intention and Mind. Intentions can be roughly

divided into action intentions [31, 24, 32] and mind inten-

tions [36, 12, 27, 3, 16, 23, 6, 41, 40]. Action intentions de-

scribe subsequent actions. Mind intentions describe invisi-

ble motivations or motions in human minds [16, 36]. Such

intentions cannot be directly perceived from visual features

but only can be inferred from spatial-temporal cues. More-

over, mind intentions usually occur before action intentions

since what humans are thinking drives their subsequent ac-

tions. The intentions in our work belong to mind intentions.

Human Attention and Gaze. Visual saliency [13] de-

scribes image regions which attract the attention of ob-

servers outside the image. Inside-data attention describes

where a human inside the image is looking [25, 11]. The

attention in our work belongs to the inside-data attention.

Eye or face features are often used to estimate human

gazes [25, 35, 42, 22, 33, 14, 10, 19, 7, 11]. However, in

large-scale daily-activity scenes, it is hard to obtain usable

eye or face features due to low resolution. In this case, hu-

man body feature is an alternative to infer gazes [21, 38, 40].

Some studies model gazes with object or action informa-

tion [28, 34, 5, 4, 20, 2, 9, 17, 40]. However, attention is also

driven by intentions. In a task, the human does not neces-

sarily look at the related objects all the time. It is necessary

to jointly model attention, intentions, tasks, and objects.

Action and Task. Traditional action recognition is con-

cerned with what humans are doing in images or videos

[29, 37, 39]. Actions are interpreted with visible features

and lay less stress on goals. Tasks are goal-driven activities

with more complex spatial-temporal structures [12, 18].
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Figure 3: Human-attention-object (HAO) graph. The image patch under the attention node is the attention area where the human looks.

2. Model

We propose a hierarchical human-attention-object

(HAO) graph to represent tasks, human intentions, and at-

tention, as shown in Fig.3. The graph contains four layers

which correspond to the task, intentions, attention-bridged

human body and objects, and the video, respectively.

A task is divided into several intentions in time domain.

As shown in Fig. 3, the task make coffee is composed of

eight sequential intentions, such as locate coffee jar, guide

mug to approach dispenser, check state of mug, etc. These

intentions can transition to each other.

Intentions are revealed by cues of human bodies, human

attention, and objects. Therefore, an intention is decom-

posed into the human pose, the human attention, and the

intention-related objects, as shown in Fig. 3. The human

attention bridges the human body and the objects.

2.1. Representation and Formulation

We use RGB-D videos recorded by motion capture tech-

nology like Kinect as inputs. Each frame includes an RGB

image, a depth image, and a 3D human skeleton composed

of 3D joint locations.

Let I = {It|t = 1, ..., τ} be an input RGB-D video with

length τ . It is the RGB-D frame at time t.

H = {(ht,xt)|t = 1, ..., τ} is the human pose feature

sequence. ht and xt are the appearance and geometric fea-

tures extracted from the 3D skeleton at time t, respectively.

S is the task label of the input video. L = {lt|t =
1, ..., τ} is the human intention sequence of the video,

where lt is the intention label of the frame at time t.

Y = {yt|t = 1, ..., τ} is the human attention sequence.

yt is the 3D attention direction in the t-th frame. It is de-

fined as a unit 3D vector starting from the human head. The

intersection point of the 3D attention direction and the scene

point cloud is the 3D attention location. With depth data,

the 3D attention point is projected onto the image to form

the 2D attention location.

In the t-th RGB frame, we define a square image patch

centered at the 2D attention point to extract the attention

appearance feature at. This image patch is like a central

area where the human is looking, as shown in Fig. 3.

In the t-th frame, suppose ot = (o1t , ..., o
m
t ) is a bound-

ing box collection of m intention-related objects, such as

mug and coffee jar in the intention guide coffee jar to ap-

proach mug. These bounding boxes are proposed by the

Faster R-CNN [26] object detectors. With depth values of

the RGB-D data, the 2D centers of object bounding box-

es are projected onto the 3D space to form the objects’ 3D

locations zt = (z1t , ..., z
m
t ).

The energy that the input video is labeled with the task

S, the intention L, and the attention Y is defined as

E(Y,L, S|I,H) =

τ∑

t=1

Φ(ht,at,ot, lt)

︸ ︷︷ ︸

feature matching

+

τ∑

t=1

Ψ(xt,yt, zt, lt)

︸ ︷︷ ︸

HAO geometric relation

+

τ∑

t=2

Γ(yt−1,yt, lt−1, lt)

︸ ︷︷ ︸

attention and intention transition

.

(1)

Φ(·) is the feature matching energy; Ψ(·) describes the re-

lations among the human body, attention, and objects; Γ(·)
represents the temporal transitions of attention and inten-

tion. Since the relation between a task and its intentions is

a hard constraint, we omit S in the right side of Eq.(1).

2.2. Feature Matching of HAO

The feature matching term is written as

Φ(ht,at,ot, lt) = φ1(ht, lt) + φ2(at, lt) + φ3(ot, lt). (2)

Human pose matching φ1(ht, lt) describes the compat-

ibility of the pose feature ht and the intention lt. With the

3D skeleton, we compute the differences between each joint
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Figure 4: Attention map. Each map pixel value is the probability

that the human looks at the pixel with the intention shown below.

and other joints [37], and concatenate the difference vector

of each joint to form ht. Using pose features of all intention

classes, we train a classifier with logistic regression [8] for

pose classification. The probability output by the classifier

is used as p(lt|ht). The energy is

φ1(ht, lt) = − log p(lt|ht). (3)

Attention feature matching φ2(at, lt) describes the

compatibility between the attention feature at and the in-

tention lt. We train a CNN classifier with the VGG16 mod-

el [30] on the square attention patch samples. The score

output from the network is used as the attention patch label-

ing probability p(lt|at). Fig. 4 shows two examples of the

probability maps. The attention matching energy is

φ2(at, lt) = − log p(lt|at). (4)

Object matching represents the compatibility between

the object features in the video frame and the object classes

related to the intention. (o1t , ..., o
m
t ) is the object bounding

boxes related to the intention lt. We fine-tune Faster R-CNN

models [26] on our training data to detect objects in each

frame. The score output from the Faster R-CNN detector

is used as an object’s probability p(oit). The energy of all

related objects in the frame is

φ3(ot, lt) = −
1

m

∑m

i=1
log p(oit). (5)

2.3. Geometric Relations of HAO

The human attention bridges the human body and the

objects. The geometric relation term Ψ(xt,yt, zt, lt) de-

scribes the location and direction constraint of the human

pose, attention, and objects. It is written as

Ψ(xt,yt, zt, lt) = ψ1(xt,yt, lt) + ψ2(zt,yt, lt). (6)

Human pose and attention relation ψ1(xt,yt, lt) de-

scribes the constraint between the 3D attention direction

and the human pose. In daily-activity scenes, the body part

directions imply the attention directions [38]. For example,

when a human manipulates objects with hands, the direction

from the head to the hands implies the attention direction.

We adopt a similar method to the work [38] to model the

pose and attention relations. Eleven 3D vectors are extract-

ed from the 3D human skeleton, such as the normal vector

of the head and shoulder plane, the direction from the head

to the hands, etc. These 3D vectors are concatenated as the

attention direction feature xt,

We train a regression model from the attention direction

feature to the 3D attention direction with a 3-layer fully-

connected neural network f . For an attention feature xt, the

network f estimates a hypothesized 3D attention direction

f(xt). The relation between the human attention direction

yt and f(xt) is defined as

yt = f(xt) +wlt ,

wlt ∼ N (µlt
,Σlt),

(7)

where wlt is a noise variable following Gaussian distribu-

tion N (µlt
,Σlt). The geometric energy is written as

ψ1(xt,yt, lt) = − logN (yt|f(xt) + µlt
,Σlt). (8)

The intention lt in µlt
and Σlt suggests different geo-

metric relations in different intentions, which reflects the

constraints of intentions on attention.

Attention and object relation ψ2(zt,yt, lt) describes

the constraint between the human attention location and

the object locations in 3D space. The attention location is

closely related to the object location, but not necessarily the

same. For example, in the intention locate mug, the atten-

tion location shifts from the nearby areas to the mug.

Suppose ỹt is the 3D attention location. It is the inter-

section point of the 3D attention direction yt and the scene

point cloud. The relation between the attention location ỹt

and the object bounding box oit is formulated as

zit = ỹt + vlt,õ
i

t

,

vlt,õ
i

t

∼ N (λlt,õit ,Λlt,õ
i

t

),
(9)

where õit is the object class label of the box oit. z
i
t is the ob-

ject’s 3D location. vlt,õ
i

t

is a noise variable following Gaus-

sian distribution N (λlt,õit ,Λlt,õ
i

t

). The subscripts lt, õ
i
t in

λlt,õit and Λlt,õ
i

t

suggests that the attention-object relations

are different for different intentions and object classes.

The relation energy of multiple objects in the frame is

ψ2(zt,yt, lt) = −
1

m

m∑

i=1

logN (zt|ỹt + λlt,õit ,Λlt,õ
i

t

).

(10)
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2.4. Temporal Transition of Attention and Intention

Γ(yt−1,yt, lt−1, lt) represents the transitions of atten-

tion and intention in time domain. It is written as

Γ(yt−1,yt, lt−1, lt) = γ1(yt−1,yt) + γ2(lt−1, lt). (11)

Attention transition γ1(yt−1,yt) describes the tempo-

ral relations between attention directions in two successive

frames. It is formulated as a linear dynamic system [1, 38]:

yt = Qlt−1,ltyt−1 + ult−1,lt ,

ult−1,lt ∼ N (0,Υlt−1,lt),
(12)

where Qlt−1,lt is the transition matrix. ult−1,lt is a noise

variable following Gaussian distribution N (0,Υlt−1,lt).
The attention transition energy is

γ1(yt−1,yt) = − logN (yt|Qlt−1,ltyt−1,Υlt−1,lt). (13)

Qlt−1,lt and Υlt−1,lt are both related to the intentions

lt−1 and lt, which reflects the fact that the motion patterns

of human attention are constrained by human intentions.

Intention transition γ2(lt−1, lt) represents the transi-

tion relations between different intentions. We model the

transition as a Markov process. p(lt = j|lt−1 = i) = dij is

the transition probability between two intentions in succes-

sive frames. The transition energy is defined as

γ2(lt−1 = i, lt = j) = − log p(lt = j|lt−1 = i). (14)

3. Inference

Given an input RGB-D video I with 3D human skeletons

H, we aim to jointly output: 1) the human intention in each

frame; 2) the 3D attention direction in each frame; and 3)

the task label of the video. This problem is formulated as

(Y,L, S)∗ = argmin E(Y,L, S|I,H). (15)

We use an algorithm similar to beam search [39] to solve

Eq. (15), as shown in Fig. 5. It includes three procedures.

1) Proposing hypothesized attention points. The pos-

sible attention points on RGB images are proposed accord-

ing to human poses. As introduced in Sec. 2.3, with the

pose feature xt, a hypothesized 3D attention direction f(xt)
is computed with the network f . A 3D attention point de-

rived from f(xt) is projected onto the image plane to form

a 2D location. Around this location, we propose a group of

possible 2D attention points, as shown in Fig. 5. The point

range and step are empirically defined. Each 2D point is

attached a probability vector of all possible intentions com-

puting with the attention matching model in Eq. 4.

2) Proposing hypothesized objects. We use Faster R-

CNN [26] to detect all possible objects related to all the

Figure 5: Inference algorithm. For clarity, only parts of the pro-

posed object boxes and attention points are visualized.

tasks and intentions in each frame, as shown in Fig. 5. Each

detected box has the probabilities of all object classes.

3) Graph-guided optimization. With the hypothesized

attention points and objects, the goal is to select optimal

attention points, objects, intentions, and the task label in

each video frame to minimize E(Y,L, S|I,H).

From training samples, we construct HAO graphs for

each task category. These graphs specify the intentions, re-

lated objects, the geometric and temporal relations. Let It
be the video clip from time 1 to t. The graph-guided opti-

mization is summarized as follows:

i) In frame It, all possible combinations of attention

points, object bounding boxes, and intention labels for each

task category are generated according to the HAO graph

structure. Each of such combination is taken as one hy-

pothesized joint label of frame It.

ii) The union of one joint label of It and one joint label

sequence of the past video It−1 forms a hypothesized joint

label sequence of the video It. The energy of the hypothe-

sized joint label sequence is computed with Eq. 1. At time t,

all hypothesized joint label sequences are sorted according

to their energies. The J joint label sequences with lowest

energies are kept and others are pruned.

iii) The step i) and step ii) are iterated frame by frame

until the video ends. The joint label sequence with the low-

est energy is the output result, which includes the task label,

human attention and intentions for each frame.

4. Experiment

We evaluate our method with three experiments: inten-

tion prediction, attention prediction, and task recognition.

Intention prediction accuracy is defined as the ratio of the

6805



Figure 6: Samples in TIA dataset. Each row is a task.

correctly labeled frame number to all testing frame number.

Attention prediction error is defined as the average distance

between the predicted values and ground-truth values in all

testing frames. Task recognition accuracy is the ratio of the

correctly labeled video number to all testing video number.

4.1. TIA Dataset

We built a large-scale dataset of tasks, intentions, and

attention (TIA). Fig. 6 shows some frame examples. The

data was captured with two types of cameras simultaneous-

ly. A Kinect camera was fixed in scenes to capture RGB-

D videos of human activities from a third-person view. 14

volunteers freely perform and independently accomplish d-

ifferent tasks in various scenes.

An eye-tracking camera was worn on volunteers’ heads

to capture egocentric videos with human gaze points in each

frame. The egocentric videos and gaze points are used for

annotating the ground-truth attention points in third-person

view videos, not for training or testing in our experiment.

We manually annotated the task labels, intention label-

s, 2D attention points, object labels and bounding boxes

in each video frame. In total, the dataset contains 809

videos and approximately 330,000 frames. Each frame in-

cludes four types of data: the RGB image at resolution of

1920× 1080, the depth image, the 3D human skeleton, and

the egocentric RGB image at resolution of 1280× 960.

The dataset contains 14 classes of tasks: sweep floor,

mop floor, write on blackboard, clean blackboard, use el-

evator, pour liquid from jug, make coffee, read book, throw

trash, microwave food, use computer, search drawer, move

bottle to dispenser, and open door. It contains 70 categories

Methods Accuracy

SVM-JF 0.26

NN-JF 0.29

RGB Frame CNN [30] 0.17

H (human pose) 0.34

A (attention patch) 0.07

O (object feature) 0.18

H + Relation of H and A 0.36

A + Relation of H and A 0.28

A + Relation of A and O 0.25

O + Relation of A and O 0.28

Our HAO 0.40

Table 1: Comparison of overall inttention prediction accuracy.

of human intentions, such as locate broom, direct hand to

hold mop, check state of microwave, etc, and 28 classes of

objects, such as broom, mop, chalk, coffee jar, drawer, etc.

4.2. Implementation Details

We divide the 809 video samples into training, valida-

tion, and testing sets with the video number ratios of 0.5,

0.25 and 0.25, respectively.

For the pose matching model in Eq. (3), we extract joint

features [37] from 3D skeletons. A classifier is trained with

a L2-regularized logistic regression [8].

For the attention matching model in Eq. (4), we crop

attention patches with a 64×64 size centered at the ground-

truth attention points. With these image patches, we train a

CNN classifier with the VGG16 model [30]. The learning

rate and batch size are 0.0001 and 64, respectively.

For the object matching model in Eq. (5), we fine-tune

Faster R-CNN model [26] on our training data with VGG16

features [30]. The non-maximum suppression threshold and

the confidence threshold are 0.6 and 0.5, respectively.

4.3. Intention Prediction

Intention prediction is to label each video frame with an

intention. Table 1 shows the overall prediction accuracy of

70 intention categories. Fig. 7 shows some examples.

We compare our HAO method with other approaches, as

shown in Table 1. The methods SVM-JF and NN-JF use the

joint features (JF) [37] extracted from aligned 3D human

skeletons. With these features, SVM-JF trains a classifi-

er with support vector machines and NN-JF trains a three-

layer fully-connected neural network. SVM-JF and NN-

JF predict intentions in all testing frames with single frame

features. The method RGB Frame CNN uses whole RG-

B frames as inputs. It trains a classifier based on VGG16

model [30]. The learning rate and batch size are 0.0001 and

64, respectively.
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Figure 7: Visualization of intention prediction, attention prediction, and task recognition results. The texts on the RGB frames are the task

label and intention label, respectively.

Our model combines the different information terms to-

gether. To diagnose the effect of each term, we compute the

performance of the methods that use the information of hu-

man poses (H), attention patches (A), objects (O), and the

geometric relations between them. All the diagnosis meth-

ods adopt the same model parameters and inference algo-

rithm with HAO but only different information terms.

Tabel 1 shows that our HAO outperforms other ap-

proaches by a considerable margin. The human body fea-

tures, like joint features [37] used in NN-JF and NN-JF, de-

scribe human action information. The experimental results

show that it is difficult to distinguish human intentions only

relying on the action features.

The RGB Frame CNN [30] method uses whole frames

as inputs. The frames contain much scene and background

information. Such information is valid for object and scene

understanding, but less effective to distinguish human in-

tentions, and therefore leads to a lower performance.

Our HAO exploits the joint information of human pos-

es, attention patches, objects, and their interacting relations.

Thus, it achieves better results. This is also reflected in the

diagnosis results of Table 1. Using pure H, A, or O infor-

mation is ineffective to predict intentions. When incorpo-

rating the relations among them, the performance improves

greatly. Our HAO further improves the performance by in-

corporating all the information into a unified framework.

Fig. 7 shows that our HAO can reasonably predict in-

tentions even if humans do not have obvious actions. For

example, in the task sweep floor where a human stands, our

HAO predicts that the human’s intention is check state of

floor according to the objects and the attention location.

4.4. Attention Prediction

Attention prediction is to predict the 3D attention direc-

tions, 3D and 2D attention locations in each frame. Table 2

shows the prediction errors. Fig. 7 visualizes some atten-

tion prediction results. The 3D location error with the unit

of meter is defined in scene point clouds. For 3D attention

directions, we normalize all the attention directions so that

all direction vectors start from the 3D origin with a norm

1. The 2D location error with the unit of pixel is defined in

images at resolution of 960×540.

We compare our method with Multivariate Regression

(Mv-Reg), Linear Dynamic System with Kalman Filter
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Methods 3D Location 3D Direction 2D Location

Mv-Reg 0.656 0.543 99

LDS-KF [1] 0.656 0.562 98

NN-Reg 0.655 0.540 97

Our HAO 0.628 0.475 93

Table 2: Comparison of average attention prediction errors.

(LDS-KF) [1], and a neural network regression (NN-Reg).

The NN-Reg adopts a fully-connected regression network

with 3 layers. All the three approaches use the same input

skeleton features with our HAO.

Table 2 shows our HAO outperforms other comparison

approaches. Compared to Mv-Reg, LDS-KF [1], and NN-

Reg, our method jointly utilizes the information of human

poses, attention patches, and objects, which impressively

improves the performance both in 2D and 3D.

4.5. Task Recognition

Task recognition is to label each video with a task. We

compare our HAO with several methods: 4DHOI [39],

Frame CNN [15], and Two-Stream CNN [29]. 4DHOI

[39] jointly uses human poses, interacting objects, and the

human-object relations to label videos. Frame CNN [15] la-

bels videos by voting based on the frame classification with

CNN. Two-Stream CNN [29] combines the RGB and op-

tical flow features with convolutional neural network to la-

bel videos. Table 3 shows the overall recognition accuracy

comparison. Fig. 7 visualizes some examples.

Similar to intention prediction, we also compute the per-

formance of methods which use human poses (H), attention

patches (A), objects (O), and the relations. By analyzing the

performance of these methods, we can diagnose the effects

of different factors on task recognition.

Table 3 shows that our HAO method outperforms other

methods. Traditional activity recognition methods mainly

rely on the human appearance and motions to label videos.

However, a complex task video are often very long and con-

tains many different forms of actions, which make it hard

to distinguish the task only by appearance and motion in-

formation. Our HAO decomposes tasks into intention pro-

cesses, which is more flexible. It jointly takes advantages of

human, attention, and object information to recognize tasks,

and therefore achieves better results. The diagnosis experi-

ment results also show the advantages of our joint model.

5. Conclusion

In this paper, we study a new problem of jointly infer-

ring intentions, attention, and tasks from RGB-D videos.

Our work develops video understanding from recognizing

what humans are doing to inferring what humans are think-

Methods Accuracy

4DHOI [39] 0.62

Frame CNN [15] 0.39

Two-Stream CNN [29] 0.54

H (human pose) 0.58

A (attention patch) 0.20

O (object feature) 0.50

H + Relation of H and A 0.61

A + Relation of H and A 0.46

A + Relation of A and O 0.54

O + Relation of A and O 0.66

Our HAO 0.73

Table 3: Comparison of overall task recognition accuracy.

ing. We propose a human-attention-object (HAO) graph to

jointly represent tasks, attention, and intentions in videos.

A task is temporally decomposed into intentions, and an

intention is decomposed into the human pose, the human

attention, and the related objects. Given an RGB-D video,

a beam search algorithm is used to jointly infer the task la-

bels, the intentions, and the attention. We presented a new

large-scale video dataset of tasks, intentions, and attention.

Experiments on intention prediction, attention prediction,

and task recognition prove the strength of our approach.

The experiments show that human attention play signif-

icant roles on human intention and task modeling. In the

future work, we will study mind modeling in robotics.
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