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Abstract

Very deep convolutional neural networks offer excellent

recognition results, yet their computational expense limits

their impact for many real-world applications. We intro-

duce BlockDrop, an approach that learns to dynamically

choose which layers of a deep network to execute during

inference so as to best reduce total computation without de-

grading prediction accuracy. Exploiting the robustness of

Residual Networks (ResNets) to layer dropping, our frame-

work selects on-the-fly which residual blocks to evaluate

for a given novel image. In particular, given a pretrained

ResNet, we train a policy network in an associative rein-

forcement learning setting for the dual reward of utilizing

a minimal number of blocks while preserving recognition

accuracy. We conduct extensive experiments on CIFAR and

ImageNet. The results provide strong quantitative and qual-

itative evidence that these learned policies not only accel-

erate inference but also encode meaningful visual informa-

tion. Built upon a ResNet-101 model, our method achieves a

speedup of 20% on average, going as high as 36% for some

images, while maintaining the same 76.4% top-1 accuracy

on ImageNet.

1. Introduction

Deep neural networks are now ubiquitous in computer

vision owing to their recent successes in several important

tasks. However, great strides in accuracy have been accom-

panied by increasingly complex and deep network architec-

tures. This presents a problem for domains where fast in-

ference is essential, particularly in delay-sensitive and real-

time scenarios such as autonomous driving, robotic naviga-

tion, or user-interactive applications on mobile devices.

Most existing work pursues model compression tech-

niques to speed up a deep network [19, 4, 25, 41, 36, 32,

16, 54, 31]. While significant speed-ups are possible, the

approach yields a one-size-fits-all network that requires the

same fixed set of features to be extracted for all novel im-
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Figure 1: A conceptual overview of our approach. Rather

than execute all blocks of a ResNet, our approach learns a

policy to select the minimal configuration of blocks that is

needed to correctly classify a given input image. The re-

sulting instance-specific paths in the network not only re-

flect the image’s difficulty (easier samples use fewer blocks)

but also encode meaningful visual information (patterns of

blocks correspond to clusters of visual features).

ages, no matter their complexity. In contrast, an impor-

tant feature of the human perception system is its ability

to adaptively allocate time and scrutiny for visual recog-

nition [49]. For example, a single glimpse is sufficient to

recognize some objects and scenes, whereas more time and

attention is required to clearly understand occluded or com-

plicated ones [52].

In this spirit, we explore the problem of dynamically al-

locating computation across a deep network. In particular,

we consider Residual Networks (ResNet) [18] both due to

their strong track record for recognition tasks [18, 8, 17] as

well as their tolerance to removal of layers [50]. ResNets

are composed of residual blocks, consisting of two or more

convolutional layers and skip-connections, which enable di-

rect paths between any two residual blocks. These skip-

connections make ResNets behave like ensembles of rela-

tively shallow networks, and hence the removal of a cer-

tain residual block generally has only a modest impact on

performance [50]. However, the preliminary study of block

dropping in ResNets [50] applies a global, manually defined

dropping scheme (the same blocks for all images), which

leads to increased errors when more blocks are dropped.

We propose to learn optimal block dropping strategies
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that simultaneously preserve both prediction accuracy and

minimal block usage based on image-specific decisions.

When a novel input is presented to the network trained for

recognition, a dynamic inference path is followed, selec-

tively choosing which blocks to compute for that instance.

See Figure 1. The approach not only improves computa-

tional efficiency during inference (i.e., for a similar predic-

tion accuracy, being able to drop more residual blocks than

a static global scheme), but also facilitates further insights

into ResNets, e.g., whether different blocks encode infor-

mation about objects, whether the computation needed to

classify depends on the difficulty level of the example.

To this end, we introduce BlockDrop, a reinforce-

ment learning approach to derive instance-specific infer-

ence paths in ResNets. The main idea is to learn a model

(referred to as the policy network) that, given a novel in-

put image, outputs the posterior probabilities of all the bi-

nary decisions for dropping or keeping each block in a pre-

trained ResNet. The policy network is trained using cur-

riculum learning to maximize a reward that incentivizes the

use of as few blocks as possible while preserving the predic-

tion accuracy. In addition, the pretrained ResNet is further

jointly finetuned with the policy network to produce feature

transformations tailored for block dropping behavior. Our

approach can be seen as an instantiation of associative re-

inforcement learning [46] where all the decisions are taken

in a single step given the context (i.e., the input instance)1;

this makes policy execution lightweight and scalable to very

deep networks.

We conduct extensive experiments on CIFAR [27] and

ImageNet [10]. BlockDrop achieves 93.6% and 73.7% ac-

curacy using just 33% and 55% of blocks in a pretrained

ResNet-110 on CIFAR-10 and CIFAR-100, respectively,

outperforming state-of-the-art methods [14, 15, 12, 32]

by clear margins. Furthermore, BlockDrop speeds up a

ResNet-101 model on ImageNet by 20% while maintain-

ing the same 76.4% top-1 accuracy 2. Qualitatively, we

observe that the dropping policies learned with BlockDrop

are correlated with the visual patterns in the images, e.g.,

within the “orange” class, images containing a pile of or-

anges take an inference path that is different from that taken

by the close-up images of oranges. Furthermore, Block-

Drop policies for easy images with clearly visible objects

utilize fewer residual blocks compared to the difficult im-

ages that contain other occluding or background objects.

Note that although our analysis in this paper is focused on

vanilla ResNets, our approach could also be applied to other

recently proposed ResNet variants such as ResNeXt [55] or

Multi-Residual Networks [1], as well as other tasks beyond

image classification.

1It can also be seen as contextual bandits [29] although we do not op-

erate in an online setting which has an objective of minimizing the regret.
2https://goo.gl/EwHQcq

2. Related Work

Layer Dropping in Residual Networks. Dropping layers

in residual networks has been used as a regularization mech-

anism, similar to Dropout [44] or DropConnect [53], for

training very deep networks (e.g., over 1000 layers) with

stochastic depth [22]. Unlike our method, residual layer

dropping in stochastic depth networks happens only during

the training stage, but at test time the layers remain fixed.

Veit et al. [50] show that ResNets are resilient to layer drop-

ping at test time, which motivates our approach; however,

they do not provide a way to dynamically choose which lay-

ers could be removed from a network without sacrificing

accuracy. More recently, Huang and Wang [23] propose a

method for selecting a subset of residual blocks to be ex-

ecuted based on a sparsity constraint. In contrast to these

approaches, we propose an instance-specific residual block

removal scheme to speed up ResNets during inference.

Model Compression. The need to deploy top-performing

deep neural network models on mobile devices motivates

techniques that can effectively reduce the storage and com-

putational costs of such networks, including knowledge dis-

tillation [19, 40, 4], low-rank factorization [25, 47, 41], filter

pruning [30, 36, 32, 57], quantization [16, 54, 31], compres-

sion with structured matrices [6, 43], network binarization

[38, 7, 33], and hashing [5]. Efficient network architectures

such as SqueezeNet [24] and MobileNet [20] have also been

explored for training compact deep nets. In contrast to this

line of work where the same amount of computation is ap-

plied to all images, we focus on efficient inference by dy-

namically choosing a subset of blocks to be executed con-

ditioned on the input image. More importantly, our method

is complementary to these model compression techniques:

the residual blocks that are kept for evaluation can be further

pruned for even greater speed up.

Conditional Computation. Several conditional computa-

tion methods have been proposed to dynamically execute

different modules of a network model on a per-example ba-

sis [3, 2]. Sparse activations in combination with gating

functions are usually adopted to selectively turn on and off

a subset of modules based on the input. These gating func-

tions can be learned with reinforcement learning [2, 34, 11].

These models typically associate a reward with a series of

decisions computed after each layer/path; the resulting pol-

icy execution overhead makes it expensive to scale them up

to very deep models with hundreds or thousands of layers.

In contrast, our policy network makes all routing decisions

in a single step, resulting in lower overhead cost for the rout-

ing itself and thus larger computational savings. Reinforce-

ment learning has also been applied for dynamic feature pri-

oritization in images [26] and video [45, 56], actively de-

ciding which frames or image regions to visit next. These

techniques could be used in tandem with our approach.
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Figure 2: Illustration of our proposed framework. Given a new image, the policy network outputs dropping and keeping

decisions for each block in a pretrained ResNet, which then makes a prediction by evaluating the active blocks only. Policy

rewards account for both block usage and prediction accuracy. The policy network is trained to optimize the expected reward

with a curriculum learning strategy, and then jointly finetuned with the ResNet.

Early Prediction. Our work relates more strongly to early

prediction models, a class of conditional computation mod-

els that exit once a criterion (e.g., sufficient confidence for

classification) is satisfied at early layers. Cascade detec-

tors [13, 51] are among the earliest methods that exploit

this idea in computer vision, often relying on handcrafted

control decisions learned separately from visual features.

More recently, joint learning of features and early decisions

has been studied for deep neural networks. Teerapittayanon

et al. [48] propose BranchyNet, a network composed of

branches at each layer to make early classification deci-

sions. Similarly, Adaptive Computation Time (ACT) [15]

augments an RNN with a halting unit whose activation de-

termines the probability that computation should continue.

Figurnov et al. [14] further extend this idea to the spa-

tial domain in ResNets by applying ACT to each spatial

position of multiple image blocks. Like our work, their

formulation identifies instance-specific ResNet configura-

tions, but it only allows configurations that use early, con-

tiguous blocks in each predefined segment of the ResNet.

These early blocks usually encode low-level features in

high-dimensional feature maps, and may lack the discrim-

inative power required for the task. This issue can be mit-

igated by using images at different scales [35, 21], but at

a higher computational cost. Instead, we allow any block

to contribute to our network, allowing for a much higher

variability in potential ResNet configurations and policies.

3. Approach

Given a test image, our goal is to find the best configura-

tion of computational blocks in a pretrained ResNet model,

such that a minimum number of blocks is used, without

incurring a decrease in classification accuracy. Treating

the task of finding this configuration as a search problem

quickly becomes intractable for deeper models as the num-

ber of potential configurations grows exponentially with the

number of blocks. Learning a soft-attention mask over the

blocks also presents problems, namely the difficulty of con-

verting this mask into binary decisions which would require

carefully handcrafted thresholds. In addition, such a thresh-

olding operation is non-differentiable, making it non-trivial

to directly adopt a supervised learning framework.

We therefore leverage policy search methods from re-

inforcement learning to derive the optimal block dropping

schemes that encourage correct predictions with minimal

block usage. To this end, we first revisit the architecture

of ResNet in Sec. 3.1, and discuss why it is a good fit for

block dropping. Then we introduce our policy network in

Sec. 3.2, which learns to dynamically select inference paths

conditioned on the input image. Finally, we present the

training algorithm of our model in Sec. 3.3.

3.1. Pretrained Residual Networks

ResNets consist of multiple stacked residual blocks

which are essentially regular convolutional layers that are

bypassed by identity skip-connections. If we denote the in-

put to the i-th residual block as yi, and the function repre-

sented by its residual block as Fi, the output of this residual

block is given by: yi+1 = Fi(yi)+ yi, which is directly fed

as input to the next residual block.

The presence of identity skip-connections induces direct

paths between any two residual blocks, and hence top lay-

ers in the network are able to access information from bot-

tom layers during a forward pass while gradients can be di-

rectly passed from higher layers to lower layers in the back-

propagation phase. Veit et al. [50] demonstrated that remov-

ing (or dropping) a residual block at test time (i.e., having
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yi+1 = yi) does not lead to a significant accuracy drop.

This behavior is due to the fact that ResNets can be viewed

as an ensemble of many paths—as opposed to single-path

models like AlexNet [28] and VGGNet [42]—and so infor-

mation can be preserved even with the deletion of paths.

The results in [50] suggest that different blocks do not

share strong dependencies. However, the study also shows

classification errors do increase when more blocks are re-

moved from the model during inference. We contend this

is the result of their adopting a global dropping strategy for

all images. We posit the best dropping schemes, which lead

to correct predictions with the minimal number of blocks,

must be instance-specific.

3.2. Policy Network for Dynamic Inference Paths

The configurations in the context of ResNets represent

decisions to keep/drop each block, where each decision to

drop a block corresponds to removing a subset of paths from

the network. We refer to these decisions as our dropping

strategy. To derive the optimal dropping strategy given an

input instance, we develop a policy network to output a bi-

nary policy vector, representing the actions to keep or drop

a block in a pretrained ResNet. During training, a reward is

given considering both block usage and prediction accuracy,

which is generated by running the ResNet with only active

blocks in the policy vector. See Figure 2 for an overview.

Unlike standard reinforcement learning, we train the pol-

icy to predict all actions at once. This is essentially a single-

step Markov Decision Process (MDP) given the input state

and can also be viewed as contextual bandit [29] or associa-

tive reinforcement learning [46]. We examine the positive

impact of this design choice on scalability in Sec. 4.2.

Formally, given an image x and a pretrained ResNet with

K residual blocks, we define a policy of block-dropping

behavior as a K-dimensional Bernoulli distribution:

πW(u|x) =

K
∏

k=1

s
uk

k (1− sk)
1−uk (1)

s = fpn(x;W), (2)

where fpn denotes the policy network parameterized by

weights W and s is the output of the network after the

σ(x)= 1

1+e−x function. We choose the architecture of fpn
(details below in Sec. 4) such that the cost of running it is

negligible compared to ResNet, i.e., so that policy execu-

tion overhead remains low. The k-th entry of the vector,

s
k ∈ [0, 1], represents the likelihood of its corresponding

residual block in the original ResNet being dropped. An

action u ∈ {0, 1}K is selected based on s. Here, uk = 0
and u

k = 1 indicate dropping and keeping the k-th residual

block, respectively.

Only the blocks that are not dropped according to u will

be evaluated in the forward pass. To encourage both correct

predictions as well as minimal block usage, we associate

the actions taken with the following reward function:

R(u) =

{

1− ( |u|0
K

)2 if correct

−γ otherwise.
(3)

Here, ( |u|0
K

)2 measures the percentage of blocks utilized;

when a correct prediction is produced, we incentivize block

dropping by giving a larger reward to a policy that uses

fewer blocks. We penalize incorrect predictions with γ,

which controls the trade-off between efficiency (block us-

age) and accuracy (i.e., a larger value leads to more correct,

but less efficient policies). We use this parameter to vary

the operating point of our model, allowing different models

to be trained depending on the target budget constraint. Fi-

nally, to learn the optimal parameters of the policy network,

we maximize the following expected reward:

J = Eu∼πW
[R(u)]. (4)

In summary, our model works as follows: fpn is used

to decide which blocks of the ResNet to keep conditioned

on the input image, a prediction is generated by running a

forward pass with the ResNet using only these blocks, and

a reward is observed based on correctness and efficiency.

3.3. Training the BlockDrop Policy

Expected gradient. To maximize Eqn. 4, we utilize policy

gradient [46], one of the seminal policy search methods [9],

to compute the gradients of J . In contrast to typical re-

inforcement learning methods where policies are sampled

from a multinomial distribution [46], our policies are gen-

erated from a K-dimensional Bernoulli distribution. With

uk ∈ {0, 1}, the gradients can be derived similarly as:

∇WJ = E[R(u)∇Wlog πW(u|x)]

= E[R(u)∇Wlog

K
∏

k=1

s
uk

k (1− sk)
1−uk ]

= E[R(u)∇W

K
∑

k=1

log[skuk + (1− sk)(1− uk)]],

(5)

where again W denotes the parameters of the policy net-

work. We approximate the expected gradient in Eqn. 5 with

Monte-Carlo sampling using all samples in a mini-batch.

These gradient estimates are unbiased, but exhibit high vari-

ance [46]. To reduce variance, we utilize a self-critical base-

line R(ũ) as in [39] , and rewrite Eqn. 5 as:

∇WJ = E[A∇W

K
∑

k=1

log[skuk + (1− sk)(1− uk)]],

(6)
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where A = R(u)−R(ũ) and ũ is defined as the maximally

probable configuration under the current policy, s: i.e., ui =
1 if si > 0.5, and ui = 0 otherwise [39].

We further encourage exploration by introducing a pa-

rameter α to bound the distribution s and prevent it from

saturating, by creating a modified distribution s
′:

s
′ = α · s+ (1− α) · (1− s).

This bounds the distribution in the range 1 − α ≤ s
′ ≤ α,

from which we then sample the policy vector.

Curriculum learning. Policy gradient methods are typi-

cally extremely sensitive to their initialization. Indeed, we

found that starting from a randomly initialized policy and

optimizing for both accuracy and block usage is not effec-

tive, due the extremely large dimension of the search space,

which scales exponentially with the total number of blocks

(there are 2K possible on/off configurations of the blocks).

Note that in contrast with applications such as image cap-

tioning where ground-truth action sequences (captions) can

be used to train an initial policy [39], here no such “expert

examples” are available, other than the standard single exe-

cution path that executes all blocks.

Therefore, to efficiently search for good action se-

quences, we take inspiration from the idea of curriculum

learning [3]. During epoch t, for 1 ≤ t < K, we keep

the first K − t blocks on, and learn a policy only for the

last t blocks. As t increases, the activity of more blocks are

optimized, until finally all blocks are included (i.e., when

t ≥ K). Using this approach, the activation of each block

is first optimized according to unmodified input features in

order to assess the utility of the block, and then is gradu-

ally exposed to increasingly different feature inputs as t in-

creases and the policy for the last t blocks is jointly trained.

This procedure is efficient, and it is effective at identifying

and removing blocks that are redundant for the input data

instance being considered. It is similar in spirit to [37, 39]

that gradually exposes sequences when training with REIN-

FORCE for text generation.

Joint finetuning. After curriculum learning, our policy net-

work is able to identify which residual blocks in the origi-

nal ResNet to drop for a given input image. Though the

policy network is trained to preserve accuracy as much as

possible, removing blocks from the pre-trained ResNet will

inevitably result in a mismatch between training and testing

conditions. We therefore jointly finetune the ResNet with

the policy network, so that it can adapt itself to the learned

block dropping behavior. The principle of our joint training

procedure is similar to that of stochastic depth [22], with

the exception that the drop rates are not fixed, but are in-

stead controlled by the policy network. Alg. 1 presents the

complete training procedure for our framework.

Algorithm 1 The pseudo-code for training our network.

Input: An input image x and its label

1: Initialize the weights of policy network W randomly

2: Set epochs for curriculum learning and joint finetuning to Mcl

and Mft, respectively; and set α

3: for t← 1 to Mcl do

4: s← fpn(x;W)
5: s← α · s+ (1− α) · (1− s)
6: if t < K then

7: set s [1:K − t]= 1 ⊲ curriculum training

8: end if

9: u ∼ Bernoulli(s)
10: Execute the ResNet according to u

11: Evaluate reward R(u) with Eqn. 3

12: Back-propagate gradients computed with Eqn. 6

13: end for

14: for t← 1 to Mft do

15: Jointly finetune ResNet and policy network

16: end for

4. Experiment

4.1. Experimental Setup

Datasets and evaluation metrics. We evaluate our method

on three benchmarks: CIFAR-10, CIFAR-100 [27], and

IMAGENET (ILSVRC2012) [10]. The CIFAR datasets

consist of 60,000 32×32 colored images, with 50,000 im-

ages for training and 10,000 for testing. They are labeled for

10 and 100 classes for CIFAR-10 and CIFAR-100, respec-

tively. Performance is measured by classification accuracy.

ImageNet contains 1.2M training images labeled for 1,000

categories. We test on the validation set of 50,000 images

and report top-1 accuracy.

Pretrained ResNet. For CIFAR-10 and CIFAR-100, we

experiment with two ResNet models that achieve promis-

ing results. In particular, ResNet-32 and ResNet-110 start

with a convolutional layer followed by 15 and 54 residual

blocks, respectively. These residual blocks, each of which

contains two convolutional layers, are evenly distributed

into 3 segments with down-sampling layers in between. Fi-

nally, a fully-connected layer with 10/100 neurons is ap-

plied. See [18] for details. For ImageNet, we adopt ResNet-

101 with a total of 33 residual blocks, organized into four

segments (i.e., [3, 4, 20, 3]). Here, each residual block con-

tains three convolutional layers based on the bottleneck de-

sign [18] for computational efficiency. These models are

pretrained to match state-of-the-art performance on the cor-

responding datasets when run without our policy network.

Policy network architecture. For our policy network, we

use ResNets with a fraction of the depth of the base model.

For CIFAR, we use a ResNet with 3 blocks (equivalently

ResNet-8), while for ImageNet, we use a ResNet with 4

blocks (equivalently ResNet-10). In addition, we downsam-
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CIFAR-10 CIFAR-100

Acc K Acc (ft) K (ft) Acc K Acc (ft) K (ft)

R
es

N
et

-3
2

FirstK 16.6 10 84.3 7 23.3 13 66.5 14
RandomK 20.5 10 88.9 7 38.3 13 67.6 14

DistributeK 23.4 10 90.2 7 31.9 13 66.7 14
Ours 88.6 9.4 91.3 6.9 58.3 12.4 68.7 13.1

Full ResNet 92.3 15 92.3 15 69.3 15 69.3 15

R
es

N
et

-1
1

0 FirstK 13.3 21 71.3 17 63.5 50 57.9 31
RandomK 14.5 21 90.1 17 66.3 50 68.4 31

DistributeK 13.0 21 92.7 17 49.6 50 69.9 31
Ours 75.4 20.1 93.6 16.9 72.1 49.1 73.7 30.2

Full ResNet 93.2 54 93.2 54 72.2 54 72.2 54

Table 1: Accuracy and block usage with our policies vs. heuristic baselines, with and without jointly finetuning (ft) for

all methods. For fair comparisons, K is selected based on the average block usage of our method, and this can be different

before and after finetuning. Note that the average value of K for our method is reported here for brevity. It is determined

dynamically per image, and can be as low as 3 (out of 54) in ResNet-110 on CIFAR-10.

ple images to 112×112 as the input of the policy network

for ImageNet experiments. The computation required for

the policy network is 4.8% and 3.0% of the total ResNet

computation for the CIFAR (ResNet-110) and ImageNet

(ResNet-101) models respectively, making policy compu-

tations negligible (it takes about 0.5 ms per image on aver-

age for ImageNet). While a recurrent model (e.g., LSTM)

could also serve as the policy network, we found a CNN to

be more efficient with similar performance.

Implementations details. We adopt PyTorch for imple-

mentation and utilize ADAM as the optimizer. We set α to

0.8, learning rate to 1e−4, and use a batch size of 2048 dur-

ing curriculum learning. For joint finetuning, we adjust the

batch size to 256 and 320 on CIFAR and ImageNet, respec-

tively, and adjust the learning rate to 1e − 5 for ImageNet.

Our code is available at https://goo.gl/NqyNeN.

4.2. Quantitative Results

Learned policies vs. heuristics. We compare our block

dropping strategy to the following alternative methods:

(1) FIRSTK, which keeps only the first K residual blocks

active; (2) RANDOMK, which keeps K randomly selected

residual blocks active; (3) DISTRIBUTEK, which evenly

distributes K blocks across all segments. For all baselines,

we choose K to match the average number of blocks used

by BlockDrop, rounding up as needed. DistributeK allows

us to see if feature combinations of different blocks learned

by BlockDrop are better than features learned from the re-

stricted set of early blocks of each segment. This setting

resembles the allowable feature combinations from early

stopping models applied to ResNets.

The results in Table 1 highlight the advantage of our

instance-specific policy. On CIFAR-10, the learned poli-

cies give an accuracy of 88.6% and 75.4% using an av-

erage of 9.4 and 20.1 blocks from the original ResNet-32

and ResNet-110 respectively, outperforming the baselines

by a large margin. Furthermore, the instance-specific na-

ture of our method allows us to capture the inherent vari-

ance in the computational requirements of our dataset. We

notice a wide distribution in block usage depending on the

image. With ResNet-110, nearly 15% of the images use

fewer than 10 blocks, with some images using as few as

3 blocks. This variance cannot be captured by any static

policies. Similar trends are observed on CIFAR-100. This

confirms that dropping residual blocks with policies com-

puted in a learned manner is indeed significantly better than

heuristic dropping behaviors. The fact that RandomK per-

forms better than FirstK is interesting, suggesting the value

of having residual blocks at different segments to learn fea-

ture representations at different scales.

Impact of joint finetuning. Next we analyze the impact of

joint finetuning (cf. Sec. 3.3) for both our approach and the

baselines, denoted ft in Table 1.

Joint finetuning further significantly improves classifica-

tion accuracy using fewer (or almost the same) number of

blocks. In particular, on CIFAR-10, it offers absolute per-

formance gains of 2.7% and 18.2% using 2.5 and 3.2 fewer

blocks with ResNet-32 and ResNet-110 respectively com-

pared with curriculum training alone. Similarly, on CIFAR-

100, joint finetuning improves accuracies and brings down

block usage with ResNet-110. For ResNet-32, we observe

0.7 more blocks on average are used after finetuning, which

might be due to the challenging nature of CIFAR-100 re-

quiring more blocks to make correct predictions. Compar-

ing ResNet-110 with ResNet-32, we observe that the com-

putational speed-ups are more dramatic for deeper ResNets

owing to the fact that there are more blocks with potentially

diverse features to select from. When built upon ResNet-

110, our method outperforms the pretrained model by 0.4%

and 1.5% (absolute) using 31% and 55.9% of the original
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blocks on CIFAR-10 and CIFAR-100, respectively. Addi-

tionally, we observe that some images use as few as 5 blocks

for inference. These results confirm that joint finetuning can

indeed assist the ResNet to adapt to the removal of blocks

by refining its feature representations while maintaining its

capacity for instance-specific variation.

BlockDrop vs. state-of-the-art methods. We next com-

pare BlockDrop to several techniques from the literature.

We vary γ, which controls our algorithm’s trade-off be-

tween block usage and accuracy, to get a range of models

with varying computational requirements. We compute the

average FLOPs utilized to classify each image in the test

set; FLOPs are a hardware independent metric, allowing for

fair comparisons across models. 3

We compare to the following state-of-the-art methods 4:

(1) ACT and (2) SACT [14], (3) PFEC [32], (4) LCCL [12].

ACT and SACT learn a halting score at the end of each

block, and exit the model when a high-confidence is ob-

tained. PFEC and LCCL reduce the parameters of convolu-

tional layers by either pruning or sparsity constraints, which

is complementary to our method. Other model compression

methods cited earlier do not report results on larger ResNet

models, and hence are not available to compare here.

Figure 3 (a) presents the results on CIFAR. We observe

that our best model offers 0.4% performance gain in accu-

racy (93.6% vs. 93.2%) using 65% fewer FLOPs on average

(1.73 × 108 vs. 5.08 × 108) over the original ResNet-110

model. The performance gains might result from the regu-

larization effect of dropping blocks when finetuning the net-

work as in [22]. Compared to ACT and SACT, our method

only requires 50% of the FLOPs to achieve the same level

of precision (>93.0%). BlockDrop also exhibits a much

higher variance in its FLOPs over other methods. Com-

pared to SACT, this variance is 3 times larger, allowing

some samples to achieve a speedup as high as 85% with

correct predictions. Further, BlockDrop also outperforms

PFEC [32] and LCCL [12], which are complementary com-

pression techniques and can be utilized together with our

framework to speed up convolution operations.

Figure 3 (b) presents the results for ImageNet. Com-

pared with the original ResNet-101 model, BlockDrop

again achieves slightly better results (76.8% vs. 76.4%) with

6% speed up (1.47×1010 vs. 1.56×1010 FLOPs). Block-

Drop performs on par with the full ResNet with a 20%

speed up (1.25×1010 vs. 1.56×1010 FLOPs) when we relax

γ slightly. This 20% acceleration without degradation in ac-

curacy is quite promising. For example, in a high-precision

3Note that we consider the multiply-accumulate operation as a two step

process yielding two floating point operations and we only compute FLOPs

for convolutional layers and linear layers as they account for most of the

computation for inference.
4For ACT and SACT on CIFAR, we train models with the authors’

code. For the rest, we compare to numbers in the respective papers.

(a) CIFAR-10 (b) ImageNet

Figure 3: FLOPs vs. accuracy on CIFAR-10 and Ima-

geNet. Results compared to several state-of-the art meth-

ods. Error bars denote the standard deviation across images.

Time (ms) Speed-up

R
es

N
et

-3
2 Full ResNet 7.71 –

Ours-single 6.56 14.9%

Ours-seq 9.92 -28.7%

R
es

N
et

-1
1
0

Full ResNet 24.1 –

Ours-single 10.9 52.3%

Ours-seq 29.1 -20.7%

Table 2: Impact of our single-step policy inference on

efficiency for CIFAR-10. See text for details.

image recognition service accepting 1 billion daily API

calls, such a speedup would save around 1000 hours of com-

putation on a single P6000 GPU (0.024 seconds/image).

Efficiency advantage of single-step policy. The single-

step design of our policy network—where the full dynamic

inference path is computed without revisiting intermediate

outputs of the network—has important efficiency advan-

tages. In short, it permits lower policy execution overhead.

To examine the impact empirically, we devised a variant of

BlockDrop that uses traditional RL policy learning to in-

stead make sequential decisions (see Supp. for details). We

select models of both variants that attain equivalent accu-

racy, with the same number of blocks. To ensure fair com-

parison, we run all three models on the same single NVIDIA

P6000 GPU while disabling other processes.

Table 2 shows the results for CIFAR-10. We report

the time per test image and the speed-up over the original

ResNet run in entirety with no block dropping. This result

confirms the efficiency advantage of our single-step design:

to reach the same accuracy, we need much less overhead

(e.g., less than 60% of the time required by the sequential

variant). In fact, the sequential variant takes even longer to

run than the original full ResNet models, yielding a nega-

tive speed-up. These results reaffirm our choice to compute

all actions in one shot rather than compute them sequen-

tially. They also stress the importance of accounting for

any overhead a deep net speed-up scheme incurs to make

its speed-up decisions.
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Policy 1

Policy 2

Policy 3

Orange Castle Volcano Hamster

Figure 4: Policies learned for four ImageNet classes, volcano, orange, hamster and castle. These policies correspond to

a set of active paths in the ResNet, which seem to cater to different “states” of images of the particular class. For volcano,

these include features like smoke, lava, etc., while for orange they include whether it is sliced/whole, quantity.

4.3. Qualitative Results

Finally, we provide qualitative results based on our

learned policies. We investigate the visual patterns encoded

in these learned policies and then analyze the relation be-

tween block usage and instance difficulty.

Visual patterns in policies. Intuitively, related images can

be recognized by their similar characteristics (e.g., low-

level clues like texture and color). Here, we analyze similar-

ity in terms of the policies they utilize by sampling dominant

policies for each class and visualizing samples from them.

Figure 4 shows samples utilizing three different policies for

four classes. It can be clearly seen that images under the

same policy are similar, and different policies encode dif-

ferent styles, although they all correspond to the same se-

mantic concept. For example, the first inference path for the

“orange” class caters to images containing a pile of oranges,

and close up views of oranges activate the second inference

path, while images containing slices of oranges are routed

through the third inference path. These results indicate that

different paths encode meaningful semantic visual patterns,

based on the input images. While this happens in standard

ResNets as well, all images necessarily utilize all the paths,

and disentangling this information is not possible.

Instance difficulty. Instance difficulty is well understood in

the context of prediction confidence, where easy and diffi-

cult examples are classified with high and low probabilities,

respectively. Inspired by the above analysis that revealed in-

teresting correlations between the inference policies and the

visual patterns in the images, we try to characterize instance

difficulty in terms of block usage. We hypothesize that sim-

ple examples (e.g. images with clear objects, without oc-

clusions) require fewer computations to be correctly recog-

nized. To qualitatively analyze the correlations between in-

stance difficulty and block usage, we utilize learned policies

that lead to high-confidence predictions for each class.

Figure 5 illustrates samples from ImageNet. The top row

contains images that are correctly classified with the least

number of blocks, while samples in the bottom row utilize

the most blocks. We see that samples using fewer blocks are

indeed easier to identify since they contain single frontal-

view objects positioned in the center, while several objects,

easy

hard

easy

hard

Goldfish - easy (23 blocks) vs. hard (29 blocks) Artichoke - easy (18 blocks) vs. hard (28 blocks)

  Spacecraft - easy (23 blocks) vs. hard (29 blocks) Bridge - easy (24 blocks) vs. hard (29 blocks) 

Figure 5: Samples from ImageNet classes. Easy and hard

samples from goldfish, artichoke, spacecraft and bridge to

illustrate how block usage translates to instance difficulty.

occlusion, or cluttered background occur in samples that re-

quire more blocks. This confirms our hypothesis that block

usage is a function of instance difficulty. We stress that this

“sorting” into easy or hard cases falls out automatically; it

is learned by BlockDrop.

5. Conclusion

We presented BlockDrop, an approach for faster infer-

ence in ResNets by selectively choosing residual blocks to

evaluate in a learned and optimized manner conditioned on

inputs. In particular, we trained a policy network to pre-

dict blocks to drop in a pretrained ResNet while trying to

retain the prediction accuracy. The ResNet is further jointly

finetuned to produce smooth feature representations tailored

for block dropping behavior. We conducted extensive ex-

periments on CIFAR and ImageNet, observing consider-

able gains over existing methods in terms of the efficiency-

accuracy trade-off. Further, we also observe that the poli-

cies learned encode semantic information in the images.
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