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Abstract

Automatically describing open-domain videos with natu-

ral language are attracting increasing interest in the field of

artificial intelligence. Most existing methods simply borrow

ideas from image captioning and obtain a compact video

representation from an ensemble of global image feature

before feeding to an RNN decoder which outputs a sen-

tence of variable length. However, it is not only arduous

for the generator to focus on specific salient objects at dif-

ferent time given the global video representation, it is more

formidable to capture the fine-grained motion information

and the relation between moving instances for more sub-

tle linguistic descriptions. In this paper, we propose a Tra-

jectory Structured Attentional Encoder-Decoder (TSA-ED)

neural network framework for more elaborate video cap-

tioning which works by integrating local spatial-temporal

representation at trajectory level through structured atten-

tion mechanism. Our proposed method is based on a LSTM-

based encoder-decoder framework, which incorporates an

attention modeling scheme to adaptively learn the corre-

lation between sentence structure and the moving objects

in videos, and consequently generates more accurate and

meticulous statement description in the decoding stage. Ex-

perimental results demonstrate that the feature representa-

tion and structured attention mechanism based on the tra-

jectory cluster can efficiently obtain the local motion infor-

mation in the video to help generate a more fine-grained

video description, and achieve the state-of-the-art perfor-

mance on the well-known Charades and MSVD datasets.
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1. Introduction

Video captioning which aims at automatically describ-

ing videos containing rich and open-domain activities with

natural language sentences, is a core problem towards high-

level video understanding and has recently received increas-

ing interest in both computer vision and artificial intelli-

gence communities. It has a variety of practical applications

including human-robot interaction, video indexing, and de-

scribing movies for the blind. Despite recent progress,

video captioning remains a very challenging problem that

calls for more accurate solution.

Conventional video captioning algorithms are based on

template-based methods [8, 17, 29], which works by pre-

defining a serious of sentence generation template with

some specific grammar rules, and adaptively correlating

each part of the sentence with detected object, object prop-

erties as well as object relationship from video content anal-

ysis. Though this kind of method is simple and intuitive,

they suffer from limited sentence templates and can only

generate very rigid sentence descriptions. Benefit from the

rapid development of deep neural networks, especially Re-

current Neural Network (RNN), sequence learning method

have recently been widely used in video captioning and

achieved very inspiring results. It has quickly become the

mainstream framework for solving the problem [21, 30].

This kind of method is primarily based on an encoder and

decoder mechanism to recurrently map the feature embed-

ding of a video clip to a word sequence. Specifically, an en-

coder neural network (CNN or RNN) reads the video frames

and generate a compact video representation, which is in

turn fed to a decoder RNN or its variants (LSTM, GRU,

etc) to generate a natural sentence word by word. RNN

based sequence learning method is originally inspired by

the recent advances in neural machine translation and has

attracted a line of improved work ever since its emergence.

However, all these methods utilize global features ex-

tracted at image-level for video feature representation, ig-

noring the movement details of various objects within the

video, they thus can only generate very general descrip-
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tion (e.g. “cooking in the kitchen” vs “slice the tomatoes

and put them in the pot”). Though temporal structure has

been modeled, they usually can only accurately describe un-

complicated video activities with a single dominant object.

On the other hand, attention mechanism can be applied to

establish an explicit relationship between the generated sen-

tence and the content in the video and thus provides an inter-

pretable mechanism for the generated sentence description.

However, existing attention modeling used in video caption-

ing only confines the attended target to one entire frame

or some specific object in a single frame image, ignoring

the influence of local motion information on the refined de-

scription. In fact, the motion of objects and their parts are

very informative cue for video comprehension. Imagine we

see a person holding a plate, we have to watch a sequence

of motion trajectory of the hand and the plate before we can

conclude that he is to wash dishes or to take the dishes.

Moreover, the previous method treats each sentence as a

chain structure, ignoring the semantic structure of the sen-

tence. All identified objects are fed into the attention model

in spite of their importance and relations in video, which

are indeed less discriminative for major content of video.

We argue that structure information exists in the sentence is

crucial for video caption. For instance, we watch a video

regarding a man siting on a chair playing with a phone, it is

only when we have captured the overall configuration of the

man and the chair we can conclude that he is using a phone

rather than talking to a phone. However, how to encode the

sentence structured information into video caption remains

a challenge as we lack groundtruth sentence and are thus

not able to get predefined semantic structured information

during inference.

To address the two problems above, we propose a

trajectory structured attentional encoder-decoder frame-

work (TSA-ED) which works by incorporating an attentive

structured localization mechanism in a prevailing LSTM-

based encoder and decoder framework. In particular, our

proposed TSA-ED is composed of a pre-processing stage

for trajectory cluster feature representation and a structured

aware encoder-decoder network framework. In the pre-

processing stage, we extract a set of trajectory cluster fea-

tures. Each trajectory cluster well captures one specific

local motion pattern and it is used in the decoding phase

for local spatial-temporal feature attention. During the de-

coding phase, we dynamically change the feature vectors

of candidate spatial-temporal regions in video and simul-

taneously generate the caption. Specifically, based on the

structure parsed from the sentence and the corresponding

mapping between word and related motion region, we can

extract the phrase-level corresponding spatial-temporal fea-

ture to model the overall configuration of motion objects

which serves as a candidate feature vector for subsequent

word prediction.

In summary, this paper has the following contributions:

• We propose a novel trajectory structured attentional

network which fully consider both the motion infor-

mation and the sentence semantic structure with an at-

tentive structured localization mechanism. It is able to

generate more elaborate and more accurate video cap-

tioning than existing traditional global image feature

or static object representation based methods.

• The attentive trajectory localization mechanism can

be regarded as an effective visualization tool and can

greatly enhance the model’s interpretability, so that we

can roughly obtain the motion sequence correspond-

ing to each word or clause while performing sentence

inference.

• The proposed TSA-ED method achieves the state-

of-the-art performance on the Charades and MSVD

datasets with different evaluation metrics in our exper-

iments.

2. Related work

Previous video captioning algorithms are based on

template-based methods, which are mainly based on a two-

step approach, including role-word detection(eg.,subject,

verb and object) and language grammar rules definition.

In such works, the sentence for video description is first

split into parts, each of which is aligned with visual con-

tent. For example, [17] learns a Conditional Random

Field (CRF) to model the relationships between different

components of the input video and generate description for

video. However these methods are insufficient to model the

richness of visual and semantic information in video cap-

tioning. Recently, benefit from the rapid development of

deep learning, video captioning has made great success and

lots of research works have proposed to use recurrent neu-

ral networks to generate video descriptions. The baseline

of encoder-decoder framework was first proposed in [22],

which used CNN-based mean pooling method to encode the

video frame-level information and adopt a RNN to decoder

the sentence. More recently, inspired by attention mech-

anism which has made great success in image captioning,

multi-label classification [27, 4], and natural language pro-

cessing, many works [30, 31] use soft attention method to

selectively attend most salient video frame to generate video

description. However, existing attention modeling used in

video captioning only confines the attended target to one

entire frame or some specific object in a single frame im-

age, ignoring the influence of local motion information on

the refined description.

Dense Trajectory [23] and its improved version: im-

proved Dense Trajectories [24] have made great success
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Figure 1. The overview of the Trajectory Structured Attentional Encoder-Decoder Network framework. Our method consists of an encoding

phrase for global feature representation and an decoding stage for generating video description by incorporating motion information and

the sentence semantic structure.

in video recognition and general video classification tasks.

Beside the hand-crafted visual features like Dense trajec-

tories, researchers have started exploring CNN on video

representation. [19] proposed two stream networks to com-

bine optical flow frame and RGB stream as inputs to train

the ConvNets, which achieved comparable performance

with the state-of-the-art hand-crafted features. More re-

cently, [25] proposed trajectory-pooled deep convolutional

descriptor (TDD), which combines the advantages of hand-

crafted features and deep learning feature. In this paper, we

argue that the trajectory-based motion information can also

be used to improve the video caption results, and thus utilize

the trajectory motion information in the detail enhancement

of video descriptions generation.

Recently, some work explore to incorporate sentence

parsing to solve visual tasks. For example, [3] utilizes the

parsed image entities’ relation to enhance the caption re-

sults. [11] proposes to use parsed sentence to learn phrase

level corresponding between image region and text phrase.

However, Our work can be regarded as the first effort to

leverage the structure of sentence in video captioning. Dif-

ferent from most of the previous sequence attention model

which attend video frame or frame region, our work con-

tributes to fully exploit the video temporal information by

attending the trajectory clusters and the relation between

motion instances and thus provides the explanation for

video captioning.

3. Trajectory Structured Attentional Encoder-

Decoder Network

In this section, we devise our customized encoder and

decoder architecture with incorporated trajectory structured

attention mechanism. As shown in Fig. 1, our proposed

method framework consists of a pre-processing stage for

trajectory feature extraction, an encoder phase for global

feature representation and a decoder stage for generating

video description sentence by structured attending corre-

sponding motion information for the predicted word.

3.1. Trajectory Grouping and Feature Extraction

Video trajectory feature has been widely recognized

as a superior description for motion information, and has

demonstrated very promising results in video classification

as well as activity recognition. In this paper, we resort to

point trajectory feature for more refined video description

generation. We first refer to [16] and extract dense point

trajectories T = {T1, T2, ..., TN} over the entire video vol-

ume, where N is the number of trajectories and Ti denotes

the ith trajectory in the video. These trajectories are cal-

culated by first densely sampling a set of points on a grid

and performing sample points tracking by media filtering of

dense flow field. To avoid the drifting problem of tracking,

the maximum length of trajectory is set as 15-frame. To

group the trajectories, we compute the similarity between

each trajectory pair and form an N × N affinity matrix.

We use the distance metric proposed in [16] for grouping,
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which considers the temporal overlapping, spatial proximity

and speed similarity in evaluation. We also threshold on the

trajectory pair distance and enforce the affinity to be zero

for those are not spatially close (i.e., distance larger than a

default threshold). Following [16], we further apply graph

based clustering method and partition the detected trajecto-

ries into groups based on the affinity matrix, each group is

called a trajectory cluster. Given a video V , we can finally

obtain m trajectory clusters.

Given the ith trajectory cluster TC(i) =
{Ti1, Ti2, ..., TiK} with K trajectories, we denote

each trajectory as a position point sequence Tik =

{(x1

ik, y
1

ik, z
1

ik), (x
2

ik, y
2

ik, z
2

ik), ..., (x
L
ik, y

L
ik, z

L
ik)}, with

(xl
ik, y

l
ik, z

l
ik) being the 3D coordinates of the lth point

in trajectory Tik and L being the length of the trajectory.

Following [25], we apply deep convolutional network

and describe each trajectory as a trajectory-pooled deep-

convolutional descriptor (TDD). In principle, any kind of

ConvNet architecture can be selected for TDD extraction.

Without loss of generality, assume that we extract feature

from one selected output feature map of a ConvNet. We

first separately feed each frame image to the ConvNet to

generate a feature map of size H × W × N , where H , W
and N are respectively the height, width and number of

channels of the output feature map, concatenating all the

feature maps along the duration of the video, we can finally

obtain an entire feature map C ∈ RH×W×L×N , with L
being the length of the video clip. Given this video feature

map, a trajectory point with coordinates (xp, yp, zp will be

center on (r × xp, r × yp, r × zp) in feature map, where

r denotes the map size ration with respective to the input

size. The feature of Tik can thus be calculated as

Fik =

L
∑

p=1

C(r × xp
ik, r × ypik, r × zpik)/L, (1)

and the feature vector of the trajectory cluster is computed

as the mean pooling of all included trajectory feature vec-

tors, Denoted as Fi =
∑K

k=1
Fik/K.

3.2. Encoder­Decoder Framework

The encoder-decoder framework is composed of two net-

works, including the encoder and the decoder. The encoder

network EN learns to encode the input data x into a se-

quence of feature vectors: V = {v1, v2, ..., vk} = EN(x).
The architecture choice of the EN depends on the type of in-

put data. For example, for static spatial data (e.g. image), it

is natural to choose convolutional neural network, for tem-

poral and sequential data, recurrent neural network (RNN)

or its variants are very good options, while for spatial-

temporal data, such as videos, a combination of CNN and

RNN is a good alternative. The decoder network takes the

encoder representation V as input and learns to generate the

output y. As with the encoder, the architecture of the de-

coder can be CNN or RNN, depending on the type of y. For

video captioning, as the output is a word sequence, RNN is a

method of choice. The RNN decoder DN runs sequentially

to produce the output sequence y = {y1, y2, ..., yn}, with

element yt denoting the predicted word at tth time step.

Specifically, at each time step t, the RNN updates its hid-

den state ht based on its previous stage ht−1, the previous

output yt−1 as well as the encoder embedding V , and cal-

culates the output yt as:
[

yt
ht

]

= DN(ht−1, yt−1, V ) (2)

3.3. Encoder: LSTM Encoding on Temporal Seg­
ments

Deep convolutional neural networks have recently

achieved many successes in visual recognition tasks and

the pre-trained CNN models for object classification have

been demonstrated very effective feature extractor for other

vision tasks such as object detection and visual caption-

ing. In this paper, we resort to the most successful clas-

sification model called deep ResNet [9] for frame image

feature extraction. Inspired by the temporal segment net-

works proposed in [26], we exploit a sequence of short snip-

pets sparsely sampled from the entire video for approximate

video feature representation, which has been proved an effi-

cient video feature representation for accurate action recog-

nition. Given a video clip, we first divide it into S segments

of equal time interval and randomly sample a frame from

each of them. Then we separately feed each sampled frame

image to a pre-trained ResNet model and extract the deep

feature vector from the pool5 layer with 2048-Dimension.

Let FG = {F1, F2, ..., FS} denote the extracted global fea-

ture of the video clip. We further add one linear transform

layer to transform the feature vector of each frame into new

feature embedding, which aims at dimensionality reduction.

Finally, we can obtain S deep feature embedding, denoted

as V = {V1, V2, ..., VS}. To better model the sequential

and temporal information of the video, we apply LSTM

network to encode V into a global feature representation

with fixed length. The LSTM network consists of S steps,

and learns to predict a feature embedding at each step s by

looking at the previous LSTM hidden state ht−1 and the

feature input Vs of current stage, the output is formulated as

ht = LSTM(ht−1, Vt). Finally, the output feature vector of

the last hidden stage hS is treated as the global video fea-

ture representation, which serves as initial input for caption

generation in the decoder network.

3.4. Decoder: Structured Attention LSTM for
Video Description Generation

Inspired by the good performance of applying RNN

in visual caption generation, we propose to use LSTM
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for video description generation, but incorporate with tree

structured semantic attention. As illustrated in Fig 1, we

devise our trajectory structured LSTM video captioning

model by injecting both the global video representation pro-

duced by the encoder and the attentive tree structured mo-

tion feature into LSTM.

Before we introduce our method, we first review the

transition-based dependency parsing [2] and then show how

to incorporate semantic relation parsed from the tree into

video caption framework. Here we employ the arc-standard

system [2] as the basis of parser. In the arc-standard system,

a configuration c = (S,B,A) consists of a stack S, a buffer

B, and a set of dependency arcs A. The initial configuration

for a sentence {w1, ..., wn} is S = [root], B = [w1, ..., wn],

A = ∅. A configuration c is terminal if the buffer is empty

and the stack contains the single node root, and the parse

tree is given by Ac. Denoting si(i = 1, 2, ...) as the ith top

element on the stack, and bi as the ith element on the buffer,

the arc-standard system define three types of transitions:

• Left-arc(l): adds an arc s1 → s2 with label l and re-

moves s2 from the stack.

• Right-arc(l): adds an arc s2 → s1 with label l and

removes s1 from the stack.

• Shift: moves b1 from the buffer to the stack.

a dependency parse tree will be given by arcs A as we con-

tinue to execute this transition sequence until the c is termi-

nal.

Given a video V and its corresponding sentence

{w1, w2, ..., wn}, we extract p trajectory clusters from the

video serving as the basis of the feature vectors F , the fea-

ture of which are denoted as {F1, F2, ..., Fp}. We also get

the transition sequence of the sentence, which are denoted

as {T1, T2, ..., Tk}. At the beginning, the stack S = [root]
and the buffer B = [w1, w2, ..., wn]. we repeated perform

the state transition until the configuration is terminal.

• If current T is equal to shift, a word wi will be moved

from the buffer to the stack. The process is similar to

generating next word in visual caption if we consider

the current stack state as a sentence is being generated,

so we utilize the soft attention based method to pre-

dict next word wi from the current feature vectors F .

Specifically, given the feature matrix of m feature vec-

tors VTC ∈ ℜd∗m with each row corresponds to a d di-

mension feature vector and the hidden state ht−1 ∈ ℜd

of the LSTM, we feed them to a single linear transform

layer followed by a softmax function to calculate the

attention distribution over the m feature vectors of a

given video:

zt = wT
h tanh

(

WvVTC + (Wght−1)1
T
)

(3)

αt = softmax (zt) (4)

where Wv,Wg ∈ ℜm∗d and wh ∈ ℜm are the parame-

ters to be learned. 1 ∈ ℜm is a vector with all elements

set to 1. αt ∈ ℜm is the attention weight of m feature

vectors. Given the attention distribution, our context

feature vector is calculated as:

ct =

m
∑

i=1

αtiFi. (5)

The attention distribution allows the decoder to selec-

tively focus on some salient motion groups at different

time and simultaneously consider their context infor-

mation, then the current hidden state ht is updated as:

ht = LSTM(ht−1, ct, wt) (6)

The probability over a vocabulary of possible words at

time t can be calculated as:

pt = softmax(Wpht + b), (7)

with Wp, b being the parameters to be learned in the

network. Suppose maximum attention weight among

αt is αtj , then we mapping wi to Fj to indicate that wi

is most related to the visual region Fj .

• If current T is equal to left-arc, according to the tran-

sition system, we adds an arc wi → wj and remove

wj from the stack, then we dynamically change the

feature vectors of F as following: suppose wi and its

child nodes {w1

i , w
2

i , ..., w
t
i} in dependency tree map-

ping features are {Fi, F
1

i , F
2

i , ..., F
t
i }, all these (t+1)

features will be eliminated from the F , and a new fea-

ture vector Fnew which based on these (t+1) features

will be added into the F . To compute the Fnew, since

the position of these (t+1) spatial temporal proposals

positions are known, we can choose a minimum spa-

tial temporal proposal which contain all of them and

then extract this proposal’s feature as our newly feature

vector. Specifically, we do roi pooling [7] on convolu-

tional feature maps over time to represent the newly

added feature vector Fnew. We argue that the Fnew

reflects the relation information between moving ob-

ject which exists under the subtree rooted in Si.The

situation when T is equal to right-arc is similar to the

situation T is equal to left-arc.

4. Network Training and Description Genera-

tion

The goal of video captioning is to generate a word se-

quence for a given video. The calculation of each word can

be treated as predicting a distribution over a word vocabu-

lary:

P (wt|w1:t−1, V, VTC ,W ) (8)
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where wt denotes the embedding of the tth word and W
represents the model parameters. The network model learns

to predict a word at each step by looking at the global video

feature V , the features of the trajectory clusters VTC and

the previous predicted words. The overall loss function for

optimization is set to be the log-likelihood over the entire

training set.

N
∑

i=1

ti
∑

j=1

− logP (wi
j |w

i
1:j−1

, Vi, ViTC ,W ) (9)

where N is total number of training video-description pairs

and ti denotes the number of words within description wi.

We use Stochastic Gradient Descent to find the optimum

with gradient computed via Backpropageation through time

dimension[28].

During the testing phase, since we don’t have ground

truth sentence, we cannot get the corresponding transition

sequence. However, during decoding, when a word is pre-

dicted, the newly generated word would be added into the

stack, so the stack information is complete. Like [2], we

train a dependency parser only depended on stack state, for

more details, please refer to [2]. By this way, with the

learned parser, we can determine the next transition state

according the current stack information and generate the

sentence like the way we do in training.

We choose BeamSearch method [21] to generate de-

scriptions for a testing video.In our experiment, we set the

beam size k to 5.

5. Experiments

We test the proposed approach on two benchmark

datasets, including MSVD and Charades. In this section,

we introduce our experiments and analyze the results in de-

tails.

5.1. Datasets

MSVD. This dataset contains 1970 short video clips col-

lected from YouTube. Each video clip typically describes a

single activity in open domain and is annotated with roughly

40 English descriptions. For fair comparison, we follow the

splits setting provided in [21], with 1200 videos for training,

100 videos for validation , and 670 videos for testing.

Charades. This dataset is more challenging. It consists of

9848 videos with an average length of 30 seconds. Differ-

ent from MSVD datasets, it focuses on common household

activities in indoors scenes which can be quite diverse in ac-

tivity and places. Following [18], we split the datasets into

three parts, including 7569 for training, 400 for validation

and 1863 for testing.

5.2. Evaluation Metrics

We employ three popular metrics for evaluation, includ-

ing BLEU [15], METEOR [1] and CIDEr [20].

BLEU is the most popular metric for evaluation of ma-

chine translation performance and it is based on the n-gram

precision. As with previous works, we choose 4-gram for

evaluation. The METEOR metric is calculated base on the

alignment between a given hypothesis sentence and a set of

candidate reference sentences. It works by comparing ex-

act token matches, stemmed tokens, paraphrase matches, as

well as semantically similar matches using WordNet syn-

onyms. CIDEr, on the other hand, computes the average

cosine similarity between n-grams found in the generated

description and those found in reference sentences, weight-

ing them using TF-IDF. The authors of CIDEr [20] reported

that CIDEr and METEOR are always more accurate, espe-

cially when the number of reference captions is low. To

ensure a fair evaluation, we use the Microsoft COCO evalu-

ation toolkit to compute all scores, as done in previous video

captioning works( [21], [30]).

5.3. Experimental Settings

For video segment frame representation, we first divide

the video into 3 segments, randomly sample a frame from

each segment and take the output of 2048-dimension from

the output of the pool5 layer of ResNet152 [9] as the seg-

ment frame representation. While performing the represen-

tation of video trajectory clusters, we take the output of last

convolutional feature map of ResNet152 [9] for TDD ex-

traction. For sentence representation, We first convert all

descriptions to lower case, remove all punctuations and to-

kenize the sentences. After preprocessing, This yields a

vocabulary of 12,593 in size of the MSVD dataset and a

vocabulary of 3681 in size for the Charades dataset, Then

each word in the sentence is represented as “one hot” vec-

tor(binary index vector in a vocabulary). We use Stanford

parser[2] to parse the training sentence and get correspond-

ing transition sequence.

During the training phase, in order to deal with sentences

with arbitrary length, we add a begin-of-sentence tag BOS

to start each sentence and an end-of-sentence tag EOS to

end each sentence. In the testing phase, we input the BOS

into video decoder to start generating video descriptions.

In addition, The dimension of hidden size in LSTM is set

to 1000, the word embedding size and frame embedding

size are both set 500. Empirically, our objective function

Eq. 9 is optimized over the whole training video sentence

pairs with mini-batch 30 in size of MSVD and Charades.

We adopt adam [10], which is an adaptive learning rate ap-

proach, to optimize our target loss function. In addition, we

utilize dropout regularization with the rate of 0.5 in all lay-

ers and clip gradients element wise at 10. We stop training

our model until it reaches 30 epochs or the evaluation met-
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ric does not improve on the validation set at the patience of

20. In testing stage, we adopt the beam search strategy and

set the beam size to 5. We implement our proposed model

on the open source computing framework Torch7 [5].

5.4. Comparison with the State of the Art

Quantitative Analysis. We compare our proposed trajec-

tory structured attentional encoder-decoder model (TSA-

ED) against the state-of-the-art methods over the MSVD

dataset and the Charades dataset. Table 1 demonstrates the

performances of different models on the MSVD dataset.

We compare our method with six state-of-the-art meth-

ods with different parameters setting, including basic

encoder-decoder model (S2VT) [21], soft attention based

LSTM network (SA) [30], hierarchical processing based

decoders (HRNE) [12], joint learning based LSTM embed-

ding network(LSTM-E) [13], P-RNN [31] and transferred

semantic attributes (LSTM-TSA) [14]. As can be seen,

our proposed method consistently outperforms all the state-

of-the-art techniques in terms of all the three evaluation

metrics. In particular, the CIDEr of our TSA-ED model

achieves 74.9%, which makes relative improvement over

SA, p-RNN and LSTM-TSA by 42.56%, 37.5% and 3.08%,

respectively. Similar conclusions can be drawn in the other

two metrics. Noted that although we only sample several

static frames for global video representation, our proposed

method greatly outperforms other encoder-decoder frame-

work based models with much more complex global feature

modeling (e.g. VGGNet/GoogleNet and optical flow/C3D

for spatial and temporal modeling, attributes from video ),

which demonstrates the complementary effectiveness of the

trajectory structured attention mechanism. For fair compar-

sion, we also report the performance of our method with

VGG and VGG+C3D features on MSVD dataset. As shown

in Table 1, though the use of inferior feature leads to a cer-

tain degree of performance degradation, it can still outper-

form its counterpart (with same feature setting) when com-

pared to the models listed in Table 1 of the paper.

The performance comparisons on Charades dataset is

summarized in Table 2. The scores of the three evalua-

tion metrics on this dataset are much lower than those on

MSVD, due to the much higher complex visual and tex-

tual content in this dataset. Our proposed method can also

greatly outperform other state-of-the-art methods in this

dataset. Specifically, our TSA-ED model makes the relative

improvement over the best best-performing existing algo-

rithm (MAAM) by 1.14%, 24.55% and 17.39% respectively

on the evaluation metric of METEOR, CIDEr and BLEU 4.

Qualitative Analysis. Although the model-free evaluation

metrics (i.e. BLEU, METEOR, CIDEr) have demonstrated

the superiority of our proposed framework to other meth-

ods, it is still not intuitive how those performance gain

reflects to the quality of generated video description and

Method METEOR CIDEr BLUE 4

S2VT (V) [21] 29.2 - -

S2VT(V+O) [21] 29.8 - -

SA(G+C) [30] 29.6 51.7 41.9

HRNE(G) [12] 32.1 - 43.6

HRNE-SA(G) [12] 33.1 - 43.8

HRNE-SA(G+V) [12] 33.9 - 44.3

LSTM-E(V) [13] 29.5 - 40.2

LSTM-E(C) [13] 29.9 - 41.7

LSTM-E(V+C) [13] 31.0 - 45.3

p-RNN(V) [31] 31.1 62.1 44.3

p-RNN(C) [31] 30.3 53.6 47.4

p-RNN(V+C) [31] 32.6 65.8 49.9

LSTM-TSA(V+C+A) [14] 32.4 71.5 50.2

Ours(V) 32.3 65.6 45.4

Ours(V+C) 33.5 73.5 50.1

Ours(R) 34.0 74.9 51.7

Table 1. Comparsion with state of art methods in terms of ME-

TEOR, CIDEr and BLUE 4 over the MSVD test set. − indicates

unknown scores. Methods of the same name but different text in

the brackets indicates the same method with different feature set-

ting.

Method METEOR CIDEr BLUE 4

S2VT [21] 16.0 14.0 11.0

SA [30] 14.3 18.1 10.8

MAAM [6] 17.6 16.7 11.5

Ours 17.8 20.8 13.5

Table 2. Comparison with state of art methods in terms of ME-

TEOR, CIDEr and BLUE 4 over the Charades test set.

how the incorporated trajectory attention mechanism acts

on generating refined video captioning. In Figure 2, we

present some sample video clips and their corresponding

descriptions, both generated and reference. For each sam-

ple video, we list the generated description by our proposed

method and those generated from the baseline encoder-

decoder framework for comparison. As shown in the fig-

ure, our proposed TSA-ED can provide more specific, com-

prehensive and accurate description than baseline encoder-

decoder framework, as the incorporated trajectory contains

more local appearance feature for inference. For example,

on the top-left panel, our proposed model can well capture

the “football” and the “kicking” action and correctly gen-

erate the description “a man is kicking a ball” instead of

roughly saying “a man is running”. Besides, the trajec-

tory attentional encoder-decoder framework is also adept

at capturing the fine-grained object motion information for

more subtle linguistic descriptions. For example, we can

see from the top-right panel of the figure, our proposed

method allows us to correctly identify the salient motion

sequence “adding ingredinet into a bowl”, as opposed to

simply “cooking”. Similar conclusions can also be drawn

from the other two examples.

On the other hand, we have also visualized the attended

trajectory clusters which echoes the generated sentence de-

scription. Specifically, we maintain the trajectory cluster

with highest attentional weight at each LSTM time step and
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Baseline: a polar bear is playing .

Our(with Trajectory Attention): a polar bear is walking on the ice.

Ref: two polar bears are walking.

Baseline: a woman is watching TV .

Our(with Trajectory Attention): a woman is lying on the bed.

Ref: a girl is lying on the bed.

Baseline: a woman is cooking.

Our(with Trajectory Attention): a woman is adding ingredient into a bowl.

Ref: a woman is adding ingredient into a bowl.

Baseline: a man is running.

Our(with Trajectory Attention): a man is kicking a ball.

Ref: a man is kicking a ball.

Figure 2. Four sample videos and their corresponding generated and ground-truth descriptions. The middle images in each panel shows the

visualization results of our attended trajectory clusters, we use the red rectangle to mark the attended clusters.

draw all the extracted trajectories on the video, with dif-

ferent trajectory clusters being labeled with different color.

The trajectory visualization result of each sample video is

also listed in Figure 2. As shown in the figure, our proposed

TSA-ED framework can accurately capture the salient mo-

tion parts while generating more elaborate video caption-

ing. For each generated statement, we can usually locate

explanatory trajectory data to support our prediction. For

example, when generating the caption “adding ingredient

into a bowl” in the top-right of the figure, the most salient

trajectory clusters attended by our algorithm is exactly the

“pouring” action in the video. Indeed, the proposed atten-

tive trajectory localization mechanism provides an effec-

tive visualization tool for video captioning and thus and can

greatly enhance the model’s interpretability.

5.5. Component Analysis and Comparison

Our proposed TSA-ED framework models both the lo-

cal motion information and the sentence semantic structure

in video captioning. To demonstrate the effectiveness of

the introduction of local motion information and the signif-

icance of the structured attention mechanism, we have con-

ducted two experiments for internal comparison. Specifi-

cally, we respectively train two models with different set-

tings. One is an encoder-decoder network using only global

frame feature and the other is our plain trajectory attention

model without resorting to sentence structure information.

As shown in Table 3, the encoder-decoder network

without trajectory motion information only achieve 31.2%,

64.2% and 46.6% respectively on the metric of METEOR,

CIDEr and BLEU 4 metric, which deteriorate our model

with trajectory attention by 5.74%, 12.9% and 7.0% respec-

tively. Similar conclusions can be obtained in qualitative

analysis and visualization results. As shown in Fig 2, the

introduction of the appearance and local trajectory motion

information can indeed produce more refined and accurate

description generation.

As discussed in the “Decoder” section, we dynamically

change the feature vectors according to the parsed sentence

structure. In order to validate the effectiveness and ne-

cessity of introducing structured attention mechanism, we

also compare our model with the plain attention model. As

shown Table 3, incorporating sentence structure informa-

tion into the traditional attention framework brings perfor-

mance boost from the original model by 2.72%, 1.63% and

3.39% in terms of METEOR, CIDEr and BlUE 4, respec-

tively.

Method METEOR CIDEr BlUE 4

Encoder-Decoder without Trajectory 31.2 64.2 46.6

Encoder-Decoder with Attention Trajectory 33.1 73.7 50.1

Ours 34.0 74.9 51.7

Table 3. Component-wise efficacy of the proposed trajectory struc-

tured attentional encoder-decoder framework on MSVD dataset

6. Conclusion

In this paper, we have introduced a trajectory structured

attentional encoder-decoder network which explores both

the fine-grained motion information and the sentence se-

mantic structure for video caption. Experimental results

demonstrate that our proposed method can generate much

more fine-grained captioning and achieve state-of-the-art

performance on the public benchmarks. Moreover, the at-

tentive trajectory localization mechanism can be regarded

as an effective visualization tool and can greatly enhance

the model’s interpretability.
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