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Abstract

Neural networks rely on convolutions to aggregate spa-

tial information. However, spatial convolutions are expen-

sive in terms of model size and computation, both of which

grow quadratically with respect to kernel size. In this pa-

per, we present a parameter-free, FLOP-free “shift” opera-

tion as an alternative to spatial convolutions. We fuse shifts

and point-wise convolutions to construct end-to-end train-

able shift-based modules, with a hyperparameter charac-

terizing the tradeoff between accuracy and efficiency. To

demonstrate the operation’s efficacy, we replace ResNet’s

3x3 convolutions with shift-based modules for improved CI-

FAR10 and CIFAR100 accuracy using 60% fewer parame-

ters; we additionally demonstrate the operation’s resilience

to parameter reduction on ImageNet, outperforming ResNet

family members. We finally show the shift operation’s appli-

cability across domains, achieving strong performance with

fewer parameters on image classification, face verification

and style transfer.

1. Introduction and Related Work

Convolutional neural networks (CNNs) are ubiquitous in

computer vision tasks, including image classification, ob-

ject detection, face recognition, and style transfer. These

tasks enable many emerging mobile applications and

Internet-of-Things (IoT) devices; however, such devices

have significant memory constraints and restrictions on the

size of over-the-air updates (e.g. 100-150MB). This in turn

imposes constraints on the size of the CNNs used in these

applications. For this reason, we focus on reducing CNN

model size while retaining accuracy, on applicable tasks.

CNNs rely on spatial convolutions with kernel sizes of

3x3 or larger to aggregate spatial information within an

image. However, spatial convolutions are very expensive

in both computation and model size, each of which grows

quadratically with respect to kernel size. In the VGG-16
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Figure 1: Illustration of a shift operation followed by a 1x1

convolution. The shift operation collect data spatially and

the 1x1 convolution mixes information across channels.

model [19], 3x3 convolutions account for 15 million pa-

rameters, and the fc1 layer, effectively a 7x7 convolution,

accounts for 102 million parameters.

Several strategies have been adopted to reduce the size

of spatial convolutions. ResNet[6] employs a “bottleneck

module,” placing two 1x1 convolutions before and after a

3x3 convolution, reducing its number of input and output

channels. Despite this, 3x3 convolutional layers still ac-

count for 50% of all parameters in ResNet models with bot-

tleneck modules. SqueezeNet [9] adopts a “fire module,”

where the outputs of a 3x3 convolution and a 1x1 convo-

lution are concatenated along the channel dimension. Re-

cent networks such as ResNext [26], MobileNet [7], and

Xception [1] adopt group convolutions and depth-wise sep-

arable convolutions as alternatives to standard spatial con-

volutions. In theory, depth-wise convolutions require less

computation. However, it is difficult to implement depth-

wise convolutions efficiently in practice, as their arithmetic

intensity (ratio of FLOPs to memory accesses) is too low to

efficiently utilize hardware. Such a drawback is also men-

tioned in [29, 1]. ShuffleNet [29] integrates depth-wise con-

volutions, point-wise group convolutions, and channel-wise

shuffling to further reduce parameters and complexity. In

another work, [12] inherits the idea of a separable convolu-

tion to freeze spatial convolutions and learn only point-wise

convolutions. This does reduce the number of learnable pa-

rameters but falls short of saving FLOPs or model size.

Our approach is to sidestep spatial convolutions entirely.
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Figure 2: Illustration of (a) spatial convolutions, (b) depth-wise convolutions and (c) shift. In (c), the 3x3 grids denote a shift

matrix with a kernel size of 3. The lighted cell denotes a 1 at that position and white cells denote 0s.

In this paper, we present the shift operation (Figure 1) as

an alternative to spatial convolutions. The shift operation

moves each channel of its input tensor in a different spatial

direction. A shift-based module interleaves shift operations

with point-wise convolutions, which further mixes spatial

information across channels. Unlike spatial convolutions,

the shift operation itself requires zero FLOPs and zero pa-

rameters. As opposed to depth-wise convolutions, shift op-

erations can be easily and efficiently implemented.

Our approach is orthogonal to model compression [4],

tensor factorization [27] and low-bit networks [16]. As a

result, any of these techniques could be composed with our

proposed method to further reduce model size.

We introduce a new hyperparameter for shift-based mod-

ules, “expansion” E , corresponding to the tradeoff between

FLOPs/parameters and accuracy. This allows practitioners

to select a model according to specific device or application

requirements. Using shift-based modules, we then propose

a new family of architectures called ShiftNet. To demon-

strate the efficacy of this new operation, we evaluate Shift-

Net on several tasks: image classification, face verification,

and style transfer. Using significantly fewer parameters,

ShiftNet attains competitive performance.

2. The Shift Module and Network Design

We first review the standard spatial and depth-wise con-

volutions illustrated in Figure 2. Consider the spatial

convolution in Figure 2(a), which takes a tensor F ∈
R

DF×DF×M as input. Let DF denote the height and width

and M denote the channel size. The kernel of a spa-

tial convolution is a tensor K ∈ R
DK×DK×M×N , where

DK denotes the kernel’s spatial height and width, and N
is the number of filters. For simplicity, we assume the

stride is 1 and that the input/output have identical spatial

dimensions. Then, the spatial convolution outputs a tensor

G ∈ R
DF×DF×N , which can be computed as

Gk,l,n =
∑

i,j,m

Ki,j,m,nFk+î,l+ĵ,m, (1)

where î = i−⌊DK/2⌋, ĵ = j−⌊DK/2⌋ are the re-centered

spatial indices; k, l and i, j index along spatial dimensions

and n,m index into channels. The number of parameters

required by a spatial convolution is M ×N ×D2
K and the

computational cost is M × N ×D2
K ×D2

F . As the kernel

size DK increases, we see the number of parameters and

computational cost grow quadratically.

A popular variant of the spatial convolution is a depth-

wise convolution [7, 1], which is usually followed by a

point-wise convolution (1x1 convolution). Altogether, the

module is called the depth-wise separable convolution. A

depth-wise convolution, as shown in Figure 2(b), aggre-

gates spatial information from a DK × DK patch within

each channel, and can be described as

Ĝk,l,m =
∑

i,j

K̂i,j,mFk+î,l+ĵ,m, (2)

where K̂ ∈ R
DF×DF×M is the depth-wise convolution ker-

nel. This convolution comprises M × D2
K parameters and

M × D2
K × D2

F FLOPs. As in standard spatial convo-

lutions, the number of parameters and computational cost

grow quadratically with respect to the kernel size DK . Fi-

nally, point-wise convolutions mix information across chan-

nels, giving us the following output tensor

Gk,l,n =
∑

m

Pm,nĜk,l,m, (3)

where P ∈ R
M×N is the point-wise convolution kernel.

In theory, depth-wise convolution requires less computa-

tion and fewer parameters. In practice, however, this means

memory access dominates computation, thereby limiting

the use of parallel hardware. For standard convolutions, the

ratio between computation vs. memory access is

M ×N ×D2
F ×D2

K

D2
F × (M +N) +D2

K ×M ×N
, (4)

while for depth-wise convolutions, the ratio is

M ×D2
F ×D2

K

D2
F × 2M +D2

K ×M
. (5)
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A lower ratio here means that more time is spent on mem-

ory accesses, which are several orders of magnitude slower

and more energy-consuming than FLOPs. This drawback

implies an I/O-bound device will be unable to achieve max-

imum computational efficiency.

2.1. The Shift Operation

The shift operation, as illustrated in Figure 2(c), can

be viewed as a special case of depth-wise convolutions.

Specifically, it can be described logically as:

G̃k,l,m =
∑

i,j

K̃i,j,mFk+î,l+ĵ,m. (6)

The kernel of the shift operation is a tensor K̃ ∈
R

DF×DF×M such that

K̃i,j,m =

{

1, if i = im and j = jm,

0, otherwise.
(7)

Here im, jm are channel-dependent indices that assign one

of the values in K̃:,:,m ∈ R
DK×DK to be 1 and the rest to

be 0. We call K̃:,:,m a shift matrix.

For a shift operation with kernel size DK , there exist

D2
K possible shift matrices, each of them corresponding to a

shift direction. If the channel size M is no smaller than D2
K ,

we can construct a shift matrix that allows each output po-

sition (k, l) to access all values within a DK ×DK window

in the input. We can then apply another point-wise convo-

lution per Eq. (3) to exchange information across channels.

Unlike spatial and depth-wise convolutions, the shift op-

eration itself does not require parameters or floating point

operations (FLOPs). Instead, it is a series of memory op-

erations that adjusts channels of the input tensor in cer-

tain directions. A more sophisticated implementation can

fuse the shift operation with the following 1x1 convolution,

where the 1x1 convolution directly fetches data from the

shifted address in memory. With such an implementation,

we can aggregate spatial information using shift operations,

for free.

2.2. Constructing Shift Kernels

For a given kernel size DK and channel size M , there

exists D2
K possible shift directions, making (D2

K)M possi-

ble shift kernels. An exhaustive search over this state space

for the optimal shift kernel is prohibitively expensive.

To reduce the state space, we use a simple heuristic: di-

vide the M channels evenly into D2
K groups, where each

group of ⌊M/D2
K⌋ channels adopts one shift. We will re-

fer to all channels with the same shift as a shift group. The

remaining channels are assigned to the “center” group and

are not shifted.

However, finding the optimal permutation, i.e., how to

map each channel-m to a shift group, requires searching

a combinatorially large search space. To address this is-

sue, we introduce a modification to the shift operation that

makes input and output invariant to channel order: We de-

note a shift operation with channel permutation π as Kπ(·),
so we can express Eq. (6) as G̃ = Kπ(F ). We permute the

input and output of the shift operation as

G̃ = Pπ2
(Kπ(Pπ1

(F ))) = (Pπ2
◦ Kπ ◦ Pπ1

)(F ), (8)

where Pπi
are permutation operators and ◦ denotes operator

composition. However, permutation operators are discrete

and therefore difficult to optimize. As a result, we process

the input F to Eq. (8) by a point-wise convolution P1(F ).
We repeat the process for the output G̃ using P2(G̃). The

final expression can be written as

G = (P2 ◦ Pπ2
◦ Kπ ◦ Pπ1

◦ P1)(F )

= ((P2 ◦ Pπ2
) ◦ Kπ ◦ (Pπ1

◦ P1))(F )

= (P̂2 ◦ Kπ ◦ P̂1)(F ),

(9)

where the final step holds, as there exists a bijection from

the set of all Pi to the set of all P̂i, since the permutation

operator Pπi
is bijective by construction. As a result, it suf-

fices to learn P̂1 and P̂2 directly. Therefore, this augmented

shift operation Eq. (9) can be trained with stochastic gra-

dient descent end-to-end, without regard for channel order.

So long as the shift operation is sandwiched between two

point-wise convolutions, different permutations of shifts are

equivalent. Thus, we can choose an arbitrary permutation

for the shift kernel, after fixing the number of channels for

each shift direction.

2.3. Shift­based Modules

First, we define a module to be a collection of layers that

perform a single function, e.g. ResNet’s bottleneck module

or SqueezeNet’s fire module. Then, we define a group to be

a collection of repeated modules.

1x1	Conv

Shift

Kernel	size

Dilation	rate

1x1	Conv

Stride:	S

Shift

Kernel	size

Dilation	rate

BN + ReLU

Input	

Output	

Add / Concat

Identity /

Avg Pooling

BN + ReLU

Figure 3: Illustration of the Conv-Shift-Conv CSC module

and the Shift-Conv-Shift-Conv (SC2) module.
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Based on the analysis in previous sections, we propose

a module using shift operations as shown in Figure 3. The

input tensor is first processed by point-wise convolutions.

Then, we perform a shift operation to redistribute spatial in-

formation. Finally, we apply another set of point-wise con-

volutions to mix information across channels. Both sets of

point-wise convolutions are preceded by batch normaliza-

tion and a non-linear activation function (ReLU). Follow-

ing ShuffleNet [29], we use an additive residual connection

when input and output are of the same shape, and use aver-

age pooling with concatenation when we down-sample the

input spatially and double the output channels. We refer

to this as a Conv-Shift-Conv or CSC module. A variant

of this module includes another shift operation before the

first point-wise convolution; we refer to this as the Shift-

Conv-Shift-Conv or SC2 module. This allows the designer

to further increase the receptive field of the module.

As with spatial convolutions, shift modules are parame-

terized by several factors that control its behavior. We use

the kernel size of the shift operation to control the receptive

field of the CSC module. Akin to the dilated convolution,

the “dilated shift” samples data at a spatial interval, which

we define to be the dilation rate D. The stride of the CSC
module is defined to be the stride of the second point-wise

convolution, so that spatial information is mixed in the shift

operation before down-sampling. Similar to the bottleneck

module used in ResNet, we use the “expansion rate” E to

control the intermediate tensor’s channel size. With bottle-

neck modules, 3x3 convolutions in the middle are expensive

computationally, forcing small intermediate channel sizes.

However, the shift operation allows kernel size DF adjust-

ments without affecting parameter size and FLOPs. As a

consequence, we can employ a shift module to allow larger

intermediate channel sizes, where sufficient information can

be gathered from nearby positions.

3. Experiments

We first assess the shift module’s ability to replace con-

volutional layers, and then adjust hyperparameter E to ob-

serve tradeoffs between model accuracy, model size, and

computation. We then construct a range of shift-based net-

works and investigate their performance for a number of

different applications.

3.1. Operation Choice and Hyperparameters

Using ResNet, we juxtapose the use of 3x3 convolutional

layers with the use of CSC modules, by replacing all of

ResNet’s basic modules (two 3x3 convolutional layers) with

CSCs to make “ShiftResNet”. For ResNet and ShiftRes-

Net, we use two Tesla K80 GPUs with batch size 128 and a

starting learning rate of 0.1, decaying by a factor of 10 after

32k and 48k iterations, as in [6]. In these experiments, we

use the CIFAR10 version of ResNet: a convolutional layer

with 16 3x3 filters; 3 groups of basic modules with output

channels 16, 32, 64; and a final fully-connected layer. A ba-

sic module contains two 3x3 convolutional layers followed

by batchnorm and ReLU in parallel with a residual connec-

tion. With ShiftResNet, each group contains several CSC
modules. We use three ResNet models: in ResNet20, each

group contains 3 basic modules. For ResNet56, each con-

tains 9, and for ResNet110, each contains 18. By toggling

the hyperparameter E , the number of filters in the CSC
module’s first set of 1x1 convolutions, we can reduce the

number of parameters in “ShiftResNet” by nearly 3 times

without any loss in accuracy, as shown in Table 1. Table 5

summarizes CIFAR10 and CIFAR100 results across all E
and ResNet models.

We next compare different strategies for parameter

reduction. We reduce ResNet’s parameters to match

that of ShiftResNet for some E , denoted ResNet-E and

ShiftResNet-E , respectively. We use two separate ap-

proaches: 1) module-wise: decrease the number of filters

in each module’s first 3x3 convolutional layer; 2) net-wise:

decrease every module’s input and output channels by the

same factor. As Table 2 shows, convolutional layers are

less resilient to parameter reduction, with the shift module

preserving accuracy 8% better than both reduced ResNet

models of the same size, on CIFAR100. In Table 3, we like-

wise find improved resilience on ImageNet as ShiftResNet

achieve better accuracy with millions fewer parameters.

Table 4 shows that ShiftResNet consistently outperforms

ResNet, when both are constrained to use 1.5x fewer pa-

rameters. Table 5 then includes all results. Figure 4 shows

the tradeoff between CIFAR100 accuracy and number of

parameters for the hyperparameter E ∈ {1, 3, 6, 9} across

both {ResNet, ShiftResNet} models using varying numbers

of layers ℓ ∈ {20, 56, 110}. Figure 5 examines the same

set of possible models and hyperparameters but between

CIFAR100 accuracy and the number of FLOPs. Both fig-

ures show that ShiftResNet models provide superior trade-

off between accuracy and parameters/FLOPs.

Table 1: PARAMETERS FOR SHIFT VS CONVOLUTION,

WITH FIXED ACCURACY ON CIFAR-100

Model Top1 Acc FLOPs Params

ShiftResNet56-3 69.77% 44.9M 0.29M

ResNet56 69.27% 126M 0.86M

3.2. ShiftNet

Even though ImageNet classification is not our primary

goal, to further investigate the effectiveness of the shift op-

eration, we use the proposed CSC module shown in Fig-

ure 3 to design a class of efficient models called Shift-

Net and present its classification performance on standard

benchmarks to compare with state-of-the-art small models.
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Table 2: REDUCTION RESILIENCE FOR SHIFT VS CON-

VOLUTION, WITH FIXED PARAMETERS

Model CIFAR-100 Acc FLOPs Params

ShiftResNet110-1 67.84% 29M 203K

ResNet110-1 60.44% 28M 211K

Table 3: REDUCTION RESILIENCE FOR SHIFT VS

CONVOLUTION ON IMAGENET

Shift50
Top1 / Top5 Acc

ResNet50
Top1 / Top5 Acc

Parameters
Shift50 / ResNet50

75.6 / 92.8 75.1 / 92.5 22M / 26M

73.7 / 91.8 73.2 / 91.6 11M / 13M

70.6 / 89.9 70.1 / 89.9 6.0M / 6.9M

Here, we abbreviate “ShiftResNet50” as “Shift50”.

Table 4: PERFORMANCE ACROSS RESNET MODELS,

WITH 1.5 FEWER PARAMETERS

No. Layers
ShiftResNet-6
CIFAR100 Top 1

ResNet
CIFAR100 Top 1

20 68.64% 66.25%

56 72.13% 69.27%

110 72.56% 72.11%
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Figure 4: This figure shows that ShiftResNet family mem-

bers are significantly more efficient than their correspond-

ing ResNet family members. Tradeoff curves further to the

top left are more efficient, with higher accuracy per param-

eter. For ResNet, we take the larger of two accuracies be-

tween module-wise and net-wise reduction results.

Since an external memory access consumes 1000x more

energy than a single arithmetic operation [5], our primary

goal in designing ShiftNet is to optimize the number of pa-
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Figure 5: Tradeoff curves further to the top left are more

efficient, with higher accuracy per FLOP. This figure shows

ShiftResNet is more efficient than ResNet, in FLOPs.

rameters and thereby to reduce memory footprint. In addi-

tion to the general desirability of energy efficiency, the main

targets of ShiftNet are mobile and IOT applications, where

memory footprint, even more so than FLOPs, are a primary

constraint. In these application domains small models can

be packaged in mobile and IOT applications that are de-

livered within the 100-150MB limit for mobile over-the-air

updates. In short, our design goal for ShiftNets is to attain

competitive accuracy with fewer parameters.

The ShiftNet architecture is described in Table 6. Since

parameter size does not grow with shift kernel size, we use

a larger kernel size of 5 in earlier modules. We adjust the

expansion parameter E to scale the parameter size in each

CSC module. We refer to the architecture described in Ta-

ble 6 as ShiftNet-A. We shrink the number of channels in all

CSC modules by 2 for ShiftNet-B. We then build a smaller

and shallower network, with {1, 4, 4, 3} CSC modules in

groups {1, 2, 3, 4} with channel sizes of {32, 64, 128, 256},

E = 1 and kernel size is 3 for all modules. We name this

shallow model ShiftNet-C. We train the three ShiftNet vari-

ants on the ImageNet 2012 classification dataset [17] with

1.28 million images and evaluate on the validation set of

50K images. We adopt data augmentations suggested by

[1] and weight initializations suggested by [6]. We train our

models for 90 epochs on 64 Intel KNL instances using Intel

Caffe [10] with a batch size of 2048, an initial learning rate

of 0.8, and learning rate decay by 10 every 30 epochs.

In Table 7, we show classification accuracy and number

of parameters for ShiftNet and other state-of-the-art models.

Especially, MobileNet is considered as a strong baseline for
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Table 5: SHIFT OPERATION ANALYSIS USING CIFAR10 AND CIFAR100

Model E ShiftResNet
CIFAR10 / 100 Accuracy

ResNet (Module)
CIFAR10 / 100 Accuracy

ResNet (Net)
CIFAR100 Accuracy

ShiftResNet
Params / FLOPs (×10

6)

Reduction Rate
Params / FLOPs

20 1 86.66% / 55.62% 85.54% / 52.40% 49.58% 0.03 / 6 7.8 / 6.7

20 3 90.08% / 62.32% 88.33% / 60.61% 58.16% 0.10 / 17 2.9 / 2.5

20 6 90.59% / 68.64% 90.09% / 64.27% 63.22% 0.19 / 32 1.5 / 1.3

20 9 91.69% / 69.82% 91.35% / 66.25% 66.25% 0.28 / 48 0.98 / 0.85

56 1 89.71% / 65.21% 87.46% / 56.78% 56.62% 0.10 / 16 8.4 / 8.1

56 3 92.11% / 69.77% 89.40% / 62.53% 64.49% 0.29 / 45 2.9 / 2.8

56 6 92.69% / 72.13% 89.89% / 61.99% 67.45% 0.58 / 89 1.5 / 1.4

56 9 92.74% / 73.64% 92.01% / 69.27% 69.27% 0.87 / 133 0.98 / 0.95

110 1 90.34% / 67.84% 76.82% / 39.90% 60.44% 0.20 / 29 8.5 / 8.5

110 3 91.98% / 71.83% 74.30% / 40.52% 66.61% 0.59 / 87 2.9 / 2.9

110 6 93.17% / 72.56% 79.02% / 40.23% 68.87% 1.18 / 174 1.5 / 1.5

110 9 92.79% / 74.10% 92.46% / 72.11% 72.11% 1.76 / 260 0.98 / 0.97

Note that the ResNet-9 results are replaced with accuracy of the original model. The number of parameters holds for both

ResNet and ShiftResNet across CIFAR10, CIFAR100. FLOPs are computed for ShiftResNet. All accuracies are Top 1.

“Reduction Rate” is the original ResNet’s parameters/flops over the new ShiftResNet’s parameters/flops.

Table 6: SHIFTNET ARCHITECTURE

Group
Type/

Stride
Kernel E

Output

Channel
Repeat

- Conv /s2 7×7 - 32 1

1 CSC / s2 5×5 4 64 1

CSC / s1 5×5 4 4

2 CSC / s2 5×5 4 128 1

CSC / s1 5×5 3 5

3 CSC / s2 3×3 3 256 1

CSC / s1 3×3 2 6

4 CSC / s2 3×3 2 512 1

CSC / s1 3×3 1 2

- Avg Pool 7×7 - 512 1

- FC - - 1k 1

efficient models, but its training protocol is not clearly ex-

plained in [7]. Therefore, we trained MobileNet with the

same training protocol as ShiftNet, and report both the ac-

curacy reproduced by ourselves and the accuracy reported

in [7], with the reported accuracy in brackets. We com-

pare ShiftNet-{A, B, C} with 3 groups of models with sim-

ilar levels of accuracy. In the first group, ShiftNet-A is

34X smaller than VGG-16, while the top-1 accuracy drop

is only 1.4%. 1.0-MobileNet-224 has similar parameter

size as ShiftNet-A. Under the same training protocol, Mo-

bileNet has worse accuracy than ShiftNet-A, while the re-

ported accuracy is better. In the second group, ShiftNet-

B’s top-1, top-5 accuracy is 2.3% and 0.7% worse than its

MobileNet counterpart, but it uses fewer parameters. We

compare ShiftNet-C with SqueezeNet and AlexNet, and

we can achieve better accuracy with 2/3 the number of

SqueezeNet’s parameters, and 77X smaller than AlexNet.

Table 7: SHIFTNET RESULTS ON IMAGENET

Model
Accuracy

Top-1 / Top-5

Parameters

(Millions)

VGG-16 [19] 71.5 / 90.1 138

GoogleNet [20] 69.8 / - 6.8

ShiftResNet-0.25 (ours) 70.6 / 89.9 6.0

ShuffleNet-2× [29] 70.9 / - 5.4

1.0 MobileNet-224 [7]* 67.5 (70.6) / 86.6 4.2

Compact DNN [25] 68.9 / 89.0 4.1

ShiftNet-A (ours) 70.1 / 89.7 4.1

0.5 MobileNet-224 [7]* 63.5 (63.7) / 84.3 1.3

ShiftNet-B (ours) 61.2 / 83.6 1.1

AlexNet [13] 57.2 / 80.3 60

SqueezeNet [9] 57.5 / 80.3 1.2

ShiftNet-C (ours) 58.8 / 82.0 0.78

* We list both our reproduced accuracy and reported accu-

racy from [7]. The reported accuracy is in brackets.

3.3. Face Embedding

We continue to investigate the shift operation for differ-

ent applications. Face verification and recognition are be-

coming increasingly popular on mobile devices. Both func-

tionalities rely on face embedding, which aims to learn a

mapping from face images to a compact embedding in Eu-

clidean space, where face similarity can be directly mea-

sured by embedding distances. Once the space has been

generated, various face-learning tasks, such as facial recog-

nition and verification, can be easily accomplished by stan-

dard machine learning methods with feature embedding.

Mobile devices have limited computation resources, there-

fore creating small neural networks for face embedding is a

necessary step for mobile deployment.

FaceNet [18] is one state-of-the-art face embedding ap-

9132



Table 8: FACE VERIFICATION ACCURACY FOR SHIFT-

FACENET VS FACENET [18].

Accuracy± STD (%) Area under curve (%)

FaceNet ShiftFaceNet FaceNet ShiftFaceNet

LFW 97.1±1.3 96.0±1.4 99.5 99.4

YTF 92.0±1.1 90.1±0.9 97.3 96.1

MSC 79.2±1.7 77.6±1.7 85.6 84.4

Table 9: FACE VERIFICATION PARAMETERS FOR SHIFT-

FACENET VS FACENET [18].

Model FaceNet ShiftFaceNet

Params (Millions) 28.5 0.78

proach. The original FaceNet is based on Inception-Resnet-

v1 [21], which contains 28.5 million parameters, making it

difficult to be deployed on mobile devices. We propose a

new model ShiftFaceNet based on ShiftNet-C from the pre-

vious section, which only contains 0.78 million parameters.

Following [15], we train FaceNet and ShiftFaceNet by

combining the softmax loss with center loss [23]. We eval-

uate the proposed method on three datasets for face verifi-

cation: given a pair of face images, a distance threshold is

selected to classify the two images belonging to the same or

different entities. The LFW dataset [8] consists of 13,323

web photos with 6,000 face pairs. The YTF dataset [24] in-

cludes 3,425 with 5,000 video pairs for video-level face ver-

ification. The MS-Celeb-1M dataset (MSC) [3] comprises

8,456,240 images for 99,892 entities. In our experiments,

we randomly select 10,000 entities from MSC as our train-

ing set, to learn the embedding space. We test on 6,000

pairs from LFW, 5,000 pairs from YTF and 100,000 pairs

randomly generated from MSC, excluding the training set.

In the pre-processing step, we detect and align all faces us-

ing a multi-task CNN [28]. Following [18], the similarity

between two videos is computed as the average similarity

of 100 random pairs of frames, one from each video. Re-

sults are shown in Table 8. Parameter size for the original

FaceNet and our proposed ShiftFaceNet is shown in Table

9. With ShiftFaceNet, we are able to reduce the parameter

size by 35X, with at most 2% drop of accuracy in above

three verification benchmarks.

3.4. Style Transfer

Artistic style transfer is another popular application on

mobile devices. It is an image transformation task where the

goal is to combine the content of one image with the style of

another. Although this is an ill-posed problem without defi-

nite quantitative metrics, a successful style transfer requires

that networks capture both minute textures and holistic se-

mantics, for content and style images.

Following [2, 11], we use perceptual loss functions to

train a style transformer. In our experiment, we use a VGG-

16 network pretrained on ImageNet to generate the percep-

Table 10: STYLE TRANSFER: SHIFT VS CONVOLUTION

Model Original Shift

Params (Millions) 1.9 0.3

tual loss. The original network trained by Johnson et al.

[11] consists of three downsampling convolutional layers,

five residual modules, and three upsampling convolutional

layers. All non-residual convolutions are followed by an in-

stance normalization layer [22]. In our experiments, we re-

place all but the first and last convolution layers with shifts

followed by 1x1 convolutions. We train the network on the

COCO [14] dataset using the previously reported hyperpa-

rameter settings λs ∈ {1e10, 5e10, 1e11}, λc = 1e5. By

replacing convolutions with shifts, we achieve an overall

6X reduction in the number of parameters with minimal de-

gredation in image quality. Examples of stylized images

generated by original and shift based transformer networks

can be found in Figure 6.

4. Discussion

In our experiments, we demonstrate the shift operation’s

effectiveness as an alternative to spatial convolutions. Our

construction of shift groups is trivial: we assign a fixed

number of channels to each shift. However, this assignment

is largely uninformed. In this section, we explore more in-

formed allocations and potential improvements.

An ideal channel allocation should at least have the fol-

lowing 2 properties: 1) Features in the same shift group

should not be redundant. We can measure redundancy by

checking the correlation between channel activations within

a shift group. 2) Each shifted feature should have a non-

trivial contribution to the output. We can measure the the

contribution of channel-m to the output by ‖Pm,:‖2, i.e.,
the l2 norm of the m-th row of the second point-wise con-

volution kernel in a CSC module.

4.1. Channel Correlation Within Shifts

We analyze one CSC module with 16 input/output chan-

nels and an expansion of 9, from a trained ShiftResnet20

model. We first group channels by shift. Say each shift

group contains c channels. We consider activations of the c
channels as a random variable X ∈ R

c. We feed validation

images from CIFAR100 into the network and record inter-

mediate activations in the CSC module, to estimate corre-

lation matrices ΣXX ∈ R
c×c, a few of which are shown in

figure 8. We use correlation between channels as a proxy

for measuring redundancy. For example, if the correlation

between two channels is above a threshold, we can remove

one channel. In Figure 8, candidate pairs could stem from

the bright green pixels slightly off-center in the first matrix.

4.2. Normalized Channel Contributions
We analyze the same CSC module from the section

above. Consider the m-th channel’s contribution to the out-
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Figure 6: STYLE TRANSFER RESULTS USING SHIFTNET
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Figure 8: Example Channel Correlation Matrices Within

each Shift Group

put of the module, we take the norm of the m-th row from

the point-wise convolution kernel as ‖Pm,:‖2 for an approx-

imation of “contribution”. We compute the contribution of

all 144 channels in the given CSC module, normalize their

contribution and plot it in Figure 7. Note that the shift con-

tributions are anisotropic, and the largest contributions fall

into a cross, where horizontal information is accentuated.

This suggests that better heuristics for allocating channels

among shift groups may yield neural networks with even

higher per-FLOP and per-parameter accuracy.

5. Conclusion

We present the shift operation, a zero-FLOP, zero-

parameter, easy-to-implement alternative to convolutions

for aggregation of spatial information. To start, we con-

struct end-to-end-trainable modules using shift operations

and pointwise convolutions. To demonstrate their efficacy

and robustness, we replace ResNet’s convolutions with shift

modules for varying model size constraints, which increases

accuracy by up to 8% with the same number of parame-

ters/FLOPs and recovers accuracy with a third of the param-

eters/FLOPs. We then construct a family of shift-based neu-

ral networks. Among neural networks with around 4 million

parameters, we attain competitive performance on a number

of tasks, namely classification, face verification, and style

transfer. In the future, we plan to apply ShiftNets to tasks

demanding large receptive fields that are prohibitively ex-

pensive for convolutions, such as 4K image segmentation.
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