
Gibson Env: Real-World Perception for Embodied Agents

Fei Xia∗1 Amir R. Zamir∗1,2 Zhiyang He∗1 Alexander Sax1 Jitendra Malik2 Silvio Savarese1
1 Stanford University 2 University of California, Berkeley

http://gibson.vision/

(b)(a) (c) (d) (e) (f)

Figure 1: Two agents in Gibson Environment for real-world perception. The agent is active, embodied, and subject to constraints of physics and space

(a,b). It receives a constant stream of visual observations as if it had an on-board camera (c). It can also receive additional modalities, e.g. depth, semantic

labels, or normals (d,e,f). The visual observations are from real-world rather than an artificially designed space.

Abstract

Developing visual perception models for active agents

and sensorimotor control in the physical world are cum-

bersome as existing algorithms are too slow to efficiently

learn in real-time and robots are fragile and costly. This

has given rise to learning-in-simulation which consequently

casts a question on whether the results transfer to real-

world. In this paper, we investigate developing real-world

perception for active agents, propose Gibson Environment
1 for this purpose, and showcase a set of perceptual tasks

learned therein. Gibson is based upon virtualizing real

spaces, rather than artificially designed ones, and currently

includes over 1400 floor spaces from 572 full buildings.

The main characteristics of Gibson are: I. being from the

real-world and reflecting its semantic complexity, II. hav-

ing an internal synthesis mechanism “Goggles” enabling

deploying the trained models in real-world without needing

domain adaptation, III. embodiment of agents and making

them subject to constraints of physics and space.

1Named after JJ Gibson, the author of Ecological Approach to Visual

Perception, 1979. “We must perceive in order to move, but we must also

move in order to perceive” – JJ Gibson [36]
∗Authors contributed equally.

1. Introduction

We would like our robotic agents to have compound

perceptual and physical capabilities: a drone that au-

tonomously surveys buildings, a robot that rapidly finds

victims in a disaster area, or one that safely delivers our

packages, just to name a few. Apart from the applica-

tion perspective, the findings supportive of a close relation-

ship between visual perception and motion are prevalent

on various fronts: evolutionary and computational biolo-

gists have hypothesized a key role for intermixing percep-

tion and locomotion in development of complex behaviors

and species [61, 91, 22]; neuroscientists have extensively

argued for a hand in hand relationship between develop-

ing perception and being active [83, 42]; pioneer roboticists

have similarly advocated entanglement of the two [14, 15].

This all calls for developing principled perception models

specifically with active agents in mind.

By perceptual active agent, we are generally referring to

an agent that receives a visual observation from the environ-

ment and accordingly effectuates a set of actions which can

lead a physical change in the environment (∼manipulation)

and/or the agent’s own particulars (∼locomotion). Devel-

oping such perceptual agents entails the questions of how

and where to do so.

19068

http://gibson.vision/

On the how front, the problem has been the focus of

a broad set of topics for decades, ranging from classical

control [64, 12, 50] to more recently sensorimotor con-

trol [33, 54, 55, 5], reinforcement learning [6, 73, 74], act-

ing by prediction [28], imitation learning [23], and other

concepts [59, 100]. These methods generally assume a sen-

sory observation from the environment is given and subse-

quently devise one or a series of actions to perform a task.

A key question is where this sensory observation should

come from. Conventional computer vision datasets [32, 26,

57] are passive and static, and consequently, lacking for this

purpose. Learning in the physical world, though not im-

possible [38, 7, 55, 63], is not the ideal scenario. It would

bound the learning speed to real-time, incur substantial lo-

gistical cost if massively parallelized, and discount rare yet

important occurrences. Robots are also often costly and

fragile. This has led to popularity of learning-in-simulation

with a fruitful history going back to decades ago [64] and

remaining an active topic today. The primary questions

around this option are naturally around generalization from

simulation to real-world: how to ensure I. the semantic

complexity of the simulated environment is a good enough

replica of the intricate real-world, and II. the rendered visual

observation in simulation is close enough to what a camera

in real-world would capture (photorealism).

We attempt to address some of these concerns and pro-

pose Gibson, a virtual environment for training and testing

real-world perceptual agents. An arbitrary agent, e.g. a hu-

manoid or a car (see Fig. 1) can be imported, it will be then

embodied (i.e. contained by its physical body) and placed

in a large and diverse set of real spaces. The agent is subject

to constraints of space and physics (e.g. collision, gravity)

through integration with a physics engine, but can freely

perform any mobility task as long as the constraints are sat-

isfied. Gibson provides a stream of visual observation from

arbitrary viewpoints as if the agent had an on-board cam-

era. Our novel rendering engine operates notably faster than

real-time and works given sparsely scanned spaces, e.g. 1

panorama per 5-10 m2.

The main goal of Gibson is to facilitate transferring the

models trained therein to real-world, i.e. holding up the re-

sults when the stream of images switches to come from a

real camera rather than Gibson’s rendering engine. This is

done by: first, resorting to the world itself to represent its

own semantic complexity [81, 14] and forming the environ-

ment based off of scanned real spaces, rather than artificial

ones [84, 48, 46]. Second, embedding a mechanism to dis-

solve differences between Gibson’s renderings and what a

real camera would produce. As a result, an image coming

from a real camera vs the corresponding one from Gibson’s

rendering engine look statistically indistinguishable to the

agent, and hence, closing the (perceptual) gap. This is done

by employing a neural network based rendering approach

which jointly trains a network for making renderings look

more like real images (forward function) as well as a net-

work which makes real images look like renderings (inverse

function). The two functions are trained to produce equal

outputs. The inverse function resembles deployment-time

corrective glasses for the agent, thus we call it Goggles.

Finally, we showcase a set of active perceptual tasks (lo-

cal planning for obstacle avoidance, distant navigation, vi-

sual stair climbing) learned in Gibson. Our focus in this pa-

per is on the vision aspect only. The statements should not

be viewed to be necessarily generalizable to other aspects

of learning in virtual environments, e.g. physics simulation.

Gibson Environment and our software stack are available

to public for research purposes at http://gibson.vision/.

2. Related Work

Active Agents and Control: As discussed in Sec.1, op-

erating and controlling active agents have been the focus of

a massive body of work. A large portion of them are non-

learning based [50, 27, 49], while recent methods have at-

tempted learning visuomotor policies end-to-end [100, 54]

taking advantage of imitation learning [69], reinforcement

learning [74, 41, 73, 41, 5, 6], acting by prediction [28] or

self-supervision [38, 63, 28, 62, 43]. These methods are all

potential users of (ours and other) virtual environments.

Virtual Environments for Learning: Conventionally

vision is learned in static datasets [32, 26, 57] which are

of limited use when it comes to active agent. Similarly,

video datasets [53, 66, 95] are pre-recorded and still passive.

Virtual environments have been a remedy for this, classi-

cally [64] and today [100, 34, 29, 79, 44, 10, 8, 68, 92].

Computer games, e.g. Minecraft [46], Doom [48] and

GTA5 [65] have been adapted for training and benchmark-

ing learning algorithms. While these simulators are deemed

reasonably effective for certain planning or control tasks,

the majority of them are of limited use for perception and

suffer from over simplification of the visual world due

to using synthetic underlying databases and/or rendering

pipeline deficiencies. Gibson addresses some of these con-

cerns by striving to target perception in real-world via using

real spaces as its base, a custom neural network based view

synthesizer, and a baked-in adaption mechanism, Goggles.

Domain Adaptation and Transferring to Real-World:

With popularity of simulators, different approaches for do-

main adaption for transferring the results to real world has

been investigated [11, 25, 85, 71, 89, 93], e.g. via domain

randomization [70, 89] or forming joint spaces [77]. Our

approach is relatively simple and makes use of the fact that,

in our case, large amounts of paired data for target-source

domains are available enabling us to train forward and in-

verse models to form a joint space. This makes us a baked-

in mechanism in our environment for adaption, minimizing

the need for additional and custom adaptation.

View Synthesis and Image-Based Rendering: Render-

ing novel views of objects and scenes is one of the classic

9069

http://gibson.vision/

(a) (b) (c) (d)

PR

PR

PR

PR

+ S f

RendererPoint Cloud PR View Selection and InterpolationS Neural Net Fillerf

Density mapDensity Map

Figure 2: Overview of our view synthesis pipeline. The input is a sparse set of RGB-D Panoramas with their global camera pose. (a,b) Each RGB-D

panorama is projected to the target camera pose and rendered. (b) View Selection determines from which panorama each target pixel should be picked,

favoring panoramas that provide denser pixels for each region. (c) The pixels are selected and local gaps are interpolated with bilinear sampling. (d) A

neural network (f) takes in the interpolated image and fills in the dis-occluded regions and fixes artifacts.

problems in vision and graphics [76, 80, 87, 21, 56]. A

number of relevantly recent methods have employed neu-

ral networks in a rendering pipeline, e.g. via an encoder-

decoder like architecture that directly renders pixels [30,

52, 88] or predicts a flow map for pixels [99]. When some

from of 3D information, e.g. depth, is available in the in-

put [39, 58, 18, 78], the pipeline can make use of geometric

approaches to be more robust to large viewpoint changes

and implausible deformations. Further, when multiple im-

ages in the input are available, a smart selection mechanism

(often referred to as Image Based Rendering) can help with

lighting inconsistencies and handling more difficult and non

lambertian surfaces [40, 60, 90], compared to rendering

from a textured mesh or as such entirely geometric meth-

ods. Our approach is a combination of above in which we

geometrically render a base image for the target view, but

resort to a neural network to correct artifacts and fill in the

dis-occluded areas, along with jointly training an inverse

function for mapping real images onto the synthesized one.

3. Real-World Perceptual Environment

Gibson includes a neural network based view synthesis

(described in Sec. 3.2) and a physics engine (described in

Sec. 3.3). The underlying scene database and integrated

agents are explained in sections 3.1 and 3.3, respectively.

3.1. Gibson Database of Spaces

Gibson’s underlying database of spaces includes 572 full

buildings composed of 1447 floors covering a total area

of 211k m2. Each space has a set of RGB panoramas

with global camera poses and reconstructed 3D meshes.

The base format of the data is similar to 2D-3D-Semantics

dataset [9], but is more diverse and includes 2 orders of

magnitude more spaces. This dataset is released as asset

files within Gibson2.

We have also integrated 2D-3D-Semantics dataset [9]

and Matterport3D [16] in Gibson for optional use.

2Stanford AI lab has the copyright to all models.

3.2. View Synthesis

Our view synthesis module takes a sparse set of RGB-D

panoramas in the input and renders a panorama from an ar-

bitrary novel viewpoint. A ‘view’ is a 6D camera pose of

x, y, z Cartesian coordinates and roll, pitch, yaw angles, de-

noted as θ, φ, γ. An overview of our view synthesis pipeline

can be seen in Fig. 2. It is composed of a geometric point

cloud rendering followed by a neural network to fix arti-

facts and fill in the dis-occluded areas, jointly trained with

an inverse function. Each step is described below:

Geometric Point Cloud Rendering. Scans of real

spaces include sparsely captured images, leading to a sparse

set of sampled lightings from the scene. The quality of sen-

sory depth and 3D meshes are also limited by 3D recon-

struction algorithms or scanning devices. Reflective sur-

faces or small objects are often poorly reconstructed or en-

tirely missing. All these prevent simply rendering from tex-

tured meshes to be a sufficient approach to view synthesis.

We instead adopt a two-stage approach, with the first

stage being geometrically rendering point clouds: the given

RGB-D panoramas are transformed into point clouds and

each pixel is projected from equirectangular coordinates to

Cartesian coordinates. For the desired target view vj =
(xj , yj , zj , θj , φj , γj), we choose the nearest k views in the

scene database, denoted as vj,1, vj,2, . . . , vj,k. For each

view vj,i, we transform the point cloud from vj,i coordi-

nate to vj coordinate with a rigid body transformation and

project the point cloud onto an equirectangular image. The

pixels may open up and show a gap in-between, when ren-

dered from the target view. Hence, the pixels that are sup-

posed to be occluded may become visible through the gaps.

To filter them out, we render an equirectangular depth as

seen from the target view vj since we have the full recon-

struction of the space. We then do a depth test and filter out

the pixels with a difference > 0.1m in their depth from the

corresponding point in the target equirectangular depth. We

now have sparse RGB points projected in equirectangulars

for each reference panorama (see Fig. 2 (a)).

The points from all reference panoramas are aggre-

gated to make one panorama using a locally weighted

mixture (see Density Map in Fig. 2 (b)). We calculate

the point density for each spatial position (average num-

9070

Geometric

Rendering

Post Neural

Net Rendering

Real Image

Real Image

via Goggles

Figure 3: Loss configuration for neural network based view synthe-

sis. The loss contains two terms. The first is to transform the renderings

to ground truth target images. The second is to alter ground truth target

images to match the transformed rendering. A sample case is shown.

ber of points per pixel) of each panorama, denoted as

d1, . . . , dk. For each position, the weight for view i is

exp(λddi)/
∑

m exp(λddm), where λd is a hyperparameter.

Hence, the points in the aggregated panorama are adaptively

selected from all views, rather than superimposed blindly

which would expose lighting inconsistency and misalign-

ment artifacts.

Finally, we do a bilinear interpolation on the aggregated

points in one equirectangular to reduce the empty space be-

tween rendered pixels (see Fig. 2 (c)).

See the first row of Fig. 6 which shows the so-far out-

put still includes major artifacts, including stitching marks,

deformed objects, or large dis-occluded regions.

Neural Network Based Rendering. We use a neural

network, f , to fix artifacts and generate a more real looking

image given the output of the geometric point cloud ren-

dering. We employ a set of key novelties to produce good

results efficiently, including a stochastic identify initializa-

tion and adding color moment matching in perceptual loss.

Architecture: The architecture and hyperparameters of

our convolutional neural network f are detailed in the sup-

plementary material. We utilize dilated convolutions [96]

to aggregate contextual information. We use a 18-layer net-

work, with 3×3 kernels for dilated convolution layers. The

maximal dilation is 32. This allows us to achieve a large

receptive field but not shrink the size of the feature map by

too much. The minimal feature map size is 1
4 ×

1
4 of the

original image size. We also use two architectures with the

number of kernels being 96 or 512, depending on whether

speed or quality is prioritized.

Identity Initialization: Though the output of the point

cloud rendering suffers from notable artifacts, it is yet quite

close to the ground truth target image numerically. Thus, an

identity function (i.e. input image=ouput image) is a good

place for initializing the neural network f at. We develop

a stochastic approach to initializing the network at identity,

to keep the weights nearly randomly distributed. We initial-

ize half of the weights randomly with Gaussian and freeze

them, then optimize the rest with back propagation to make

the network’s output the same as input. After convergence,

the weights are our stochastic identity initialization. Other

forms of identity initialization involve manually specifying

the kernel weights, e.g. [20], which severely skews the dis-

tribution of weights (mostly 0s and some 1s). We found that

to lead to slower converge and poorer results.
Loss: We use a perceptual loss [45] defined as:

D(I1, I2) =
∑

l

λl||Ψl(I1)−Ψl(I2)||1 + γ
∑

i,j

||Ī1i,j − Ī2i,j ||1.

For Ψ, we use a pretrained VGG16 [82]. Ψl(I) denotes the

feature map for input image I at l-th convolutional layer.

We used all layers except for output layers. λl is a scal-

ing coefficient normalized with the number of elements in

the feature map. We found perceptual loss to be inherently

lossy w.r.t. color information (different colors were pro-

jected on one point). Therefore, we add a term to enforce

matching statistical moments of color distribution. Īi,j is

the average color vector of a 32×32 tile of the image which

is enforced to be matching between I1 and I2 using L1 dis-

tance and γ is a mixture hyperparameter. We found our final

setup to produce superior rendering results to GAN based

losses (consistent with some recent works [19]).

3.2.1 Closing the Gap with Real-World: Goggles

With all of the imperfections in 3D inputs and point cloud

renderings, it is implausible to achieve a fully photo-

realistic rendering with neural network fixes. Thus a do-

main gap with real images would remain. Therefore, we

instead formulate the rendering problem as forming a joint

space ensuring a correspondence between rendered and real

images, and consequently, dissolving the gap [77].

If one wishes to create a mapping between domain S
and domain T using a function f , usually a loss with the

following form is optimized:

L = E [D(f(Is), It)]. (1)

However, in our case the mapping from T (real images) to

S (renderings) is not bijective, or at least the two directions

S 7→ T and T 7→ S do not appear to be equally difficult.

For example, there is no unique solution to dis-occlusion

filling, so the domain gap cannot reach zero exercising only

S 7→ T direction. Hence, we add another network u to

jointly utilize T 7→ S and define the objective to be mini-

mizing the distance between f(Is) and u(It). Function u
is trained to alter the image taken in real-world, It, to look

like the corresponding rendered image after passing through

f network: f(Is). Function u can be viewed as corrective

glasses of the agent, and hence, the naming of Goggles.

9071

http://gibson.vision/supplementary_material/
http://gibson.vision/supplementary_material/

Figure 4: Physics Integration and Embodiment. A Mujoco humanoid

model is dropped onto a stairway demonstrating a physically plausible fall

along with the corresponding visual observations by the humanoid’s eye.

The first and second rows show the physics engine view of 4 sampled time

steps and their corresponding rendered RGB views, respectively.

To avoid the trivial solution of all images collapsing to a

single point, we add the first term in the final loss to enforce

preserving a one-to-one mapping. The final loss for training

networks u and f is:

L = E [D(f(Is), It)] + E [D(f(Is), u(It))]. (2)

See Fig. 3 for a visual example. D is the distance defined in

Sec 3.2. We use the same network architecture for f and u.

3.3. Embodiment and Physics Integration

Perception and physical constraints are closely related.

For instance, the perception model of a human-sized agent

should seamlessly develop the notion that it does not fit in

the gap under the door and hence should not attend such

areas when solving a navigation task; a mouse-sized agent

though could fit and its perception should attend such areas.

It is thus important for the agent to be constantly subject

to constraints of space and physics, e.g. collision, gravity,

friction, throughout learning.

We integrated Gibson with a physics engine based on

Bullet Physics [24] which supports rigid body and soft body

simulation with discrete and continuous collision detection.

We also use Bullet’s built-in fast collision handling system

to record agent’s certain interactions, such as how many

times it collides with physical obstacles. We use Coulomb

friction model by default, as scanned models do not come

with material property annotations and certain physics as-

pects, such as friction, cannot be directly simulated.

Agents: Gibson supports importing arbitrary agents with

URDFs. Also, a number of agents are integrated as entry

points, including humanoid and ant of Roboschool [4, 75],

husky car [1], drone, minitaur [3], Jackrabbot [2]. Agent

models are in ROS or Mujoco XML format.

Integrated Controllers: To enable (optionally) ab-

stracting away low-level control and robot dynamics for the

tasks that are wished to be approached in a more high-level

manner, we also provide a set of practical and ideal con-

trollers to deduce the complexity of learning to control from

scratch. We integrated a PID controller and a Nonholo-

nomic controller as well as an ideal positional controller

which completely abstracts away agent’s motion dynamics.

3.4. Additional Modalities

Besides rendering RGB images, Gibson provides addi-

tional channels, such as depth, surface normals, and seman-

tics. Unlike RGB images, these channels are more robust

to noise in input data and lighting changes, and we render

them directly from mesh files. Geometric modalities, e.g.

depth, are provided for all models and semantics are avail-

able for 52,561 m2 of area with semantic annotations from

2D-3D-S [9] and Matterport3D [16] datasets.

Similar to other robotic simulation platforms, we also

provide configurable proprioceptive sensory data. A typical

proprioceptive sensor suite includes information of joint po-

sitions, angle velocity, robot orientation with respect to nav-

igation target, position and velocity. We refer to this typical

setup as “non-visual sensor” to distinguish from “visual”

modalities in the rest of the paper.

4. Tasks

Input-Output Abstraction: Gibson allows defining ar-

bitrary tasks for an agent. To provide a common abstrac-

tion for this, we follow the interface of OpenAI Gym [13]:

at each timestep, the agent performs an action at the envi-

ronment; then the environment runs a forward step (inte-

grated with the physics engine) and returns the accordingly

rendered visual observation, reward, and termination sig-

nal. We also provide utility functions to keyboard operate

an agent or visualize a recorded run.

4.1. Experimental Validation Tasks

In our experiments, we use a set of sample active percep-

tual tasks and static-recognition tasks to validate Gibson.

The active tasks include:

Local Planning and Obstacle Avoidance: An agent is

randomly placed in an environment and needs to travel to a

random nearby target location provided as relative coordi-

nates (similar to flag run [4]). The agent receives no infor-

mation about the environment except a continuous stream

of depth and/or RGB frames and needs to plan perceptually

(e.g. go around a couch to reach the target behind).

Distant Visual Navigation: Similar to the the previous

task, but the target location is significantly further away and

fixed. Agent’s initial location is still randomized. This is

similar to the task of auto-docking for robots from a distant

location. Agent receives no external odometry or GPS in-

formation, and needs to form a contextual map to succeed.

Stair Climb: An (ant [4]) agent is placed on on top of a

stairway and the target location is at the bottom. It needs to

learn a controller for its complex dynamics to plausibly go

down the stairway without flipping, using visual inputs.

To benchmark how close to real images the renderings

of Gibson are, we used two static-recognition tasks: depth

estimation and scene classification. We train a neural net-

work using (rendering, ground truth) pairs as training

9072

UDACITY AIRSIM MALMO TORCS

CARLATHOR SYNTHIA VIZDOOM

Figure 5: Sample spaces in Gibson database. The spaces are diverse in terms of size, visuals, and function, e.g. businesses, construction sites, houses.

Upper: Sample 3D models. Lower: Sample images from Gibson database (left) and some of other environments [29, 46, 67, 79, 48, 94, 35, 100] (right).

data, but test them on (real image, ground truth). If Gib-

son renderings are close enough to real images and Goggles

mechanism is effective, test results on real images are ex-

pected to be satisfactory. This also enables quantifying the

impact of Goggles, i.e. using u(It) vs. Is, f(Is), and It.

Depth Estimation: Predicting depth given a single RGB

image, similar to [31]. We train 4 networks to predict the

depth given one of the following 4 as input images: Is (pre-

neural network rendering),f(Is) (post-neural network ren-

dering), u(It) (real image seen with Goggles), and It (real

image). We compare the performance of these in Sec. 5.3.

Scene Classification: The same as previous task, but the

output is scene classes rather than depth. As our images do

not have scene class annotations, we generate them using a

well performing network trained on Places dataset [98].

5. Experimental Results

5.1. Benchmarking Space Databases

The spaces in Gibson database are collected using var-

ious scanning devices, including NavVis, Matterport, or

DotProduct, covering a diverse set of spaces, e.g. offices,

garages, stadiums, grocery stores, gyms, hospitals, houses.

All spaces are fully reconstructed in 3D and post processed

to fill the holes and enhance the mesh. We benchmark

some of the existing synthetic and real databases of spaces

(SUNCG [84] and Matterport3D [16]) vs Gibson’s using the

following metrics in Table 1:

Specific Surface Area (SSA): the ratio of inner mesh

surface and volume of convex hull of the mesh. This is a

measure of clutter in the models.

Navigation Complexity: Longest A∗ navigation dis-

tance between randomly placed two points divided by the

straight line distance. We compute the highest navigation

complexity maxsi,sj
dA∗ (si,sj)
dl2(si,sj)

for every model.

Dataset Gibson SUNCG Matterport3D

Number of Spaces 572 45622 90

Total Coverage m2 211k 5.8M 46.6K

SSA 1.38 0.74 0.92

Nav. Complexity 5.98 2.29 7.80

Real-World Transfer Err 0.92§ 2.89† 2.11†

Table 1: Benchmarking Space Databases: Comparison of Gibson

database with SUNCG [84] (hand designed synthetic), and Matter-

port3D [16]. § Rendered with Gibson, † rendered with MINOS [72].

Real-World Transfer Error: We train a neural network

for depth estimation using the images of each database and

test them on real images of 2D-3D-S dataset [9]. Train-

ing images of SUNCG and Matterport3D are rendered us-

ing MINOS [72] and our dataset is rendered using Gibson’s

engine. The training set of each database is 20k random

RGB-depth image pairs with 90◦ field of view. The reported

value is average depth estimation error in meters.

Scene Diversity: We perform scene classification on

10k randomly picked images for each database using a net-

work pretrained on [98]. We report the entropy of the dis-

tribution of top-1 classes for each environment. Gibson,

SUNCG [84], and THOR [100] gain the scores of 3.72,

2.89, and 3.32, respectively (highest possible entropy =

5.90).

5.2. Evaluation of View Synthesis

To train the networks f and u of our neural network

based synthesis framework, we sampled 4.3k 1024 × 2048
Is—It panorama pairs and randomly cropped them to

256× 256. We use Adam [51] optimizer with learning rate

2× 10−4. We first train f for 50 epochs until convergence,

then we train f and u jointly for another 50 epochs with

learning rate 2× 10−5. The learning finishes in 3 days on 2

Nvidia Titan X GPUs.

9073

G
eo

m
et

ri
c

R
en

d
er

in
g

P
o

st
 N

eu
ra

l

N
et

 R
en

d
er

in
g

R
ea

l
Im

ag
e

v
ia

 G
o
g
g
le
s

R
ea

l
Im

ag
e

Figure 6: Qualitative results of view synthesis and Goggles. Top to bottom rows show images before neural network correction, after neural network

correction, target image seen through Goggles, and target image (i.e. ground truth real image). The first column shows a pano and the rest are sample

zoomed-in patches. Note the high similarity between 2nd and 3rd row, signifying the effectiveness of Goggles.

Resolution 128x128 256x256 512x512

Non-Visual Sensor 427.9 427.9 427.9

Depth Only 159.4 113.3 79.2

RGBD Pre Network f 81.5 50.9 33.3

RGBD Post Network f 73.6 42.7 18.3

Semantic Only 93.1 79.5 50.9

Surface Normal 89.3 73.7 45.4

Table 2: Rendering speed (FPS) of Gibson for different resolutions and

configurations. Tested on a single NVIDIA GeForce GTX1070 card.

Sample renderings and their corresponding real image

(ground truth) are shown in Fig. 6. Note that pre-neural

network renderings suffer from geometric artifacts which

are partially resolved in post-neural network results. Also,

though the contrast of the post-neural network images is

lower than real ones and color distributions are still differ-

ent, Goggles could effectively alter the real images to match

the renderings (compare 2nd and 3rd rows). In additional,

the network f and Goggles u jointly addressed some of the

pathological domain gaps. For instance, as lighting fixtures

are often thin and shiny, they are not well reconstructed in

our meshes and usually fail to render properly. Network f
and Goggles learned to just suppress them altogether from

images to not let a domain gap remain. The scene out the

windows also often have large re-projection errors, so they

are usually turned white by f and u.

Appearance columns in Table 3 quantify view synthe-

sis results in terms image similarity metrics L1 and SSIM.

They echo that the smallest gap is between f(Is) and u(It).
Rendering Speed of Gibson is provided in Table 2.

5.3. Transferring to RealWorld

We quantify the effectiveness of Goggles mechanism in

reducing the domain gap between Gibson renderings and

real imagery in two ways: via the static-recognition tasks

described in Sec. 4.1 and by comparing image distributions.

Evaluation of transferring to real images via scene clas-

sification and depth estimation are summarized in Table. 3.

Train Test
Static Tasks Appearance

Scene

Class Acc.

Depth Est.

Error

SSIM L1

Is It 0.280 1.026 0.627 0.096

f(Is) It 0.266 1.560 0.480 0.10

f(Is) u(It) 0.291 0.915 0.816 0.051

Table 3: Evaluation of view synthesis and transferring to real-world.

Static Tasks column shows on both scene classification task and depth es-

timation tasks, it is easiest to transfer from f(Is) to u(It) compared with

other cross-domain transfers. Appearance columns compare L1 and SSIM

distance metrics for different pairs showing the combination of network f

and Goggles u achieves best results.

Also, Fig. 7 (a) provides depth estimation results for all fea-

sible train-test combinations for reference. The diagonal

values of the 4 × 4 matrix represent training and testing on

the same domain. The gold standard is train and test on

It (real images) which yields the error of 0.86. The clos-

est combination to that in the entire table is train on f(Is)
(f output) and test on u(It) (real image through Goggles)

giving 0.91, which signifies the effectiveness of Goggles.

In terms of distributional quantification, we used two

metrics of Maximum Mean Discrepancy (MMD) [37] and

CORAL [86] to test how well f(Is) and u(It) domains are

aligned. The metrics essentially determine how likely it is

for two samples to be drawn from different distributions.

We calculate MMD and CORAL values using the features

of the last convolutional layer of VGG16 [82] and kernel

k(x, y) = xT y. Results are summarized in Fig. 7 (b) and

(c). For each metric, f(Is) - u(It) is smaller than other

pairs, showing that the two domains are well matching.

In order to quantitatively show the networks f and u do

not give degenerate solutions (i.e. collapsing all images

to few points to close the gap by cheating), we use f(Is)
and u(It) as queries to retrieve their nearest neighbor using

VGG16 features from Is and It, respectively. Top-1, 2 and

5 accuracies for f(Is) 7→ Is are 91.6%, 93.5%, 95.6%.

Top-1, 2 and 5 accuracies for u(It) 7→ It are 85.9%,

87.2%,89.6%. This indicates a good correspondence be-

9074

(b) (c)(a) Domain 1Domain 1

D
o

m
a

in
 2

D
o

m
a

in
 2

Figure 7: Evaluation of transferring to real-world from Gibson. (a)

Error of depth estimation for all train-test combinations. (b,c) MMD and

CORAL distributional distances. All tests are in support of Goggles.

Depth + NonVisual sensors

NonVisual sensors only

Figure 8: Visual Local planning and obstacle avoidance. Reward curves

for perceptual vs non-perceptual husky agents and a sample trajectory.

tween pre and post neural network images is preserved, and

thus, no collapse is observed.

5.4. Validation Tasks Learned in Gibson

The results of the active perceptual tasks discussed in

Sec. 4.1 are provided here. In each experiment, the non-

visual sensor outputs include agent position, orientation,

and relative position to target. The agents are rewarded by

the decrease in their distance towards their targets. In Lo-

cal Planning and Visual Obstacle Avoidance, they receive

an additional penalty for every collision.

Local Planning and Visual Obstacle Avoidance Re-

sults: We trained a perceptual and non-perceptual husky

agent according to the setting in Sec. 4.1 with PPO [74]

for 150 episodes (300 iterations, 150k frames). Both

agents have a four-dimensional discrete action space: for-

ward/backward/left/right. The average reward over 10 it-

erations are plotted in Fig 8. The agent with perception

achieves a higher score and developed obstacle avoidance

behavior to reach the goal faster.

Distant Visual Navigation Results: Fig. 9 shows the

target and sample random initial locations as well as the

reward curves. Global navigation behavior emerges after

1700 episodes (680k frames), and only the agent with visual

state was able to accomplish the task. The action space is

the same as previous experiment.

Also, we use the trained policy of distant navigation to

evaluate the impact of Goggles on an active task: we go to

camera locations where It is available. Then we measure

the policy discrepancy in terms of L2 distance of output ac-

tion logits when different renderings and It are provided

as input. Training on f(Is) and testing on u(It) yields

discrepancy of 0.204 (best), while training on f(Is) and

testing on It gives 0.300 and training on Is and testing on

It gives 0.242. After the initial release of our work, a pa-

Target Location

Initial Location

RGB Sensor

Nonvisual Sensor

Figure 9: Distant Visual Navigation. The initial locations and target are

shown. The agent succeeds only when provided with visual inputs.

per recently reported an evaluation done on a real robot for

adaptation using inverse mapping from real images to ren-

derings [97], with positive results. They did not use paired

data, unlike Gibson, which would be expected to further en-

hance the results.

Stair Climb: As explained in Sec. 4.1, an ant [4] is

trained to perform the complex locomotive task of plausi-

bly climbing down a stairway without flipping. The action

space is eight dimensional continuous torque values. We

train one perceptual and one non-perceptual agent starting

at a fixed initial location, but at test time slightly and ran-

domly move their initial and target location around. They

start to acquire stair-climbing skills after 1700 episodes

(700k time steps). While the perceptual agent learned

slower, it showed better generalizability at test time cop-

ing with the location shifts and outperformed the non-

perceptual agent by 70%. Full details of this experiment

is privded in the supplementary material.

6. Limitations and Conclusion

We presented Gibson Environments for developing real-

world perception for active agents and validated it using a

set of tasks. While we think this is a step forward, there are

some limitations that should be noted. First, though Gibson

provides a good basis for learning complex navigation and

locomotion, it does not include dynamic content (e.g. other

moving objects) and does not allow manipulation at this

point. This can potentially be solved by integrating our

approach with synthetic objects [17, 47]. Second, we do

not have full material properties and no existing physics

simulator is optimal; this may lead to physics related

domain gaps. Finally, we provided quantitative evaluations

of Goggles mechanism for transferring to real world mostly

using static recognition tasks. The ultimate test would be

evaluating Goggles on real robots.

Acknowledgement: We gratefully acknowledge the

support of Facebook, Toyota (1186781-31-UDARO), ONR

MURI (N00014-14-1-0671), ONR (1165419-10-TDAUZ);

Nvidia, CloudMinds, Panasonic (1192707-1-GWMSX).

9075

http://gibson.vision/supplementary_material/

References

[1] Husky UGV - Clearpath Robotics. http://wiki.ros.

org/Robots/Husky. Accessed: 2017-09-30. 5

[2] Jackrabbot - Stanford Vision and Learning Group.

http://cvgl.stanford.edu/projects/

jackrabbot/. Accessed: 2018-01-30. 5

[3] Legged UGVs - Ghost Robotics. https://www.

ghostrobotics.io/copy-of-robots. Accessed:

2017-09-30. 5

[4] OpenAI Roboschool. http://blog.openai.com/

roboschool/. Accessed: 2018-02-02. 5, 8

[5] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous helicopter

aerobatics through apprenticeship learning. The Interna-

tional Journal of Robotics Research, 29(13):1608–1639,

2010. 2

[6] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An ap-

plication of reinforcement learning to aerobatic helicopter

flight. In Advances in neural information processing sys-

tems, pages 1–8, 2007. 2

[7] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine.

Learning to poke by poking: Experiential learning of intu-

itive physics. In Advances in Neural Information Process-

ing Systems, pages 5074–5082, 2016. 2

[8] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson,

N. Sünderhauf, I. Reid, S. Gould, and A. van den Hen-

gel. Vision-and-language navigation: Interpreting visually-

grounded navigation instructions in real environments. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018. 2

[9] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-

3D-Semantic Data for Indoor Scene Understanding. ArXiv

e-prints, Feb. 2017. 3, 5, 6

[10] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling.

The arcade learning environment: An evaluation platform

for general agents. J. Artif. Intell. Res.(JAIR), 47:253–279,

2013. 2

[11] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation

with structural correspondence learning. In Proceedings of

the 2006 conference on empirical methods in natural lan-

guage processing, pages 120–128. Association for Compu-

tational Linguistics, 2006. 2

[12] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Lin-

ear matrix inequalities in system and control theory. SIAM,

1994. 2

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,

J. Schulman, J. Tang, and W. Zaremba. Openai gym. arXiv

preprint arXiv:1606.01540, 2016. 5

[14] R. A. Brooks. Elephants don’t play chess. Robotics and

autonomous systems, 6(1-2):3–15, 1990. 1, 2

[15] R. A. Brooks. Intelligence without representation. Artificial

intelligence, 47(1-3):139–159, 1991. 1

[16] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Nießner,

M. Savva, S. Song, A. Zeng, and Y. Zhang. Matterport3d:

Learning from rgb-d data in indoor environments. arXiv

preprint arXiv:1709.06158, 2017. 3, 5, 6

[17] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

et al. Shapenet: An information-rich 3d model repository.

arXiv preprint arXiv:1512.03012, 2015. 8

[18] C.-F. Chang, G. Bishop, and A. Lastra. Ldi tree: A hi-

erarchical representation for image-based rendering. In

Proceedings of the 26th annual conference on Computer

graphics and interactive techniques, pages 291–298. ACM

Press/Addison-Wesley Publishing Co., 1999. 3

[19] Q. Chen and V. Koltun. Photographic image synthe-

sis with cascaded refinement networks. arXiv preprint

arXiv:1707.09405, 2017. 4

[20] Q. Chen, J. Xu, and V. Koltun. Fast image processing with

fully-convolutional networks. In IEEE International Con-

ference on Computer Vision, 2017. 4

[21] S. E. Chen and L. Williams. View interpolation for image

synthesis. In Proceedings of the 20th annual conference on

Computer graphics and interactive techniques, pages 279–

288. ACM, 1993. 3

[22] P. S. Churchland, V. S. Ramachandran, and T. J. Sejnowski.

A critique of pure vision. Large-scale neuronal theories of

the brain, pages 23–60, 1994. 1

[23] F. Codevilla, M. Müller, A. Dosovitskiy, A. López, and

V. Koltun. End-to-end driving via conditional imitation

learning. arXiv preprint arXiv:1710.02410, 2017. 2

[24] E. Coumans et al. Bullet physics library. Open source:

bulletphysics. org, 15:49, 2013. 5

[25] H. Daumé III. Frustratingly easy domain adaptation. arXiv

preprint arXiv:0907.1815, 2009. 2

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. IEEE, 2009. 2

[27] J. P. Desai, J. P. Ostrowski, and V. Kumar. Modeling

and control of formations of nonholonomic mobile robots.

IEEE transactions on Robotics and Automation, 17(6):905–

908, 2001. 2

[28] A. Dosovitskiy and V. Koltun. Learning to act by predicting

the future. arXiv preprint arXiv:1611.01779, 2016. 2

[29] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and

V. Koltun. Carla: An open urban driving simulator. In

Conference on Robot Learning, pages 1–16, 2017. 2, 6

[30] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learn-

ing to generate chairs with convolutional neural networks.

In Computer Vision and Pattern Recognition (CVPR), 2015

IEEE Conference on, pages 1538–1546. IEEE, 2015. 3

[31] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. In

Advances in neural information processing systems, pages

2366–2374, 2014. 6

[32] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International journal of computer vision, 88(2):303–

338, 2010. 2

[33] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and

P. Abbeel. Deep spatial autoencoders for visuomotor learn-

ing. In Robotics and Automation (ICRA), 2016 IEEE Inter-

national Conference on, pages 512–519. IEEE, 2016. 2

[34] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds

as proxy for multi-object tracking analysis. In CVPR, 2016.

2

9076

http://wiki.ros.org/Robots/Husky
http://wiki.ros.org/Robots/Husky
http://cvgl.stanford.edu/projects/jackrabbot/
http://cvgl.stanford.edu/projects/jackrabbot/
https://www.ghostrobotics.io/copy-of-robots
https://www.ghostrobotics.io/copy-of-robots
http://blog.openai.com/roboschool/
http://blog.openai.com/roboschool/

[35] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. The International Journal of

Robotics Research, 32(11):1231–1237, 2013. 6

[36] J. J. Gibson. The ecological approach to visual perception.

Psychology Press, 2013. 1

[37] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf,

and A. Smola. A kernel two-sample test. Journal of Ma-

chine Learning Research, 13(Mar):723–773, 2012. 7

[38] A. Gupta. Supersizing self-supervision: Learning percep-

tion and action without human supervision. 2016. 2

[39] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. Cambridge university press, 2003. 3

[40] P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow. Scal-

able inside-out image-based rendering. ACM Transactions

on Graphics (TOG), 35(6):231, 2016. 3

[41] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne,

Y. Tassa, T. Erez, Z. Wang, A. Eslami, M. Riedmiller, et al.

Emergence of locomotion behaviours in rich environments.

arXiv preprint arXiv:1707.02286, 2017. 2

[42] R. Held and A. Hein. Movement-produced stimulation

in the development of visually guided behavior. Journal

of comparative and physiological psychology, 56(5):872,

1963. 1

[43] N. Hirose, A. Sadeghian, M. Vázquez, P. Goebel, and

S. Savarese. Gonet: A semi-supervised deep learning

approach for traversability estimation. arXiv preprint

arXiv:1803.03254, 2018. 2

[44] C. Jiang, Y. Zhu, S. Qi, S. Huang, J. Lin, X. Guo, L.-F.

Yu, D. Terzopoulos, and S.-C. Zhu. Configurable, pho-

torealistic image rendering and ground truth synthesis by

sampling stochastic grammars representing indoor scenes.

arXiv preprint arXiv:1704.00112, 2017. 2

[45] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

Conference on Computer Vision, pages 694–711. Springer,

2016. 4

[46] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The

malmo platform for artificial intelligence experimentation.

In IJCAI, pages 4246–4247, 2016. 2, 6

[47] K. Karsch, V. Hedau, D. Forsyth, and D. Hoiem. Rendering

synthetic objects into legacy photographs. In ACM Trans-

actions on Graphics (TOG), volume 30, page 157. ACM,

2011. 8

[48] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and

W. Jaśkowski. Vizdoom: A doom-based ai research plat-

form for visual reinforcement learning. In Computational

Intelligence and Games (CIG), 2016 IEEE Conference on,

pages 1–8. IEEE, 2016. 2, 6

[49] O. Khatib. Real-time obstacle avoidance for manipulators

and mobile robots. In Autonomous robot vehicles, pages

396–404. Springer, 1986. 2

[50] O. Khatib. A unified approach for motion and force con-

trol of robot manipulators: The operational space formula-

tion. IEEE Journal on Robotics and Automation, 3(1):43–

53, 1987. 2

[51] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014. 6

[52] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenen-

baum. Deep convolutional inverse graphics network. In

Advances in Neural Information Processing Systems, pages

2539–2547, 2015. 3

[53] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.

Learning realistic human actions from movies. In Com-

puter Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on, pages 1–8. IEEE, 2008. 2

[54] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end

training of deep visuomotor policies. Journal of Machine

Learning Research, 17(39):1–40, 2016. 2

[55] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and

D. Quillen. Learning hand-eye coordination for robotic

grasping with deep learning and large-scale data collec-

tion. The International Journal of Robotics Research, page

0278364917710318, 2016. 2

[56] M. Levoy and P. Hanrahan. Light field rendering. In

Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques, pages 31–42. ACM,

1996. 3

[57] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on com-

puter vision, pages 740–755. Springer, 2014. 2

[58] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering

3d warping. In Proceedings of the 1997 symposium on In-

teractive 3D graphics, pages 7–ff. ACM, 1997. 3

[59] R. Mottaghi, H. Bagherinezhad, M. Rastegari, and

A. Farhadi. Newtonian scene understanding: Unfolding the

dynamics of objects in static images. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 3521–3529, 2016. 2

[60] R. Ortiz-Cayon, A. Djelouah, and G. Drettakis. A bayesian

approach for selective image-based rendering using super-

pixels. In International Conference on 3D Vision-3DV,

2015. 3

[61] A. R. Parker. On the origin of optics. Optics & Laser Tech-

nology, 43(2):323–329, 2011. 1

[62] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell.

Curiosity-driven exploration by self-supervised prediction.

arXiv preprint arXiv:1705.05363, 2017. 2

[63] L. Pinto and A. Gupta. Supersizing self-supervision: Learn-

ing to grasp from 50k tries and 700 robot hours. In Robotics

and Automation (ICRA), 2016 IEEE International Confer-

ence on, pages 3406–3413. IEEE, 2016. 2

[64] D. A. Pomerleau. Alvinn: An autonomous land vehicle

in a neural network. In Advances in neural information

processing systems, pages 305–313, 1989. 2

[65] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing

for data: Ground truth from computer games. In European

Conference on Computer Vision, pages 102–118. Springer,

2016. 2

[66] M. D. Rodriguez, J. Ahmed, and M. Shah. Action mach

a spatio-temporal maximum average correlation height fil-

ter for action recognition. In Computer Vision and Pat-

tern Recognition, 2008. CVPR 2008. IEEE Conference on,

pages 1–8. IEEE, 2008. 2

[67] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and

A. Lopez. The SYNTHIA Dataset: A large collection

9077

of synthetic images for semantic segmentation of urban

scenes. 2016. 6

[68] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M.

Lopez. The synthia dataset: A large collection of synthetic

images for semantic segmentation of urban scenes. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3234–3243, 2016. 2

[69] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imi-

tation learning and structured prediction to no-regret online

learning. In International Conference on Artificial Intelli-

gence and Statistics, pages 627–635, 2011. 2

[70] F. Sadeghi and S. Levine. rl: Real singleimage flight with-

out a single real image. arxiv preprint. arXiv preprint

arXiv:1611.04201, 12, 2016. 2

[71] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting

visual category models to new domains. In European con-

ference on computer vision, pages 213–226. Springer, 2010.

2

[72] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser,

and V. Koltun. Minos: Multimodal indoor simulator

for navigation in complex environments. arXiv preprint

arXiv:1712.03931, 2017. 6

[73] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and

P. Moritz. Trust region policy optimization. In Proceedings

of the 32nd International Conference on Machine Learning

(ICML-15), pages 1889–1897, 2015. 2

[74] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov. Proximal policy optimization algorithms. arXiv

preprint arXiv:1707.06347, 2017. 2, 8

[75] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov. Proximal Policy Optimization Algorithms.

ArXiv e-prints, July 2017. 5

[76] S. M. Seitz and C. R. Dyer. View morphing. In Proceedings

of the 23rd annual conference on Computer graphics and

interactive techniques, pages 21–30. ACM, 1996. 3

[77] O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learn-

ing transferrable representations for unsupervised domain

adaptation. In Advances in Neural Information Processing

Systems, pages 2110–2118, 2016. 2, 4

[78] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. Layered

depth images. In Proceedings of the 25th annual conference

on Computer graphics and interactive techniques, pages

231–242. ACM, 1998. 3

[79] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-

fidelity visual and physical simulation for autonomous ve-

hicles. In Field and Service Robotics, 2017. 2, 6

[80] E. Shechtman, A. Rav-Acha, M. Irani, and S. Seitz. Regen-

erative morphing. In Computer Vision and Pattern Recog-

nition (CVPR), 2010 IEEE Conference on, pages 615–622.

IEEE, 2010. 3

[81] H. A. Simon. The sciences of the artificial. MIT press,

1996. 2

[82] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 4, 7

[83] L. Smith and M. Gasser. The development of embodied

cognition: Six lessons from babies. Artificial life, 11(1-

2):13–29, 2005. 1

[84] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and

T. Funkhouser. Semantic scene completion from a single

depth image. IEEE Conference on Computer Vision and

Pattern Recognition, 2017. 2, 6

[85] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy

domain adaptation. In AAAI, volume 6, page 8, 2016. 2

[86] B. Sun and K. Saenko. Deep coral: Correlation alignment

for deep domain adaptation. In Computer Vision–ECCV

2016 Workshops, pages 443–450. Springer, 2016. 7

[87] S. Suwajanakorn, I. Kemelmacher-Shlizerman, and S. M.

Seitz. Total moving face reconstruction. In European

Conference on Computer Vision, pages 796–812. Springer,

2014. 3

[88] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view

3d models from single images with a convolutional net-

work. In European Conference on Computer Vision, pages

322–337. Springer, 2016. 3

[89] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and

P. Abbeel. Domain randomization for transferring deep

neural networks from simulation to the real world. arXiv

preprint arXiv:1703.06907, 2017. 2

[90] M. Waechter, N. Moehrle, and M. Goesele. Let there be

color! large-scale texturing of 3d reconstructions. In Eu-

ropean Conference on Computer Vision, pages 836–850.

Springer, 2014. 3

[91] D. M. Wolpert and Z. Ghahramani. Computational prin-

ciples of movement neuroscience. Nature neuroscience,

3:1212–1217, 2000. 1

[92] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian. Building gen-

eralizable agents with a realistic and rich 3d environment.

arXiv preprint arXiv:1801.02209, 2018. 2

[93] M. Wulfmeier, A. Bewley, and I. Posner. Addressing ap-

pearance change in outdoor robotics with adversarial do-

main adaptation. arXiv preprint arXiv:1703.01461, 2017.

2

[94] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis,

R. Coulom, and A. Sumner. Torcs, the open racing car sim-

ulator. Software available at http://torcs. sourceforge. net,

4, 2000. 6

[95] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning

of driving models from large-scale video datasets. arXiv

preprint arXiv:1612.01079, 2016. 2

[96] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. arXiv preprint arXiv:1511.07122, 2015.

4

[97] J. Zhang, L. Tai, Y. Xiong, M. Liu, J. Boedecker,

and W. Burgard. Vr goggles for robots: Real-to-sim

domain adaptation for visual control. arXiv preprint

arXiv:1802.00265, 2018. 8

[98] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Tor-

ralba. Places: A 10 million image database for scene recog-

nition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2017. 6

[99] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros.

View synthesis by appearance flow. In European Confer-

ence on Computer Vision, pages 286–301. Springer, 2016.

3

9078

[100] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-

Fei, and A. Farhadi. Target-driven visual navigation in in-

door scenes using deep reinforcement learning. In Robotics

and Automation (ICRA), 2017 IEEE International Confer-

ence on, pages 3357–3364. IEEE, 2017. 2, 6

9079

