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Abstract

In this paper, we study the problem of designing efficient

convolutional neural network architectures with the inter-

est in eliminating the redundancy in convolution kernels.

In addition to structured sparse kernels, low-rank kernels

and the product of low-rank kernels, the product of struc-

tured sparse kernels, which is a framework for interpret-

ing the recently-developed interleaved group convolutions

(IGC) and its variants (e.g., Xception), has been attracting

increasing interests.

Motivated by the observation that the convolutions con-

tained in a group convolution in IGC can be further decom-

posed in the same manner, we present a modularized build-

ing block, IGC-V2: interleaved structured sparse convolu-

tions. It generalizes interleaved group convolutions, which

is composed of two structured sparse kernels, to the prod-

uct of more structured sparse kernels, further eliminating

the redundancy. We present the complementary condition

and the balance condition to guide the design of structured

sparse kernels, obtaining a balance among three aspects:

model size, computation complexity and classification ac-

curacy. Experimental results demonstrate the advantage on

the balance among these three aspects compared to inter-

leaved group convolutions and Xception, and competitive

performance compared to other state-of-the-art architec-

ture design methods.

1. Introduction

Deep convolutional neural networks with small model

size, low computation cost, but still high accuracy become

an urgent request, especially in mobile devices. The efforts

include (i) network compression: compress the pretrained

model by decomposing the convolutional kernel matrix or

∗This work was done when Guotian Xie was an intern at Microsoft Re-

search, Beijing, P.R. China. Personal email: xieguotian1990@gmail.com
†Corresponding author.

removing connections or channels to eliminate redundan-

cy, and (ii) architecture design: design small kernels, sparse

kernels or use the product of less-redundant kernels to ap-

proach single kernel and train the networks from scratch.

Our study lies in architecture design using the product of

less-redundant kernels for composing a kernel. There are

two main lines: multiply low-rank kernels (matrices) to ap-

proximate a high-rank kernel, e.g., bottleneck modules [6],

and multiply sparse matrices, which has attracted research

efforts recently [43, 11, 1] and is the focus of our work.

We point out that the recently-developed algorithms,

such as interleaved group convolution [43], deep roots [11],

and Xception [1], compose a dense kernel using the product

of two structured-sparse kernels. We observe that one of the

two kernels can be further approximated. For example, the

1× 1 kernel in Xception and deep roots can be approximat-

ed by the product of two block-diagonal sparse matrices.

The suggested secondary group convolution in interleaved

group convolutions contains two branches and each branch

is a 1 × 1 convolution, which similarly can be further ap-

proximated. This is able to further reduce the redundancy.

Motivated by this, we design a building block, IGC-

V2: Interleaved Structured Sparse Convolution, as shown

in Figure 1, which consists of successive group convolution-

s. This block is mathematically formulated as multiplying

structured-sparse kernels, each of which corresponds to a

group convolution. We introduce the complementary condi-

tion and the balance condition, so that the resulting convolu-

tion kernel is dense and there is a good balance among three

aspects: model size, computation complexity and classifi-

cation performance. Experimental results demonstrate the

advantage of the balance among these three aspects com-

pared to interleaved group convolutions and Xception, and

competitive performance compared to other state-of-the-art

architecture design methods.

2. Related Work

Most existing technologies design efficient and effective

convolutional kernels using various forms with redundancy
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Figure 1. IGC-V2: the Interleaved Structured Sparse Convolution. W1, W2, W3 (denoted as solid arrows) are sparse block matrices

corresponding to group convolutions. P1 and P2 (denoted as dashed arrows) are permutation matrices. The resulting composed kernel

W3P2W2P1W1 is ensured to satisfy the complementary condition which guarantees that for each output channel, there exists one and

only one path connecting the output channel to each input channel. The bold line connecting gray feature maps shows such a path.

eliminated, by learning from scratch or approximating pre-

trained models. We roughly divide them into low-precision

kernels, sparse kernels, low-rank kernels, product of low-

rank kernels, product of structured sparse kernels.

Low-precision kernels. There exist redundancies in the

weights in convolutional kernels represented by float num-

bers. The technologies eliminating such redundancies in-

clude quantization [45, 5], binarization [3, 30], and trinar-

ization [21, 46, 47]. Weight-shared kernels in which some

weights are equal to the same value, are in some sense low-

precision kernels.

Sparse kernels. Sparse kernels, or namely sparse connec-

tions, mean that some weights are nearly zero. The ef-

forts along this path mainly lie in how to perform opti-

mization, and the technologies include non-structure spar-

sity regularization [24, 29], and structure sparsity regular-

ization [39, 28]. The scheme of structure sparsity regular-

ization is more friendly for hardware acceleration and stor-

age. Recently, group convolutions, adopted in [41, 44] are

essentially structured-sparse kernels. Different from sparsi-

ty regularization, the sparsity pattern of group convolution

is manually pre-defined.

Low-rank kernels. Small filters, e.g., 3× 3 kernels replac-

ing 5 × 5 kernels, reduce the ranks in the spatial domain.

Channel pruning [25] and filter pruning [40, 22, 26] com-

pute low-rank kernels in the output channel domain and the

input channel domain, respectively1.

Composition from low-rank kernels. Using a pair of 1×3
and 3× 1 kernels to approximate a 3× 3 kernel [12, 13, 27]

is an example of using the product of two small (low-rank)

filters. Tensor decomposition uses the product of low-

rank/small tensors (matrices) to approximate the kernel in

the tensor form along the spatial domain [4, 13], or the in-

put and output channel domains [4, 15, 13]. The bottleneck

1Small filters, channel and filter pruning in some sense can also be

interpreted as sparse kernels: some columns or rows are removed.

structure [6], if the intermediate ReLUs are removed, can

be viewed as the low-rank approximation along the output

channel domain.

Composition from sparse kernels. Interleaved group con-

volution [43] consists of two group convolutions, each of

which corresponds to a structured-sparse kernel (the sizes

are the same to that of the kernel to be approximated for

the 1 × 1 convolutions). Satisfying the complementary

property [43] leads to that the resulting composite kernel

is dense. Xception [1] can be viewed as an extreme case

of interleaved group convolutions: one group convolution

is degraded to a regular convolution and the other one is

a channel-wise convolution, an extreme group convolution.

Deep roots [11] instead uses the product of a structured-

sparse kernel and a dense kernel. Our approach belongs to

this category and shows a better balance among model size,

computation complexity and classification accuracy.

3. Our Approach

The operation in a convolution layer in convolutional

neural networks relies on a matrix-vector multiplication op-

eration at each location:

y = Wx. (1)

Here the input x, corresponding to a patch around the loca-

tion in the input channels, is a SCi-dimensional vector, with

S being the kernel size (e.g., S = 3×3), Ci being the num-

ber of input channels. The output y is a Co-dimensional

vector, with Co being the number of output channels. W is

formed from Co convolutional kernels and each row corre-

sponds to a convolutional kernel. For presentation clarity,

we assume Ci = Co = C, but all the formulations can be

generalized to Ci 6= Co.

3.1. A Review of IGC, Xception and Deep Roots

We show that recent architecture design algorithms, X-

ception [1], deep roots [11], and interleaved group convo-
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lutions (IGC) [43], compose a dense convolution matrix W

by multiplying possibly sparse matrices:

y = P2W2P1W1x, (2)

where W1 and W2 are both, or at least one matrix is block-

wise sparse, Pi is a permutation matrix that is used to re-

order the channels, and W = P2W2P1W1 is a dense ma-

trix.

Interleaved group convolutions. The interleaved group

convolution block consists of primary and secondary group

convolutions. The corresponding kernel matrices W1 and

W2 are block-wise sparse,

Wi =













Wi
1 0 0 0

0 Wi
2 0 0

...
...

. . .
...

0 0 0 Wi
Gi













, (3)

where Wi
g (i = 1 or 2) is the kernel matrix over the cor-

responding channels in the gth branch, Gi is the number of

branches in the ith group convolution. In the case suggest-

ed in [43], the primary group convolution is a group 3 × 3
convolution, G1 = C

2 , and W1
g is a matrix of size 2× (2S).

The secondary group convolution is a group 1× 1 convolu-

tion, G2 = 2, W2
1 and W2

2 are both dense matrices of size
C
2 × C

2 .

Xception. The Xception block consists of a 1× 1 convolu-

tion layer followed by a channel-wise convolution layer. It

is pointed out that the order of the two layers does not make

effects. For convenience, we below discuss the form with

the 1× 1 convolution put as the second operation. W2 is a

dense matrix of size C × C. W1 is a sparse block matrix

of size C × (SC), a degraded form of the matrix shown in

Equation 3: there are C blocks and W1
g is degraded to a

row vector of size S.

Deep roots. In deep roots, W2 is a dense matrix of size C×
C, i.e., corresponding to a 1× 1 convolution while W1 is a

sparse block matrix as shown in Equation 3, corresponding

to a group convolution.

Complexity. The computation complexity of Equation 2 is

O(|W1|0 + |W2|0) (with the complexity in permutation is

ignored), where |Wi|0 is the number of non-zero entries.

The sparse block matrix, as given in Equation 3, are storage

friendly, and the storage/memory cost is also O(|W1|0 +
|W2|0).

3.2. Interleaved Structured Sparse Convolutions

Our approach is motivated by the observations: (i) the

block Wi
g in Equation 3 and the 1×1 convolution in Xcep-

tion are dense and can be composed by multiplying sparse

matrices, thus further eliminating the redundancy and sav-

ing the storage and time cost; and (ii) such a process can be

repeated more times.

The proposed Interleaved Structured Sparse Convolution

(IGC-V2) is mathematically formulated as follows,

y = PLWLPL−1WL−1 . . .P1W1x (4)

= (
∏1

l=L
PlWl)x. (5)

Here, PlWl is a sparse matrix. Pl is a permutation matrix,

and the role is to reorder the channels so that Wl is a sparse

block matrix, as given in Equation 3 and corresponds to the

lth group convolution, where the numbers of channels in all

the branches are in our work set to be the same, equal to Kl,

for easy design.

Construct a dense composed kernel matrix. We intro-

duce the following complementary condition, which is gen-

eralized from interleaved group convolutions [43], as a rule

for constructing the L group convolutions such that the re-

sulting composed convolution kernel matrix is dense.

Condition 1 (Complementary condition) ∀m,

(WL

∏m
l=L−1 PlWl) corresponds to a group convo-

lution and (Wm−1

∏1
l=m−2 PlWl) also corresponds to a

group convolution. The two group convolutions are thought

complementary if the channels lying in the same branch in

one group convolution lie in different branches and come

from all the branches in the other group convolution.

Here is the sketch showing that an interleaved structured

sparse convolution block satisfying the complementary con-

dition is dense. The proof is based on two points: (i) for a

group convolution, we have that any channel output from

a branch is connected to the channels input to this branch

and any channel input to a branch is connected to the chan-

nels output from this branch; (ii) for two complementary

group convolutions, the channels output from any branch

of the second group convolution are connected to the chan-

nels input to the corresponding branch, which are from al-

l the branches of the first group convolution. As a result,

the channels output from an IGC-V2 is connected to al-

l the channels input to the IGC-V2, i.e., the IGC-V2 kernel

is dense.

Let us look at the relation between the number of chan-

nels, C, and the number of channels in the branches of L

group convolutions, {K1,K2, . . . ,KL}. We analyze the

relation according to Equation 5: (i) An input channel is

connected to K1 intermediate channels output by the first

group convolution. (ii) Let Cl−1 be the number of interme-

diate channels output by the (l− 1)th group convolution, to

which an input channel is connected. The complementary

condition indicates that through the lth group convolution

an input channel is connected to exactly KlCl−1 intermedi-

ate channels output by the lth group convolution. (iii) Final-

ly, an input channel is connected to exactly CL =
∏L

l=1 Kl

channels output from the L group convolutions. Since the
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composed kernel is dense, we have
∏L

l=1
Kl = C. (6)

Because of the complementary property, there is no

waste connection: there is only one path between each in-

put channel and each output channel. Besides, the comple-

mentary condition is a sufficient condition yielding a dense

composed kernel matrix, and not a necessary condition.

When the amount of parameters is the smallest? We fur-

ther analyze when the number of parameters with L group

convolutions, as given in Equation 5, satisfying the comple-

mentary condition, is the smallest.

We have that the number of parameters in the lth group

convolution is CKl for the 1 × 1 convolutions, and CSKl

for the spatial (e.g., S = 3 × 3) convolution. It is easi-

ly shown that for consuming fewer parameters there is on-

ly one group spatial convolution and all others are 1 × 1.

The spatial convolution lies in any group convolution, and

without affecting the analysis, we assume it lies in the first

group convolution2. Thus, the number of total parameters

Q, smaller number of parameters in permutation matrices

ignored, is:

Q = C
∑L

l=2
Kl + CSK1. (7)

According to Jensen’s inequality, we have

Q = C
∑L

l=2
Kl + CSK1 (8)

> CL(SK1

∏L

l=2
Kl)

1

L (9)

= CL(SC)
1

L . (10)

Here, the equality from the second line to the third line hold-

s because of Equation 6. The equality in the second line

holds, i.e., Q = CL(SC)
1

L , when the following balance

condition is satisfied3,

SK1 = K2 = · · · = KL(= (SC)
1

L ). (11)

Furthermore, let us see the choice of L, yielding the s-

mallest amount of parameters (Q = CL(SC)
1

L ), guaran-

teeing a dense composed kernel. We present a rough analy-

sis by considering the derivative of Q with respect to L:

d logQ

dL
=

d

dL
(logC + logL+

1

L
log(SC)) (12)

=
1

L
−

1

L2
log(SC). (13)

When the derivative is zero, 1
L − 1

L2 log(SC) = 0, we have

that Q is the minimum if

L = log(SC). (14)

Examples. We take an example: separate the convolution

along the spatial domain and the channel domain, to con-

2The formulation is not the same to Equation 5 if the group 3 × 3
convolution is not the first, but essentially they are the same.

3This can be regarded as an extension of the analysis in [43].

struct the IGC-V2 block. The first group convolution is an

extreme group convolution, a channel-wise 3 × 3 convolu-

tion, followed by several group 1×1 convolutions. This can

be regarded as decomposing the 1× 1 convolution in Xcep-

tion into group 1× 1 convolutions. In this case, the balance

condition becomes K2 = K3 = · · · = KL = C
1

L−1 , for

which the amount of parameters is the smallest. As we em-

pirically validate in Section 4.3, under the same number of

parameters, an IGC-V2 block satisfying such a balance con-

dition leads to the maximum width and consistently superi-

or performance: the best or nearly best. This consistency

observation is different from [43] and might stem from that

the balance condition is only used to 1 × 1 group convolu-

tions and that there is no coupling with spatial convolutions.

We also study the construction from interleaved group

convolutions: each submatrix W2
g in Equation 3 in the sec-

ondary group convolution corresponds to a (dense) 1 × 1
convolution over a subset of channels, and thus can be fur-

ther decomposed into group convolutions. The first group

convolution is still a group 3 × 3 convolution (other than

channel-wise). Consequently, the balance condition given

in Equation 11 is deduced from the coupling of convolution-

s over the spatial and channel domains, which does not lead

to the consistency between the width increase and the per-

formance gain and makes the analysis uneasy. This is em-

pirically validated in our experiments in Section 4.4. Thus,

we suggest to separate the convolution along the spatial and

channel domains and design an IGC-V2 over the channel

domain.

3.3. Discussions

Non-structured sparse kernels. There is a possible ex-

tension: remove the structured sparsity requirement, i.e.,

replace the group convolution by a non-structured sparse

kernel, and introduce the dense constraint (the composed k-

ernel is dense) and the sparsity constraint. This potentially

results in better performance, but leads to two drawbacks:

the optimization is difficult and non-structured sparse ma-

trices are not storage-friendly.

Complementary condition. The complementary condition

is a sufficient condition guaranteeing the resulting com-

posed kernel is dense. It should be noted that it is not a

necessary condition. Moreover, it is also not necessary that

the composed kernel is dense, and further sparsifying the

connections, which remains as a future work, might be ben-

eficial. The complementary condition is an effective guide

to design the group convolutions.

Sparse matrix multiplication and low-rank matrix mul-

tiplication. Low-rank matrix (tensor) multiplication or

decomposition has been widely studied in matrix analy-

sis [19, 20] and applied to network compression and net-

work architecture design. In comparison, sparse matrix

(tensor) multiplication or decomposition is rarely studied in
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Figure 2. Illustrating how the complementary condition affects the performance on CIFAR-100 in our approach. K denotes the number

of channels in each branch and C denotes the width of the network. With L fixed, the composed kernel is denser with a larger K. The red

bar corresponds to the case in which the complementary condition is the most satisfied. The best performances corresponding to the red

bar or the bars immediately near to the red bar show that the complementary condition is reasonable for IGC-V2 design.

matrix analysis. The future works include applying sparse

matrix decomposition to compress convolutional networks,

combining low-rank and sparse matrices together: low-rank

sparse matrix multiplication or decomposition, and so on.

4. Experiment

4.1. Datasets and Training Settings

CIFAR. The CIFAR datasets [16], CIFAR-10 and CIFAR-

100, are subsets of the 80 million tiny images [37]. Both

datasets contain 60000 32×32 color images with 50000 im-

ages for training and 10000 images for test. The CIFAR-10
dataset consists of 10 classes, each of which contains 6000
images. There are 5000 training images and 1000 testing

images per class. The CIFAR-100 dataset consists of 100
classes, each of which contains 600 images. There are 500
training images and 100 testing images per class. The s-

tandard data augmentation scheme we adopt is widely used

for these datasets [6, 10, 18, 9, 17, 23, 31, 34, 35]: we first

zero-pad the images with 4 pixels on each side, and then

randomly crop them to produce 32 × 32 images, followed

by horizontally mirroring half of the images. We normalize

the images by using the channel means and standard devia-

tions.

Tiny ImageNet. The Tiny ImageNet dataset4 is a subset

of ImageNet [32]. The image size is resized to 64 × 64.

There are 200 classes, sampled from 1000 classes of Ima-

geNet, and 500 training images, 50 validation images and

50 testing images per class. In our experiment, we adopt

the data augmentation scheme: scale up the training images

randomly to the size within [64, 80], and randomly crop a

64 × 64 patch for training, randomly horizontal mirroring

and normalize the cropped images by subtracting the chan-

nel means and standard deviations.

Training settings. For CIFAR, we adopt the same training

settings as [43]. We use SGD with Nesterov momentum

4https://tiny-imagenet.herokuapp.com/
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Figure 3. Illustrating how the number of layers L affects the per-

formance on CIFAR-100. The number of channels in each branch

of group convolution is chosen to satisfy both the balance condi-

tion and the (nearly) complementary condition, and to keep the

#params the same. The maximum accuracy is achieved at some L,

in which the width and the non-sparsity degree reach a balance.

to update network, starting from learning rate 0.1 and mul-

tiplying with a factor 0.1 at 200 epochs, 300 epochs and

350 epochs. Weight decay is set as 0.0001 and momentum

as 0.9. We train the network with batch size as 64 for 400

epochs and report the accuracy at the final iteration. The

implementation is based on Caffe [14]. For Tiny ImageNet,

we use the similar training settings as CIFAR, except that

we train for totally 200 epochs and multiply the learning

rate with a factor 0.1 at 100 epochs, 150 epochs and 175

epochs. To adapt Tiny ImageNet to the networks designed

for CIFAR, we set the stride of the first convolution layer as

2, which is adopted in [8] as well.

4.2. Empirical Analysis

Complementary condition. We empirically investigate

how the complementary condition affects the performance

8851



Table 1. Illustrating the architectures of networks we used in the experiments. x is the number of channels at the first stage. B is the number

of blocks and the skip connection is added every two blocks. x × (3 × 3, 1) means a 3 × 3 channel-wise convolution with the channel

number being x. L and K are the hyper-parameters of IGC-V2. [L− 1, x, (1× 1,K)] denotes the (L− 1) group 1× 1 convolutions with

each branch containing K channels. For IGC-V2 (Cx), L = 3, and for IGC-V2* (Cx), K = 8, L∗ = ⌈logK(x)⌉+ 1.

Output size Xception (Cx) IGC-V1 (Cx) IGC-V2 (Cx) IGC-V2* (Cx)

32× 32 (3× 3, x) (3× 3, x) (3× 3, x) (3× 3, 64)

32× 32

[

x× (3× 3, 1)
(1× 1, x)

]

×B

[

x

2
× (3× 3, 2)

2× (1× 1, x

2
)

]

×B

[

x× (3× 3, 1)
L− 1, x, (1× 1,Ks1

)

]

×B

[

x× (3× 3, 1)
L∗ − 1, x, (1× 1,K)

]

×B

16× 16

[

2x× (3× 3, 1)
(1× 1, 2x)

]

×B

[

x× (3× 3, 2)
2× (1× 1, x)

]

×B

[

2x× (3× 3, 1)
L− 1, 2x, (1× 1,Ks2

)

]

×B

[

2x× (3× 3, 1)
L∗ − 1, 2x, (1× 1,K)

]

×B

8 × 8

[

4x× (3× 3, 1)
(1× 1, 4x)

]

×B

[

2x× (3× 3, 2)
2× (1× 1, 2x)

]

×B

[

4x× (3× 3, 1)
L− 1, 4x, (1× 1,Ks3

)

]

×B

[

4x× (3× 3, 1)
L∗ − 1, 4x, (1× 1,K)

]

×B

1× 1 average pool, fc, softmax

Depth 3B + 2
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Figure 4. Illustrating how the performance changes when our net-

work goes deeper or wider. We use the network structure IGC-V2*

(Cx) in table 1 and conduct the experiments with various depths

(denoted as D) and widths (denoted as C). Both going wider and

going deeper increase the performance and the benefit of going

wider is greater than going deeper.

over the 8-layer network without down-sampling, where

there are 6 intermediate layers except the first convolutional

layer and the last FC layer. We study an IGC-V2 building

block, which consists of L group convolutions: a channel-

wise 3 × 3 convolution, (L − 1) group 1 × 1 convolutions

with each branch containing K channels. We conduct the

studies over such blocks, where the IGC-V2 is only applied

to 1×1 convolutions, for removing the possible influence of

the coupling with spatial convolutions. The results are giv-

en in Figure 2 with various values of K and L under almost

the same number of parameters.

An IGC-V2 block satisfying the complementary condi-

tion leads to a dense kernel with a large width under the

same number of parameters. The red bars in Figure 2 depict

the results for the IGC-V2 blocks that nearly satisfy this

condition. The blue bars in Figure 2 show the results of the

blocks that correspond to dense kernels but do not satisfy

the complementary condition, thus with more redundancy.

It can be seen that the networks with the IGC-V2 block-

s (nearly) satisfying the complementary condition (the red

bars and the bars next to the red bar in Figure 2 (a) and (c))

achieve the best performance. We also notice that the red

bar in Figure 2 (b), satisfying the complementary condition

performs better than the best results in Figure 2 (a) and (c).

In addition, we look at how the sparsity (density) of the

composed convolution kernel affects the performance. The

results correspond to the green bars in Figure 2. With L be-

ing fixed, the kernel is more sparse with smaller K. It can be

seen that the denser kernel leads to higher performance. In

Figure 2 (a), the performance for the block K = 8, which

is quite near to satisfy the complementary condition is s-

lightly better than and almost the same to the denser kernel

K = 12. The reason might be that though the kernel for

K = 8 is more sparse, but it corresponds to a larger width.

The effect of L. We empirically show how the number L of

group convolutions affects the performance under the same

number of parameters on the CIFAR-100 dataset as an ex-

ample. We still use the 8-layer network and study the IGC-

V2 block, which contains a channel-wise spatial convolu-

tion and (L − 1) group 1 × 1 convolutions satisfying the

balance condition.

Figure 3 shows the accuracy curve, the width curve, and

the non-sparsity curve, where the non-sparsity value is the

ratio of the number of non-zero parameters to the size of the

resulting dense kernel matrix. It can be seen that the func-

tion of accuracy w.r.t. L is concave, the function of width

w.r.t. L is concave, and the function of non-sparsity w.r.t.

L is convex. The accuracy depends on both the width and

the non-sparsity degree. When width becomes larger, accu-

racy might be higher. On the other hand, accuracy might

be lower when non-sparsity degree becomes smaller. The

black dashed line denotes an extreme case that the width

is the largest and the non-sparsity is the smallest, the per-

formance however is not the best. Instead, the maximum

accuracy is achieved at some L, in which the width and the

non-sparsity degree reach a balance denoted by the black

solid line.

Deeper and wider networks. We also conduct experiments

to explore how the performance changes when our network

goes deeper and wider. In this study, the IGC-V2 block is

composed of a channel-wise 3× 3 convolution and (L− 1)
group 1× 1 convolutions.
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Table 2. Classification accuracy comparison between Xception

and IGC-V2 over the 8-layer network with various widths. The

number of parameters and FLOPs are calculated within each

block.

Network
#Params /

C CIFAR-10 CIFAR-100
FLOPs

Xception ≈ 4700 / 64 88.82± 0.38 62.81± 0.53
IGC-V2 ≈ 4.8× 106 144 89.12± 0.15 65.05± 0.18

Xception ≈ 10000 / 96 90.21± 0.62 65.21± 0.31
IGC-V2 ≈ 107 256 90.63± 0.11 67.68± 0.28

Xception ≈ 17000 / 128 91.03± 0.30 66.51± 0.68
IGC-V2 ≈ 1.7× 107 361 91.35± 0.12 68.86± 0.57

Table 3. Classification accuracy comparison between Xception,

IGC, and our network under various widths with depth fixed as

20.

Network
#Params FLOPs

CIFAR-100 Tiny ImageNet
(×M) (×108)

Xception (C58) 0.44 0.67 74.46± 0.24 57.34± 0.34
IGC-V1 (C96) 0.40 0.82 75.10± 0.36 58.37± 0.60
IGC-V2* (C216) 0.32 0.76 75.35± 0.56 59.40± 0.22

Xception (C71) 0.66 0.98 75.66± 0.11 58.28± 0.16
IGC-V1 (C126) 0.60 1.28 76.18± 0.20 59.67± 0.47
IGC-V2* (C304) 0.48 1.12 76.30± 0.19 60.50± 0.29

Xception (C83) 0.89 1.31 76.22± 0.05 59.01± 0.52
IGC-V1 (C150) 0.79 1.72 76.69± 0.51 60.73± 0.50
IGC-V2* (C416) 0.65 1.52 77.02± 0.20 60.98± 0.23

We study the performance over the networks with identi-

ty mappings as skip connections, where we replace the reg-

ular convolution in the residual network with our IGC-V2
building block. We do experiments on IGC-V2* (Cx) in

Table 1, where Cx means that the network width C in the

first stage is x. There are two types of experiments. (1) Go

wider: we fix the depth as 20 (B = 6) and vary the width

among {112, 136, 160, 192, 256}. (2) Go deeper: we fix the

width as 64 and vary the depth among {38, 50, 62, 74, 98}.

The results are shown in Figure 4 (a) and (b). One can see

that both going wider and going deeper increase the network

performance, and the benefit of going wider using a relative

small depth is greater than that of going deeper, which is

consistent to the observation for regular convolutions.

4.3. Comparison With Xception

We empirically show the comparison with Xception us-

ing various widths and various depths under roughly the

same number of parameters.

Varying the width. We firstly conduct the experiments over

the 8-layer network without down-sampling, where the 6
intermediate convolutional layers (except the first convolu-

tional layer and the last FC layer) are replaced with Xcep-

tion blocks and our IGC-V2 blocks. Our IGC-V2 block is

composed of a channel-wise 3 × 3 convolution similar to

Xception, and two group 1× 1 convolutions corresponding

to the 1 × 1 convolution in Xception. The comparison on

CIFAR-10 and CIFAR-100 is given in Table 2. It can be

seen that our networks consistently perform better than X-

ception on both CIFAR-10 and CIFAR-100 datasets. In par-

Table 4. Classification accuracy comparison between Xception

and our network under various depths.

Network
#Params FLOPs

CIFAR-100 Tiny ImageNet
(×M) (×108)

D= 8
Xception (C35) 0.056 0.095 67.00 ± 0.29 49.91 ± 0.18
IGC-V2 (C64) 0.047 0.095 67.83 ± 0.35 51.40 ± 0.32

D= 20
Xception (C35) 0.168 0.268 70.97 ± 0.10 55.29 ± 0.19
IGC-V2 (C64) 0.149 0.262 71.69 ± 0.09 55.72 ± 0.43

D= 26
Xception (C35) 0.223 0.355 72.48 ± 0.18 55.39 ± 0.35
IGC-V2 (C64) 0.200 0.346 72.94 ± 0.26 56.32 ± 0.38

ticular on CIFAR-100, our networks achieve at least 2% im-

provement. The reason might be that our network using the

IGC-V2 block is wider and thus improve the performance.

In addition, we report the results over 20-layer networks

with various widths. The networks we used are IGC-V2*

(Cx) and Xception (Cx) illustrated in Table 1, and we fix

the channel number at the first convolutional layer in Xcep-

tion as 35. The results are presented in Table 3. We can

see that our network with fewer number of parameters, per-

forms better than Xception, which shows the powerfulness

of IGC-V2 block.

Varying the depth. We also compare the performances

between Xception and our network IGC-V2 with various

depths: 8, 20, 26. The width C in Xception is fixed as 35,

and the width in our network is set to 64 in order to keep the

number of parameters smaller than Xception. For IGC-V2
(C64), the number of channels in each branch are the same

within the stage and are different for the three stages. To

satisfy the complementary condition, Ks1 , Ks2 , and Ks3

are set to 8, 16, 32 respectively. The results over CIFAR-

100 and Tiny ImageNet are given in Table 4. Our IGC-V2
(C64) network performs better than Xception (C35) with

smaller numbers of parameters and smaller or similar com-

putation complexity. For example, when depth is 26, our

network consuming fewer number of parameters and less

computation complexity gets 56.32% accuracy on Tiny Im-

ageNet, 1% better than 55.39% of Xception.

4.4. Comparison With IGC.

Varying the width. Similar to the comparison with Xcep-

tion, we perform comparison with IGC [43] (denoted by

IGC-V1 in experiments) over the simple networks and over

20-layer networks with different widths. The results are p-

resented respectively in Table 5 and Table 3, in which the

observation is consistent to that from the comparison to X-

ception.

Let us look at the detailed results over the simple 8-layer

network. The IGC-V1 block is designed by following [43]:

the primary group convolution contains two branches. We

study two designs of our IGC-V2 block. The first design

follows the IGC-V1 design manner: the first group convo-

lution contains two branches and the other two group convo-

lution contains the same number of branches. In this case,
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Table 5. Classification accuracy comparison between IGC-V1 and

our networks with two designs, IGC-V2 I and IGC-V2 II, over the

8-layer network with various widths. The number of parameters

and FLOPs are calculated within each block.

Network
#Params /

C CIFAR-10 CIFAR-100
FLOPs

IGC-V1
≈ 3000 /

≈ 3.2 × 106

64 87.93 ± 0.10 60.89 ± 0.46
IGC-V2 I 98 87.41 ± 0.35 61.35 ± 0.41
IGC-V2 II 100 88.01 ± 0.32 62.32 ± 0.57
IGC-V1

≈ 6000 /
≈ 6.1 × 106

96 89.29 ± 0.26 64.58 ± 0.19
IGC-V2 I 162 89.06 ± 0.08 65.39 ± 0.61
IGC-V2 II 169 89.66 ± 0.17 66.00 ± 0.78
IGC-V1

≈ 10000 /
≈ 1.1 × 107

128 90.16 ± 0.20 66.59 ± 0.48
IGC-V2 I 242 89.85 ± 0.22 67.21 ± 0.34
IGC-V2 II 256 90.63 ± 0.11 67.68 ± 0.28

Table 6. Classification accuracy comparison between IGC-V1 and

our network under various depths.

Network
#Params FLOPs

CIFAR-100 Tiny ImageNet
(×M) (×107)

D= 8
IGC-V1 (C48) 0.046 1.00 66.52 ± 0.12 48.57 ± 0.53
IGC-V2 (C80) 0.046 1.18 67.65 ± 0.29 51.49 ± 0.33

D= 20
IGC-V1 (C48) 0.151 2.89 70.87 ± 0.39 54.83 ± 0.27
IGC-V2 (C80) 0.144 3.20 72.63 ± 0.07 56.40 ± 0.17

D= 26
IGC-V1 (C48) 0.203 3.83 71.82 ± 0.40 56.64 ± 0.15
IGC-V2 (C80) 0.193 4.21 73.49 ± 0.34 57.12 ± 0.09

SK1 = 18, K2 = K3 = 7 (9, 11 for other two bigger

networks), which is far from the balance condition given in

Equation 11. In the second design, we use a channel-wise

3×3 convolution, two group 1×1 convolutions. In this case,

SK1 = 9, K2 = K3 = 10 (13, 16 for other two bigger net-

works), which satisfies the balance condition. The resulting

networks are denoted as IGC-V2 I and IGC-V2 II respec-

tively. The results given in Table 5 show (i) that the first

design performs better than IGC-V1 on CIFAR-100 and a

little worse than IGC-V1 on CIFAR-10, which might stem

from different balance condition satisfaction degrees, and

(ii) that the second design performs the best, which stems

from the better satisfaction with the balance condition.

In addition, the comparison over 20-layer network

shown in Table 3 verifies that our network IGC-V2 with

smaller model size as well as less computation complexity,

is able to achieve better performance under various widths.

Varying the depth. We also show the performance com-

parison between IGC-V1 and our network under various

depths: 8, 20, 26. The width C is set to 48 in IGC-V1 (cor-

responding to IGC-L24M2 in [43]) and the width in our

network is set to 80. The network structure can be seen in

Table 1 and here Ks1 ,Ks2 ,Ks3 are set to 10, 16, 20 respec-

tively to satisfy the complementary condition. The results

over CIFAR-100 and Tiny ImageNet are given in Table 6,

showing superior performance of our network over IGC-

V1, which demonstrates the effectiveness of IGC-V2 block.

4.5. Performance Comparison to Small­Model

We show the advantages of our network with small mod-

els by comparing to existing state-of-the-art architecture

design algorithms. The results are presented in Table 7.

Table 7. Illustrating the advantages of our networks for the small

model cases through the classification error comparison to existing

state-of-the-art architecture design algorithms.
D #Params(M ) C10 C100 Tiny ImageNet

Swapout [33] 20 1.1 6.58 25.86 -

32 7.4 4.76 22.72 -

DFN [38] 50 3.7 6.40 27.61 -

50 3.9 6.24 27.52 -

FractalNet [17] 21 38.6 5.22 23.30 -

ResNet [10] 110 1.7 6.41 27.76 -

ResNet(pre-act) [7] 164 1.7 5.46 24.33 -

ResNet [8] 110 1.7 5.52 28.02 46.5
DFN-MR1 [44] 56 1.7 4.94 24.46 -

RiR [36] 18 10.3 5.01 22.90 -

ResNet34 [2] 34 21.4 - 46.9
ResNet18-2× [2] 18 25.7 - 44.6
WRN-32-4 [8] 32 7.4 5.43 23.55 39.63
WRN-40-4 [42] 40 8.9 4.53 21.18 -

DenseNet(k = 12) [8] 40 1.0 - - 39.09
DenseNet(k = 12) [9] 40 1.0 5.24 24.42 -

DenseNet-BC(k = 12) [9] 100 0.8 4.51 22.27 -

IGC-V2*-C416 20 0.65 5.49 22.95 38.81

The observation is that our network with a smaller model

achieves similar classification accuracies. For example, on

CIFAR-100, the classification error of our approach with

0.65M parameters is 22.95%, while Swapout [33] reach-

es 22.72% with 7.4M parameters, FractalNet [17] reaches

23.30% with 38.6M parameters, WRN-40-4 [42] reaches

21.18 with 8.9M parameters and WRN-32-4 [8] reaches

23.55% with 7.4M parameters. On Tiny ImageNet, our

network contains the smallest number of parameters, and

achieves better performance compared to the reported re-

sults. On CIFAR-10, our network achieves competitive

performance. In table 7, DenseNet-BC(k = 12) [9] with

more number of parameters achieves lower classification er-

ror on CIFAR-100 and CIFAR-10 compared with IGC-V2*

(C416). Dense connection is a structure complementary

to IGC-V1, and we can also combine densely connected

structure with IGC-V1 to improve the performance. We be-

lieve that our approach potentially gets more improvement

if dense connection and bottleneck design are exploited.

5. Conclusion

In this paper, we aim to eliminate the redundancy in con-

volution kernels and present an Interleaved Structured S-

parse Convolution (IGC-V2) block to compose a dense ker-

nel. We present the complementary condition and the bal-

ance condition to guide the design and obtain a balance a-

mong model size, computation complexity and classifica-

tion accuracy. Empirical results show the advantage over

IGC-V1 and Xception, and demonstrate that our network

with smaller model size achieves similar performance com-

pared with other network structures.
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