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Abstract

This paper proposes a 3D shape descriptor network,
which is a deep convolutional energy-based model, for
modeling volumetric shape patterns. The maximum like-
lihood training of the model follows an “analysis by synthe-
sis” scheme and can be interpreted as a mode seeking and
mode shifting process. The model can synthesize 3D shape
patterns by sampling from the probability distribution via
MCMC such as Langevin dynamics. The model can be used
to train a 3D generator network via MCMC teaching. The
conditional version of the 3D shape descriptor net can be
used for 3D object recovery and 3D object super-resolution.
Experiments demonstrate that the proposed model can gen-
erate realistic 3D shape patterns and can be useful for 3D
shape analysis.

1. Introduction
1.1. Statistical models of 3D shapes

Recently, with the introduction of large 3D CAD datasets,
e.g., ShapeNet [29, 4], some interesting attempts [5, 24, 17]
have been made on object recognition and synthesis based
on voxelized 3D shape data. From the perspective of sta-
tistical modeling, the existing 3D models can be grouped
into two main categories: (1) 3D discriminators, such as
Voxnet [16], which aim to learn a mapping from 3D voxel
input to semantic labels for the purpose of 3D object clas-
sification and recognition, and (2) 3D generators, such as
3D-GAN]28], which are in the form of latent variable mod-
els that assume that the 3D voxel signals are generated by
some latent variables. The training of discriminators usually
relies on big data with annotations and is accomplished by a
direct minimization of the prediction errors, while the train-
ing of the generators learns a mapping from the latent space
to 3D voxel data space.

The generator model, while useful for synthesizing 3D
shape patterns, involves a challenging inference step (i.e.,
sampling from the posterior distribution) in maximum like-
lihood learning, therefore variational inference [12] and ad-

*Equal contributions.

versarial learning [6, 18, 28] methods are commonly used,
where an extra network is incorporated into the learning algo-
rithm to get around the difficulty of the posterior inference.

The past few years have witnessed impressive progress on
developing discriminator models and generator models for
3D shape data, however, there has not been much work in the
literature on modeling 3D shape data based on energy-based
models. We call this type of models the descriptive models
or descriptor networks following [34], because the models
describe the data based on bottom-up descriptive features
learned from the data. The focus of the present paper is to
develop a volumetric 3D descriptor network for voxelized
shape data. It can be considered an alternative to 3D-GAN
[28] for 3D shape generation.

1.2. 3D shape descriptor network

Specifically, we present a novel framework for probabilis-
tic modeling of volumetric shape patterns by combining the
merits of energy-based model [14] and volumetric convo-
lutional neural network [16]. The model is a probability
density function directly defined on voxelized shape sig-
nal, and the model is in the form of a deep convolutional
energy-based model, where the feature statistics or the en-
ergy function is defined by a bottom-up volumetric ConvNet
that maps the 3D shape signal to the features. We call the
proposed model the 3D DescriptorNet, because it uses a
volumetric ConvNet to extract 3D shape features from the
voxelized data.

The training of the proposed model follows an “analysis
by synthesis” scheme [7]. Different from the variational in-
ference or adversarial learning, the proposed model does not
need to incorporate an extra inference network or an adver-
sarial discriminator in the learning process. The learning and
sampling process is guided by the same set of parameters
of a single model, which makes it a particularly natural and
statistically rigorous framework for probabilistic 3D shape
modeling.

Modeling 3D shape data by a probability density function
provides distinctive advantages: First, it is able to synthesize
realistic 3D shape patterns by sampling examples from the
distribution via MCMC, such as Langevin dynamics. Sec-
ond, the model can be modified into a conditional version,
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which is useful for 3D object recovery and 3D object super-
resolution. Specifically, a conditional probability density
function that maps the corrupted (or low resolution) 3D ob-
ject to the recovered (or high resolution) 3D object is trained,
and then the 3D recovery (or 3D super-resolution) can be
achieved by sampling from the learned conditional distri-
bution given the corrupted or low resolution 3D object as
the conditional input. Third, the model can be used in a
cooperative training scheme [3 1], as opposed to adversarial
training, to train a 3D generator model via MCMC teaching.
The training of 3D generator in such a scheme is stable and
does not encounter mode collapsing issue. Fourth, the model
is useful for semi-supervised learning. After learning the
model from unlabeled data, the learned features can be used
to train a classifier on the labeled data.

We show that the proposed 3D DescriptorNet can be used
to synthesize realistic 3D shape patterns, and its conditional
version is useful for 3D object recovery and 3D object super-
resolution. The 3D generator trained by 3D DescriptorNet in
a cooperative scheme carries semantic information about 3D
objects. The feature maps trained by 3D DescriptorNet in an
unsupervised manner are useful for 3D object classification.

1.3. Related work

3D object synthesis. Researchers in the fields of graphics

and vision have studied the 3D object synthesis problems [2,

, 9]. However, most of these object synthesis methods are
nonparametric and they generate new patterns by retrieving
and merging parts from an existing database. Our model is a
parametric probabilistic model that requires learning from
the observed data. 3D object synthesis can be achieved by
running MCMC such as Langevin dynamics to draw samples
from the learned distribution.

3D deep learning. Recently, the vision community has
witnessed the success of deep learning, and researchers have
used the models in the field of deep learning, such as convo-
lutional deep belief network [29], deep convolutional neural
network [16], and deep convolutional generative adversarial
nets (GAN) [28], to model 3D objects for the sake of synthe-
sis and analysis. Our proposed 3D model is also powered
by the ConvNets. It incorporates a bottom-up 3D ConvNet
structure for defining the probability density, and learns the
parameters of the ConvNet by an “analysis by synthesis”
scheme.

Descriptive models for synthesis. Our model is related
to the following descriptive models. The FRAME (Filters,
Random field, And Maximum Entropy) [35] model, which
was developed for modeling stochastic textures. The sparse
FRAME model [30, 32], which was used for modeling ob-
ject patterns. Inspired by the successes of deep convolutional
neural networks (CNNs or ConvNets), [15] proposes a deep
FRAME model, where the linear filters used in the original
FRAME model are replaced by the non-linear filters at a

certain convolutional layer of a pre-trained deep ConvNet.
Instead of using filters from a pre-trained ConvNet, [33]
learns the ConvNet filters from the observed data by max-
imum likelihood estimation. The resulting model is called
generative ConvNet, which can be considered a recursive
multi-layer generalization of the original FRAME model.

Building on the early work of [25], recently [8, 13] have
developed an introspective learning method to learn the
energy-based model, where the energy function is discrimi-
natively learned.

1.4. Contributions

(1) We propose a 3D deep convolutional energy-based
model that we call 3D DescriptorNet for modeling 3D object
patterns by combining the volumetric ConvNets [ 6] and the
generative ConvNets [33]. (2) We present a mode seeking
and mode shifting interpretation of the learning process of
the model. (3) We present an adversarial interpretation of
the zero temperature limit of the learning process. (4) We
propose a conditional learning method for recovery tasks.
(5) we propose metrics that can be useful for evaluating 3D
generative models. (6) A 3D cooperative training scheme is
provided as an alternative to the adversarial learning method
to train 3D generator.

2. 3D DescriptorNet
2.1. Probability density

The 3D DescriptorNet is a 3D deep convolutional energy-
based model defined on the volumetric data Y, which is in
the form of exponential tilting of a reference distribution

[33]:

p(Y;0)= exp[f(Y;0)] po(Y), )

1
Z(9)
where po(Y) is the reference distribution such as Gaussian
white noise model, i.e., po(Y) o< exp (—[|Y|?/2s%), f(Y;6)
is defined by a bottom-up 3D volumetric ConvNet whose pa-
rameters are denoted by 6. Z(0) = [exp[f(Y;0)] po(Y)dY
is the normalizing constant or partition function that is ana-
Iytically intractable. The energy function is

_ iz

éa(Y;@)*Tsz f(r;e). 2

We may also take po(Y) as uniform distribution within a
bounded range. Then &(Y;0) = —f(Y;0).

2.2. Analysis by synthesis

The maximum likelihood estimation (MLE) of the 3D
DescriptorNet follows an “analysis by synthesis” scheme.
Suppose we observe 3D training examples {Y;,i = 1,...,n}
from an unknown data distribution Pys,(Y). The MLE
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seeks to maximize the log-likelihood function L(6) =

" logp(Y;;0). If the sample size n is large, the max-
imum likelihood estimator minimizes KL(Pyy, || pg), the
Kullback-Leibler divergence from the data distribution Pyye,
to the model distribution pg. The gradient of the L(0) is

e
“n kel 0

where Eg denotes the expectation with respect to p(Y;80).
The expectation term in equation (3) is due to % logZ(0) =

Bo | g/00)] . O

Eg [% f(Y;0)], which is analytically intractable and has to
be approximated by MCMC, such as Langevin dynamics,
which iterates the following step:

AT 0
Yeiae = Yo—— 297 &(Yr;0) + VATE,
AT [Y, 0 —
= YT_Z[S;_an(YT, )]"’ A‘L’ET, (4)

where 7 indexes the time steps of the Langevin dynamics,
A7 is the discretized step size, and &; ~ N(0,7) is the Gaus-
sian white noise term. The Langevin dynamics consists of
a deterministic part, which is a gradient descent on a land-
scape defined by &(Y;60), and a stochastic part, which is
a Brownian motion that helps the chain to escape spurious
local minima of the energy &' (Y; ).

Suppose we draw 7i samples {¥;,i = 1,...,/i} from the
distribution p(Y'; 0) by running 7i parallel chains of Langevin
dynamics according to (4). The gradient of the log-likelihood
L(6) can be approximated by

—

™=

P) -
L'(0) ~ a—f(Yi;e) 59/ (Fi:0). (5)
1

i 4

S| =

HM:

I

2.3. Mode seeking and mode shifting

The above “analysis by synthesis” learning scheme can
be interpreted as a mode seeking and mode shifting process.
We can rewrite equation (5) in the form of

d |1& 1
LO)~ 56 |7 LET0) -

(ngE

&(Y;30)] . (6)
i=1

‘We define a value function

=

1
" &Y 0). (7

V({¥:}:0) = Zéa(f/ﬁe)_

i=1

:z\

Ip=

The equation (6) reveals that the gradient of the log-
likelihood L(8) coincides with the gradient of V.

The sampling step in (4) can be interpreted as mode seek-
ing, by finding low energy modes or high probability modes
in the landscape defined by &(Y; 0) via stochastic gradient
descent (Langevin dynamics) and placing the synthesized

examples around the modes. It seeks to decrease V. The
learning step can be interpreted as mode shifting (as well
as mode creating and mode sharpening) by shifting the low
energy modes from the synthesized examples {¥;} toward
the observed examples {Y;}. It seeks to increase V.

The training algorithm of the 3D DescriptorNet is pre-
sented in Algorithm 1.

Algorithm 1 3D DescriptorNet

Input:
(1) training data {Y;,i = 1,...,n}; (2) number of
Langevin steps /; (3) number of learning iterations 7'.
Output:
(1) estimated parameters 0; (2) synthesized examples

{Viyi=1,...ii}

1: Lett < 0, initialize 6(0), initialize ¥;, for i = 1,...7

2: repeat

3:  Mode seeking: For each i, run [ steps of Langevin
dynamics to revise ¥, ie., starting from the current v,
each step follows equation (4).

4. Mode shifting: Update 80+ = 00 4 y1/(()),
with learning rate 7, where L'(6)) is computed ac-
cording to (5).

5: Lett<t+1

6: untilr =T

2.4. Alternating back-propagation

Both mode seeking (sampling) and mode shifting (learn-
ing) steps involve the derivatives of f(Y;6) with respect
to Y and O respectively. Both derivatives can be computed
efficiently by back-propagation. The algorithm is thus in
the form of alternating back-propagation that iterates the
following two steps: (1) Sampling back-propagation: Revise
the synthesized examples by Langevin dynamics or gradient
descent. (2) Learning back-propagation: Update the model
parameters given the synthesized and the observed examples
by gradient ascent.

2.5. Zero temperature limit

We can add a temperature term to the model py(Y;60) =
exp(—&(Y;0)/T)/Zr(0), where the original model corre-
sponds to 7' = 1. At zero temperature limit as 7 — 0, the
Langevin sampling will become gradient descent where the
noise term diminishes in comparison to the gradient descent
term. The resulting algorithm approximately solves the min-
imax problem below

m;lxt{rgl}lV({Y} ;0) )

with ¥ initialized from an initial distribution and approach-
ing local modes of V. We can regularize either the diversity
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of {¥;} or the smoothness of &(Y;0). This is an adversarial
interpretation of the learning algorithm. It is also a gener-
alized version of herding [27] and is related to [!]. In our
experiments, we find that disabling the noise term of the
Langevin dynamics in the later stage of the learning process
often leads to better synthesis results. Ideally the learning
algorithm should create a large number of local modes with
similar low energies to capture the diverse observed exam-
ples as well as unseen examples.

2.6. Conditional learning for recovery

The conditional distribution p(Y|C(Y) = ¢; 6) can be de-
rived from p(Y; 0). This conditional form of the 3D Descrip-
torNet can be used for recovery tasks such as inpainting and
super-resolution. In inpinating, C(Y) consists of the visible
part of Y. In super-resolution, C(Y) is the low resolution
version of Y. For such tasks, we can learn the model from the
fully observed training data {Y;,i = 1,...,n} by maximizing
the conditional log-likelihood

1 n
L(8) =~} logp(¥; | C(¥i) = ci:6), ©)
i=1

where ¢; is the observed value of C(Y;). The learning and
sampling algorithm is essentially the same as maximizing the
original log-likelihood, except that in the Langevin sampling
step, we need to sample from the conditional distribution,
which amounts to fixing C(¥;) in the sampling process. The
zero temperature limit (with the noise term in the Langevin
dynamics disabled) approximately solves the following min-
imax problem

max min

V({¥i};0). 0
0 {7:C(¥i)=ci} ({¥:}:0) 10)

3. Teaching 3D generator net

We can let a 3D generator network learn from the MCMC
sampling of the 3D DescriptorNet, so that the 3D generator
network can be used as an approximate direct sampler of the
3D DescriptorNet.

3.1. 3D generator model

The 3D generator model [6] is a 3D non-linear multi-layer
generalization of the traditional factor analysis model. The
generator model has the following form

Z ~N(0,1q);
Y =g(Z;a) + €€ ~N(0,6%Ip). (11)

where Z is a d-dimensional vector of latent factors that follow
N(0, 1) independently, and the 3D object Y is generated by
first sampling Z from its known prior distribution N(0,1;)
and then transforming Z to the D-dimensional Y by a top-
down deconvolutional network g(Z; ¢t) plus the white noise
€. a denotes the parameters of the generator.

3.2. MCMC teaching of 3D generator net

The 3D generator model can be trained simultaneously
with the 3D DescriptorNet in a cooperative training scheme
[31]. The basic idea is to use the 3D generator to generate
examples to initialize a finite step Langevin dynamics for
training the 3D DescriptorNet. In return, the 3D generator
learns from how the Langevin dynamics changes the initial
examples it generates.

Specifically, in each iteration, (1) We generate Z; from
its known prior distribution, and then generate the initial
synthesized examples by ¥; = g(Zi;a) + & for i = 1,...,7.
(2) Starting from the initial examples {¥;}, we sample from
the 3D DescriptorNet by running a finite number of steps
of MCMC such as Langevin dynamics to obtain the revised
synthesized examples {¥;}. (3) We then update the param-
eters O of the 3D DescriptorNet based on {¥;} according
to (5), and update the parameters « of the 3D generator by
gradient descent

d |15 L2
Aa“—ﬁ [ﬁi:ZIHYi—g(Zi,a) . (12)

We call it MCMC teaching because the revised examples
{¥;} generated by the finite step MCMC are used to teach
g(Z;a). For each Y;, the latent factors Z; are known to
the 3D generator, so that there is no need to infer Z;, and
the learning becomes a much simpler supervised learning
problem. Algorithm 2 presents a full description of the
learning of a 3D DescriptorNet with a 3D generator as a
sampler.

Algorithm 2 MCMC teaching of 3D generator net

Input:
(1) training examples {¥;,i = 1,...,n}, (2) numbers of
Langevin steps /, (3) number of learning iterations 7'.
Output:
(1) estimated parameters 6 and o, (2) synthetic exam-
ples {¥;,¥,i=1,...,ii}

1: Lett < 0, initialize 6 and .

2: repeat

3:  Initializing mode seeking: For i = 1, ...,7i, generate
Z; ~N(0,1;), and generate ¥; = g(Zi; ")) +g;.

4. Mode seeking: For i = 1,...,7, starting from f’i, run
[ steps of Langevin dynamics to obtain ¥;, each step
following equation (4).

5. Mode shifting: Update 80+) = () 4 y1/(6()),
where L' (%)) is computed according to (5).

6: Learning from mode seeking: Update alt) ac-
cording to (12).

7: Letr<t+1

8: untilt =T
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4. Experiments

Project page: The code and more results and details can
be found at http://www.stat.ucla.edu/~jxie/
3DDescriptorNet/3DDescriptorNet.html

4.1. 3D object synthesis

We conduct experiments on synthesizing 3D objects of
categories from ModelNet dataset [29]. Specifically, we use
ModelNet10, a 10-category subset of ModelNet which is
commonly used as benchmark for 3D object analysis. The
categories are chair, sofa, bathtub, toilet, bed, desk, table,
nightstand, dresser, and monitor. The size of the training set
for each category ranges from 100 to 700.

For qualitative experiment, we learn one 3-layer 3D De-
scriptorNet for each object category in ModelNet10. The
first layer has 200 16 x 16 x 16 filters with sub-sampling of 3,
the second layer has 100 6 x 6 x 6 filters with sub-sampling
of 2, and the final layer is a fully connected layer with a
single filter that covers the whole voxel grid. We add ReLU
layers between convolutional layers. We fix the standard
deviation of the reference distribution of the model to be
s = 0.5. The number of Langevin dynamics steps in each
learning iteration is /=20 and the step size AT = 0.1. We use
Adam [11] for optimization with 8; = 0.5 and 3, = 0.999.
The learning rate is 0.001. The number of learning iterations
is 3,000. We disable the noise term in the Langevin step af-
ter 100 iterations. The training data are of size 32 x 32 x 32
voxels, whose values are 0 or 1. We prepare the training data
by subtracting the mean value from the data. Each voxel
value of the synthesized data is discretized into O or 1 by
comparing with a threshold 0.5. The mini-batch size is 20.
The number of parallel sampling chains for each batch is 25.

Figure 1 displays the observed 3D objects randomly sam-
pled from the training set, and the synthesized 3D objects
generated by our models for categories chair, bed, sofa, table,
dresser, and toilet. We visualize volumetric data via isosur-
faces in our paper. To show that our model can synthesize
new 3D objects beyond the training set, we compare the syn-
thesized patterns with their nearest neighbors in the training
set. The retrieved nearest neighbors are based on ¢, distance
in the voxel space. As shown in Figure 1, our model can
synthesize realistic 3D shapes, and the generated 3D objects
are similar, but not identical, to the training set.

To quantitatively evaluate our model, we adopt the Incep-
tion score proposed by [26], which uses a reference convolu-
tional neural network to compute

I({¥i,i=1,...,i}) = exp (Ey [KL(p(c[¥) || p(c))]).

where ¢ denotes category, {¥;,i = 1,...,7i} are synthesized ex-
amples sampled from the model, p(c|Y) is obtained from the
output of the reference network, and p(c) ~ 1 ¥7 | p(c|V;).
Both a low entropy conditional category distribution p(c|¥)

Table 1: Inception scores of different methods of learning
from 10 3D object categories.

| Method [ Inception score ‘
3D ShapeNets [29] 4.12640.193
3D-GAN [28] 8.658+0.450
3D VAE [12] 11.015+0.420
3D DescriptorNet (ours) 11.7724+0.418

(i.e., the network classifies a given sample with high cer-
tainty) and a high entropy category distribution p(c) (i.e.,
the network identifies a wide variety of categories among
the generated samples) can lead to a high inception score. In
our experiment, we use a state-of-the-art 3D multi-view con-
volutional neural network [17] trained on ModelNet dataset
for 3D object classification as the reference network.

We learn a single model from mixed 3D objects from
the training sets of 10 3D object categories of ModelNet10
dataset. Table 1 reports the Inception scores of our model as
well as a comparison with some baseline models including
3D-GAN [28], 3D ShapeNets [29], and 3D-VAE [12].

We also evaluate the quality of the synthesized 3D shapes
by the model learned from single category by using average
softmax class probability that reference network assigns to
the synthesized examples for the underlying category. Table
2 displays the results for all 10 categories. It can be seen that
our model generates 3D shapes with higher softmax class
probabilities than other baseline models.

Table 2: Softmax class probability

l category [ ours [ [28] [ [12] [ [29] ‘
bathtub 0.8348 | 0.7017 | 0.7190 | 0.1644
bed 0.9202 | 0.7775 | 0.3963 | 0.3239
chair 0.9920 | 0.9700 | 0.9892 | 0.8482
desk 0.8203 | 0.7936 | 0.8145 | 0.1068
dresser 0.7678 | 0.6314 | 0.7010 | 0.2166
monitor 0.9473 | 0.2493 | 0.8559 | 0.2767

night stand | 0.7195 | 0.6853 | 0.6592 | 0.4969
sofa 0.9480 | 0.9276 | 0.3017 | 0.4888
table 0.8910 | 0.8377 | 0.8751 | 0.7902
toilet 0.9701 | 0.8569 | 0.6943 | 0.8832

[ Avg. [ 0.8811 | 0.7431 [ 0.7006 [ 0.4596

4.2. 3D object recovery

We then test the conditional 3D DescriptorNet on the 3D
object recovery task. On each testing 3D object, we ran-
domly corrupt some voxels of the 3D object. We then seek
to recover the corrupted voxels by sampling from the con-
ditional distribution p(Yy|Yy;;6) according to the learned
model p(Y;0), where M and M denote the corrupted and
uncorrupted voxels, and Yy, and Yj; are the corrupted part
and the uncorrupted part of the 3D object Y respectively.
The sampling of p(Yy|Yy;; €) is again accomplished by the
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Figure 1: Generating 3D objects. Each row displays one experiment, where the first three 3D objects are some observed
examples, columns 4, 5, 6, 7, 8, and 9 are 6 of the synthesized 3D objects sampled from the learned model by Langevin
dynamics. For the last four synthesized objects (shown in columns 6, 7, 8, and 9), their nearest neighbors retrieved from the
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training set are shown in columns 10, 11, 12, and 13.

Langevin dynamics, which is the same as the Langevin dy-
namics that samples from the full distribution p(¥;0), ex-
cept that we fix the uncorrupted part Yy; and only update
the corrupted part Yy, throughout the Langevin dynamics.
In the learning stage, we learn the model from the fully ob-
served training 3D objects. To specialize the learned model
to this recovery task, we learn the conditional distribution
p(Yy|Yy;;0) directly. That is, in the learning stage, we also
randomly corrupt each fully observed training 3D object
Y, and run Langevin dynamics by fixing Yj; to obtain the
synthesized 3D object. The parameters 6 are then updated
by gradient ascent according to (5). The network architec-
ture for recovery is the same as the one used in Section 4.1
for synthesis. The number of Langevin dynamics steps for
recovery in each iteration is set to be / = 90 and the step size
is AT = 0.07. The number of learning iterations is 1,000.
The size of the mini-batch is 50. The 3D training data are of
size 32 x 32 x 32 voxels.

After learning the model, we recover the corrupted vox-
els in each testing data ¥ by sampling from p(Ya|Yy;,0) by
running 90 Langevin dynamics steps. In the training stage,
we randomly corrupt 70% of each training 3D shape. In the
testing stage, we experiment with the same percentage of
corruption. We compare our method with 3D-GAN and 3D
ShapeNets. We measure the recovery error by the average of
per-voxel differences between the original testing data and
the corresponding recovered data on the corrupted voxels.

Table 3 displays the numerical comparison results for the 10
categories. Figure 2 displays some examples of 3D object
recovery. For each experiment, the first row displays the orig-
inal 3D objects, the second row displays the corrupted 3D
objects, and the third row displays the recovered 3D objects
that are sampled from the learned conditional distributions
given the corrupted 3D objects as inputs.

Table 3: Recovery errors in occlusion experiments

| category [ ours [ [28] [ [29] ‘
bathtub 0.0152 | 0.0266 | 0.0621
bed 0.0068 | 0.0240 | 0.0617
chair 0.0118 | 0.0238 | 0.0444
desk 0.0122 | 0.0298 | 0.0731
dresser 0.0038 | 0.0384 | 0.1558
monitor 0.0103 | 0.0220 | 0.0783
night stand | 0.0080 | 0.0248 | 0.2925
sofa 0.0068 | 0.0186 | 0.0563
table 0.0051 | 0.0326 | 0.0340
toilet 0.0119 | 0.0180 | 0.0977

[ 0.0092 [ 0.0259 | 0.0956

[ Avg.

4.3. 3D object super-resolution

We test the conditional 3D DescriptorNet on the 3D object
super-resolution task. Similar to Experiment 4.2, we can per-
form super-resolution on a low resolution 3D objects by sam-
pling from a conditional 3D DescriptorNet p(Yhigh|Yiow, 6),
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Figure 2: 3D object recovery by sampling from the condi-
tional 3D DescriptorNet models. In each category, the first
row displays the original 3D objects, the second row shows
the corrupted 3D objects, and the third row displays the re-
covered 3D objects by running Langevin dynamics starting
from the corrupted objects. (a) chair, (b) night stand.
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Figure 3: 3D object super-resolution by conditional 3D De-
scriptorNet. The first row displays some original 3D objects
(64 x 64 x 64 voxels). The second row shows the correspond-
ing low resolution 3D objects (16 x 16 x 16 voxels). The
last row displays the corresponding super-resolution results
which are obtained by sampling from the conditional 3D
DescriptorNet by running 10 steps of Langevin dynamics
initialized with the objects shown in the second row.

original

low res.

high res.

where Ypigh denotes a high resolution version of Yiow. The
sampling of the conditional model p(Yhigh|Yiow,0) is accom-
plished by the Langevin dynamics initialized with the given
low resolution 3D object that needs to be super-resolutioned.
In the learning stage, we learn the conditional model from
the fully observed training 3D objects as well as their low

resolution versions. To specialize the learned model to this
super-resolution task, in the training process, we down-scale
each fully observed training 3D object Ypigp into a low reso-
lution version Yoy, Which leads to information loss. In each
iteration, we first up-scale Yo by expanding each voxel of
Yiow into a d X d x d block (where d is the ratio between
the sizes of Ypigh and Yiow) of constant values to obtain an
up-scaled version Yl;igh of Yiow (The up-scaled Y};igh is not
identical to the original high resolution Yj;gh since the high
resolution details are lost), and then run Langevin dynam-
ics starting from Y}iigh. The parameters 6 are then updated
by gradient ascent according to (5). Figure 3 shows some
qualitative results of 3D super-resolution, where we use a
2-layer conditional 3D DescriptorNet. The first layer has
200 16 x 16 x 16 filters with sub-sampling of 3. The second
layer is a fully-connected layer with one single filter. The
Langevin step size is 0.01.

To be more specific, let Yiow = Clhign, where C is the
down-scaling matrix, e.g., each voxel of Yoy, is the average
of the corresponding d x d x d block of Yy;gn. Let C™ be the
pseudo-inverse of C, e.g., C™ Yoy gives us a high resolution
shape by expanding each voxel of ¥}, into a d x d x d block
of constant values. Then the sampling of p(Yhigh|Yiow: 0) is
similar to sampling the unconditioned model p(¥yign; 6), ex-
cept that for each step of the Langevin dynamics, let AY be
the change of Y, we update Y < Y + (I —C~C)AY, i.e., we
project AY to the null space of C, so that the low resolution
version of Y, i.e., CY, remains fixed. From this perspec-
tive, super-resolution is similar to inpainting, except that the
visible voxels are replaced by low resolution voxels.

4.4. Analyzing the learned 3D generator

We evaluate a 3D generator trained by a 3D Descriptor-
Net via MCMC teaching. The generator network g(Z; @)
has 4 layers of volumetric deconvolution with 4 x 4 x 4 ker-
nels, with up-sampling factors {1,2,2,2} at different layers
respectively. The numbers of channels at different layers
are 256, 128, 64, and 1. There is a fully connected layer
under the 100 dimensional latent factors Z. The output size
is 32 x 32 x 32. Batch normalization and ReL.U layers are
used between deconvolution layers and tanh non-linearity
is added at the bottom-layer. We train a 3D DescriptorNet
with the above 3D generator as a sampler in a cooperative
training scheme presented in Algorithm 2 for the categories
of toilet, sofa, and nightstand in ModelNet10 dataset inde-
pendently. The 3D DescriptorNet has a 4-layer network,
where the first layer has 64 9 x 9 x 9 filters, the second layer
has 128 7 x 7 x 7 filters, the third layer has 256 4 x 4 x 4
filters, and the fourth layer is a fully connected layer with a
single filter. The sub-sampling factors are {2,2,2,1}. ReLU
layers are used between convolutional layers.

We use Adam for optimization of 3D DescriptorNet with
B1 = 0.4 and B, = 0.999, and for optimization of 3D gener-
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Figure 6: 3D shape arithmetic in the latent space

ator with §; = 0.6 and 8, = 0.999. The learning rates for
3D DescriptorNet and 3D generator are 0.001 and 0.0003
respectively. The number of parallel chains is 50, and the
mini-batch size is 50. The training data are scaled into the
range of [—1,1]. The synthesized data are re-scaled back
into [0, 1] for visualization. Figure 4 shows some examples
of 3D objects generated by the 3D generators trained by the
3D DescriptorNet via MCMC teaching.

We show results of interpolating between two latent vec-
tors of Z in Figure 5. For each row, the 3D objects at the two
ends are generated from Z vectors that are randomly sam-
pled from N(0, ;). Each object in the middle is obtained by
first interpolating the Z vectors of the two end objects, and
then generating the objects using the 3D generator. We ob-
serve smooth transitions in 3D shape structure and that most
intermediate objects are also physically plausible. This ex-
periment demonstrates that the learned 3D generator embeds
the 3D object distribution into a smooth low dimensional
manifold. Another way to investigate the learned 3D gen-
erator is to show shape arithmetic in the latent space. As
shown in Figure 6, the 3D generator is able to encode se-
mantic knowledge of 3D shapes in its latent space such that
arithmetic can be performed on Z vectors for visual concept
manipulation of 3D shapes.

4.5. 3D object classification

We evaluate the feature maps learned by our 3D Descrip-
torNet. We perform a classification experiment on Model-
Net10 dataset. We first train a single model on all categories
of the training set in an unsupervised manner. The network
architecture and learning configuration are the same as the
one used for synthesis in Section 4.1. Then we use the model
as a feature extractor. Specifically, for each input 3D object,
we use the model to extract its first and second layers of

teeeeeLee
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Figure 5: Interpolation between latent vectors of the 3D objects on the two ends

feature maps, apply max pooling of kernel sizes 4 x 4 x 4
and 2 x 2 x 2 respectively, and concatenate the outputs as
a feature vector of length 8,100. We train a multinomial
logistic regression classifier from labeled data based on the
extracted feature vectors for classification. We evaluate the
classification accuracy of the classifier on the testing data
using the one-versus-all rule. For comparison, Table 4 lists 8
published results on this dataset obtained by other baseline
methods. Our method outperforms the other methods in
terms of classification accuracy on this dataset.

Table 4: 3D object classification on ModelNet10 dataset

l Method [ Accuracy ‘
Geometry Image [23] 88.4%
PANORAMA-NN [19] 91.1%
ECC [22] 90.0%
3D ShapeNets [29] 83.5%
DeepPano [21] 85.5%
SPH [10] 79.8%
VConv-DAE [20] 80.5%
3D-GAN [28] 91.0%
3D DescriptorNet (ours) 92.4%

5. Conclusion

We propose the 3D DescriptorNet for volumetric object
synthesis, and the conditional 3D DescriptorNet for 3D ob-
ject recovery and 3D object super resolution. The proposed
model is a deep convolutional energy-based model, which
can be trained by an “analysis by synthesis” scheme. The
training of the model can be interpreted as a mode seeking
and mode shifting process, and the zero temperature limit has
an adversarial interpretation. A 3D generator can be taught
by the 3D DescriptorNet via MCMC teaching. Experiments
demonstrate that our models are able to generate realistic 3D
shape patterns and are useful for 3D shape analysis.
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