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Abstract

Unsupervised domain adaptation (UDA) conventionally

assumes labeled source samples coming from a single un-

derlying source distribution. Whereas in practical scenario,

labeled data are typically collected from diverse sources.

The multiple sources are different not only from the target

but also from each other, thus, domain adaptater should not

be modeled in the same way. Moreover, those sources may

not completely share their categories, which further brings

a new transfer challenge called category shift. In this pa-

per, we propose a deep cocktail network (DCTN) to bat-

tle the domain and category shifts among multiple sources.

Motivated by the theoretical results in [33], the target dis-

tribution can be represented as the weighted combination of

source distributions, and, the multi-source UDA via DCTN

is then performed as two alternating steps: i) It deploys

multi-way adversarial learning to minimize the discrepancy

between the target and each of the multiple source domains,

which also obtains the source-specific perplexity scores to

denote the possibilities that a target sample belongs to dif-

ferent source domains. ii) The multi-source category classi-

fiers are integrated with the perplexity scores to classify tar-

get sample, and the pseudo-labeled target samples together

with source samples are utilized to update the multi-source

category classifier and the feature extractor. We evalu-

ate DCTN in three domain adaptation benchmarks, which

clearly demonstrate the superiority of our framework.

1. Introduction

Recent advances in deep learning have significantly im-

proved the state-of-the-arts across a variety of visual learn-
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Figure 1. (a). Single source domain adaptation (UDA) assumes

that source samples are drawn from some underlying distribution

under the i.i.d. condition. (b). Multiple source domain adaptation

(MDA) assume source data are collected from different source dis-

tributions. Category shift is a new protocol in MDA, where domain

shift and categorical disalignment co-exist among the sources.

ing tasks [25] [40] [28] [6] [47]. These achievements, to a

great extent, should be attributed to the availability of large

scale labeled data for supervised learning. When turning

to (Unsupervised) domain adaptation (UDA, see Fig. 1(a))

[38] [37] [15], we do not have the labels of the data in tar-

get domain, but have massive labeled data in source domain.

One natural solution is to learn a deep model on the labeled

source data and deploy it to target domain. However, due

to the presence of domain shift [18], the performance of

the learned model tends to degrade heavily in the target do-

main. To mitigate the model damage caused by the domain

shift, UDA learns to map the data from both domains into

a common feature space by minimizing domain distribution

discrepancy, the source classifier can then be directly ap-
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plied to target instances. While early UDA studies mainly

focus on shallow models [37] [15], with the dramatic up-

surge of convolutional neural networks (CNNs), deep UDA

has emerged as a thriving solution and has achieved many

stunning results [20] [4] [12].

However, most existing deep UDA methods assume that

there is only a single source domain and the labeled source

data are implicitly sampled from a same underlying dis-

tribution. In practice, it is very likely that we have mul-

tiple source domains. For example, when training object

recognition models for household robots, one can exploit

the labeled images either from Amazon.com (Source 1) or

Flickr (Source 2). Moreover, the large scale dataset, e.g.,

ImageNet [7] may be built upon diverse sources from the

Internet, and is inappropriate to be treated as a single do-

main in UDA. Consequently, multiple source unsupervised

domain adaptation (MDA) is both feasible in practice and

more valuable in performance, and has received consider-

able attention in application fields [49][8][22] [27].

Despite the rapid progress in deep UDA, seldom studies

have been given to deep MDA which is much more chal-

lenging due to the following reasons. Firstly, with possible

domain shifts among sources, it’s improper to apply single

source UDA via combining all source domains. Secondly,

different source domains convey complimentary informa-

tion to target domain. Based on Liebig’s law of the mini-

mum, it is too strict to eliminate the distribution discrepancy

between target domain and each source domain, and may

be harmful to the model performance. Finally, as illustrated

in Fig.1(b), different source domains may not completely

share their categories (i.e., category shift), some category

of samples may appear in one source domain but not in an-

other. MDA should take both category shift and domain

shift into account, and is thus more challenging to handle.

In this paper, we propose the deep cocktail network

(DCTN) for MDA. Inspired by the distribution weighted

combining rule in [33], the target distribution can be rep-

resented as the weighted combination of the multi-source

distributions. Suppose the classifier for each source domain

is known. An ideal target predictor can be obtained by in-

tegrating all source predictions based on the corresponding

source distribution weights. Therefore, besides of the fea-

ture extractor, DCTN also includes a (multi-source) cate-

gory classifier to predict the class from different sources,

and a (multi-source) domain discriminator to produce mul-

tiple source-target-specific perplexity scores as the approx-

imation of source distribution weights. Analogous to make

cocktails, the multi-source class predictions are integrated

with the perplexity scores to classify the target sample, and

thus the proposed method is dubbed by deep cocktail net-

work (DCTN).

During training, the learning algorithm for DCTN per-

forms the following two alternating adaptation steps: (i)

the domain discriminator is updated by using multi-way ad-

versarial learning to minimize the domain discrepancies be-

tween target and each source, then to predict multi-source

perplexity scores; (ii) the feature extractor and the category

classifier are discriminatively fine-tuned with multi-source

labeled and target pseudo-labeled data. The multi-way ad-

versarial adaptation implicitly reduces domain shifts among

those sources. The discriminative adaptation helps to learn

more classifiable features [42], and partially prevents the

negative transfer [38] from the mis-matching categories.

Empirical studies on three domain adaptation benchmarks

also demonstrate the effectiveness of our DCTN framework.

Our work contributes in the three aspects: 1) We present

a novel and realistic MDA protocol termed category shift

that relaxes the requirement on the shared category set

among any source domains. 2) Inspired from the distribu-

tion weighted combining rule, we proposed the deep cock-

tail network (DCTN) together with the alternating adapta-

tion algorithm to learn transferable and discriminative rep-

resentation. 3) We conduct comprehensive experiments on

three well-known benchmarks, and testify our model in both

the vanilla and the category shift settings. Our method has

achieved the state of the art across most transfer tasks.

2. Related Work

Unsupervised domain adaptation with single source.

Provided a source domain with ground truth and target

domain without labels, unsupervised domain adaptation

(UDA) aims at learning a model well-performing on target

distribution. Since the source and the target belong to dif-

ferent distributions, the technical problem in UDA is how

to reduce the domain shift across the source and the target.

Inspired by the two-sample test [17], domain discrepancy

based methods, e.g., shallow-model-based TCA [37], JDA

[1]; deep-model-based DAN [29], WMMD [48], RTN [30],

leverage different distribution measures as domain regular-

izer to attain domain-invariant feature. Adversarial learning

behaves effective to learn more transferable representations.

It defines a couple of networks and trains them in the oppo-

site direction: a domain discriminator minimizes the classi-

fication error to distinguish samples from source and target,

while domain mapping learns transferable representations

indistinguishable by the domain discriminator. Recent rele-

vant researches perform superior in visual recognition cross

domain [30] [12] and task [34] and transfer structure learn-

ing [4] [21]. Besides of these two mainstreams, there are

diverse methods to learn domain-invariant features: semi-

supervised method [42], domain reconstruction [14], dual-

ity [19], alignments [9] [50] [44], manifold learning [15],

tensor methods [24][31], etc.

Domain adaptation with multiple sources. The UDA

methods mentioned above mainly consider target vs. single

source. If multiple sources are available, the domain shift
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among sources should also be account for. The research

originates from A-SVM [49] that leverages the ensemble of

source-specific classifiers to tune the target categorization

model, and there have been a variety of shallow models in-

vented to tackle the MDA problem [8] [22] [27]. MDA also

develops with theoretical supports [3] [2] [33]. Blitzer et al

[3] provides the first learning bound for MDA. Mansour et

al [33] claims that an ideal target hypothesis can be repre-

sented by a distribution weighted combination of source hy-

potheses. This methodology termed distribution weighted

combining rule, closely means that, if the relations between

target and each source can be discovered, we are able to use

multiple source-specific classifiers to obtain an ideal target

class prediction.

Continual transfer learning, domain generalization.

There are two branches of transfer learning closely relate to

MDA. The first is continual transfer learning (CTL) [43]

[39]. Similar to continual learning [23], CTLs train the

learner to sequentially master multiple tasks across multi-

ple domains. The second is domain generalization (DG)

[13] [35], which solely uses the existing multiple labeled

domains for training regardless of the unlabeled target sam-

ples. Both of the problems are solved by supervised learn-

ing approaches, and distinguished from MDA with unla-

beled training samples.

3. Problem Setup

Vanilla MDA. In the context of multi-source transfer,

there are N different underlying source distributions de-

noted as {psj (x, y)}
N
j=1

. The labeled source domain im-

ages {(Xsj , Ysj )}
N
j=1 are drawn from those distributions re-

spectively, where Xsj = {x
sj
i }

|Xsj
|

i=1 represents images from

source j and Ysj = {y
sj
i }

|Ysj
|

i=1 is the corresponding ground-

truth set. Besides, we have target distribution pt(x, y) ,

from which target image set Xt = {xt
i}

|Xt|
i=1 are sampled

yet without label observation Yt . Those N+1 datasets have

been treated as an training set ensemble, and the test set

(Xtest, Ytest) = {xtest
i , ytext

i }
|Xtest|
i=1 are drawn in target dis-

tribution to evaluate the model adaptation performance.

Category Shift. Under the vanilla MDA setting, sam-

ples from diverse sources share a same category set. In con-

trast to this old fashion, we introduce a new MDA proto-

col where the categories from different sources might be

also different. Formally speaking, given a category set

Cs =
|Ys|⋃

i=1

{ysi } as a class set of Ys for domain s, the re-

lation between Csj1 and Csj2 has been generalized from

Csj1
∪ Csj2

= Csj1
∩ Csj2

to Csj1
∩ Csj2

⊆ Csj1
∪ Csj2

,

where Csj1
∩ Csj2

denotes public classes between sources

j1 and j2. Let target domain get labeled by the union of

all categories in those sources ( Ct =
M⋃
j=1

Csj ), then we term

Csj1 ∩Csj2 6= Csj1 ∪Csj2 as category shift in multiple source

domains {(Xsj , Ysj )}
N
j=1.

Compared with Open Set DA. Open set domain adapta-

tion (DA) [5] is a new single-source transfer protocol, where

the classes between the source and the target domains are

allowed to be different. The uncommon classes are unified

as a negative category called “unknown”. In contrast, cate-

gory shift consider the specific disaligned categories among

multiple sources to enrich the classification in transfer. In

fact, the open set DA can also be developed to our category

shift setting, where the unshared classes are viewed unob-

servable. Such study will be investigated in our future work.

4. Deep Cocktail Network

Irrespective of either vanilla or category shift scenarios,

MDAs are challenging to tackle. In this section, we intro-

duce deep cocktail network (DCTN), an adversarial domain

adaptation framework for both MDA protocols. It connects

to the distribution weighted combining rule [33], and what’s

more, can be easily transplanted to suit the shifted cate-

gories without model reconfiguration.

4.1. Architecture

Our framework consists of four components: three sub-

nets, i.e., feature extractor, (multi-source) domain dis-

criminator, (multi-source) category classifier, and a non-

learnable target classification operator, as shown in Fig.2.

Feature extractor F incorporates deep convolution nets

as the backbone, and is supposed to map all images from N

sources and target into a common feature space. We employ

adversarial learning to obtain the optimal mapping, because

it can successfully learn both domain-invariant features and

each target-source-specific relations.
(Multi-source) domain discriminator D is built upon

N source-specific discriminators {Dsj}
N
j=1

for adversary.
Given image x from the source j or the target domain, the
domain discriminator D receives the features F (x), then the
source-specific discriminator Dsj classifies whether F (x)
originates from the source j or the target. The data flow
from source j doesn’t trigger other source discriminators,
yet for the data flow from each target instance xt, the do-
main discriminator D yields the N source-specific discrim-
inative results {Dsj (F (xt))}Nj=1

. They are used to update
the domain discriminator D, also to supply the target-source
perplexity scores {Scf (x

t;F,Dsj )}
N
j=1

to the target classi-
fication operator

Scf (x
t;F,Dsj ) = − log(1−Dsj (F (xt))) + αsj (1)

where αsj is the source-specific concentration constant. It

is obtained by averaging the source j discriminator losses

over Xsj .

(Multi-source) category classifier C is a multi-output

net composed by N source-specific predictors {Csj}
N
j=1

.

Each predictor Csj is a softmax classifier configured by the
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Figure 2. An overview of the proposed Deep Cocktail Network (DCTN). Our framework receives multi-source instances with annotated

ground truth and adapts to classify the target samples. Let’s consider the source j and k for simplicity. i) The feature extractor maps target,

source j and k into a common feature space. ii) The category classifier receives target feature and produces the j-th and k-th classifications

based upon the categories in source j and k respectively. iii) The domain discriminator receives features from source j, k and target, then

offers the k-th advesary between target and source k, as well as the j-th advesary between target and source j. The j-th and k-th advesary

provide source j and k perplexity scores to weight the j-th and k-th classifications correspondingly. iv) The target classification operator

integrates all weighted classification results then predicts the target class across category shifts. Best viewed in color.

category set in the corresponding source j. The category

classifier takes an image mapping as input, then for the im-

age from source j, only the value from Csj get activated

and provides the gradient for training. For a target image

xt instead, all source-specific predictors provide N catego-

rization results {Csj (F (xt))}Nj=1
to the target classification

operator.

Target classification operator is the key to classify tar-

get samples. In specific, for each target feature F (xt),
the target classification operator takes each source perplex-

ity score Scf (x
t;F,Dsj ) to re-weight the corresponding

source-specific prediction Csj (F (xt)), then accumulates

the results to classify target xt. If the class c ∈
N⋃

j=1

{Csj}

is considered, the confidence xt belongs to c presents as

Confidence(c|xt) :=

∑

c∈Csj

Scf (x
t;F,Dsj )∑

c∈Csk

Scf (xt;F,Dsk )
Csj (c|F (xt)) (2)

where Csj (c|F (xt)) denotes the softmax value of source j

corresponding to class c. xt is categorized into the class

with the highest confidence. The sum
∑

c∈Csj

means only

those sources with class c can join the perplexity score

weighting. It’s invented to incorporate both the vanilla and

the category shift settings. Since the module independently

estimates each class confidence, the variation in shifting cat-

egories merely modifies the class combination in the target

classification operator, but not the structures or the parame-

ters in the three subnets.
Connection to distribution weighted combining rule.

Let {Dsj}
N
j=1

and Dt denote sources and target distribu-

tions1, and given an instance x, {Dsj (x)}
N
j=1

and Dt(x)

denote the probabilities that x is generated from {Dsj}
N
j=1

and Dt, respectively. In the distribution weighted combin-
ing rule [33], the target distribution is treated as a mixture
of the multi-source distributions with the coeffients by nor-
malized source distributions weighted by unknown positive

{λj}
N
j=1

, namely Dt(x) =
N∑

c∈Csk

λkDsk(x). The ideal tar-

get classifier Ct(c|x
t) presents as the weighted combination

of source classifiers {Csj (c|F (xt))}Mj=1
:

Ct(c|x
t) =

∑

c∈Csj

λjDsj (x
t)∑

c∈Csk

λkDsk (x
t)

Csj (c|F (xt)) (3)

Note a fact that, with the increase of the probability that

xt from source j, xt becomes similar to the sample from

source j. It holds Dsj (F (xt)) → 1 and results in − log(1−

Dsj (F (xt))) increasing. Hence it maintains λjDsj (x
t) ∝

Scf (x
t;F,Dsj ) in the multiple source domains. Replace

the source distributions with the normalized source perplex-

ity scores, then Ct(c|x
t) corresponds to the target classifi-

cation operator in Eq.2. The formula physically implies that

target images should be categorized by the classifiers from

multiple sources, with whose features more similar to tar-

get, the source classifiers’ prediction are more trustful.

1Since each sample x corresponds to an unique class y, {Dsj }
N
j=1 and

Dt can be viewed as an equivalent embedding from {psj (x, y)}
N
j=1 and

pt(x, y) that we have discussed.
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4.2. Learning

Our framework admits an alternative adaptation pipeline.

Briefly, after a proper pre-training, DCTN employs a multi-

way adversary to acquire a mutual mapping from all do-

mains, then further, the feature extractor and the category

classifier are trained with multiple sources labeled and tar-

get pseudo-labeled images. The two stages repeat until the

maximal epoch is reached.

Pre-training Pre-trained feature extractor and category

classifier are the prerequisites for the alternative process. At

the very start, we take all source images to jointly train the

feature extractor F and the category classifier C. Those net-

works and the target classification operator then predict cat-

egories for all target images2 and annotate those with high

confidences. Finally, we obtain the pre-trained feature ex-

tractor and category classifier via further fine-tuning them

with sources and the pseudo-labeled target images. The al-

ternative paradigm begins after this pretraining.

4.2.1 Multi-way Adversarial Adaptation

Our first stage multi-source domain adaptation are now

described as follow:

min
F

max
D

V (F,D;C) = Ladv(F,D) + Lcls(F,C) (4)

where

Ladv(F, D) =
1

N

N∑

j

Ex∼Xsj
[logDsj (F (x))]

+ Ext∼Xt
[log(1−Dsj (F (xt)))]

(5)

where the first term denotes our adversarial mechanism, and

the second term is a multi-source classification losses. The

classifier C is fixed as C to provide stable gradient values.

The optimization based on Eq.4 works well for D but not

F . Since the feature extractor learns the mapping from the

multiple sources and the target, the domain distributions be-

come simultaneously changing in adversary, which results

in an oscillation then spoils our feature extractor. Towards

such concern, Tzeng et al.[45] mentioned when source and

target feature mappings share their architectures, the do-

main confusion can be introduced to replace the adversar-

ial objective, which performs stable to learn the mapping

F . Extend it to our scenario, we have the following multi-

domain confusion loss:

Ladv(F, D) =
1

N

N∑

j

Ex∼Xsj
Lcf (x;F,Dsj )

+ Ex∼XtLcf (x
t;F,Dsj )

(6)

2Since the domain discriminator hasn’t been trained, we take the uni-

form distribution simplex weight as the perplexity scores to the target clas-

sification operator.

Algorithm 1 Mini-batch Learning via online hard domain

batch mining

Input: Mini-batch {xt
i, {x

sj
i , y

sj
i }Nj=1}

M
i=1 sampled from Xt and

{(Xsj , Ysj )}
N
j=1 respectively; feature extractor F ; domain dis-

criminator D; category classifier C.

Output: Updated F ′.

1: Select the source domain j∗ ∈ [N ], where

j∗ =
N

argmax
j

{
∑M

i
− logDsj (F (x

sj
i )) − log(1 −

Dsj (F (xt
i)))}

N
j=1;

2: L
sj∗

adv =
∑M

i
Lcf (x

sj∗

i ;F,Dsj∗
) + Lcf (x

t
i;F,Dsj∗

)

3: Replace Ladv in Eq.4 with L
sj∗

adv , update F by Eq.4.

4: return F ′ = F .

where

Lcf (x;F,Dsj ) =

1

2
logDsj (F (x)) +

1

2
log(1−Dsj (F (x)))

(7)

Online hard domain batch mining In the stochastic

gradient manner, the multi-way adversarial learning receive

N samples from N sources respectively to update F in each

iteration. However, the samples from different sources are

sometimes useless to improve the adaptation to the target,

and as the training proceeds, more redundant source sam-

ples turn to draw back the whole model performance. To

mitigate this negative effect, we proposed a simple yet ef-

fective multi-source batch mining technique to improve the

training. For a specific target batch {xt
i}

M
i=1

, we consider N

sources batches {{xs1
i }Mi=1

, · · · , {xsN
i }Mi=1

}. Each source-

target discriminator loss {
∑M

i
− logDsj (F (x

sj
i ))− log(1−

Dsj (F (xt
i)))}

N
j=1 , is viewed as the degrees to distinguish

xt
i from N source samples. Hence F performs worst to

transform the target samples to confuse source j∗, which

results in j∗ =
N

argmax
j

{
∑M

i
− logDsj (F (x

sj
i )) − log(1 −

Dsj (F (xt
i)))}

N
j=1 . Based upon the domain confusion loss,

we use the source j∗ and the target samples in the mini-

batch to train the feature extractor. This stochastic learning

method is represented by the Algorithm.1.

4.2.2 Target Discriminative Adaptation

Aided by the multi-way adversary, DCTN has been able

to obtain good domain-invariant features, yet not surely

classifiable in the target domain. David et al [2] demon-

strates that, to apply source classifier in the target do-

main, it must acquiesces in a classifier that works well on

both the domains. However, in the MDA setting, such

ideal across-domain classifier must account for the non-

consistency among different sources, even with their shift-

ing categories. It’s obvious that such MDA-based classifier

is too difficult to access.
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To further approach an ideal target classifier, we directly

incorporate target samples to learn discriminative features

with multiple sources. We propose an auto-labeling strat-

egy to annotate target samples, then jointly train our feature

extractor and multi-source category classifier with source

and target images by their (pseudo-) labels. Hence, the dis-

criminative adaptation of DCTN presents as

min
F, C

Lcls(F,C) =
N∑

j

E(x,y)∼(Xsj
,Ysj

)[L(Csj (F (x)), y)]

+ E(xt,ŷ)∼(X
p
t ,Y

p
t )[

∑

ŷ∈Cŝ

L(Cŝ(F (xt)), ŷ)]

(8)

where the first and second terms denote the classification

losses from multiple source images {Xsj , Ysj}
N
j=1

, and tar-

get images with pseudo labels {XP
t , Y P

t } respectively. We

apply the target classification operator to assign pseudo la-

bels, and the samples with the confidence higher than a pre-

seted threshold γ will be selected into XP
t .

Since the target predictions come from the integration of

multi-source predictions, there is no explicit learnable tar-

get classifier. As illustrated in the second term of Eq.8, we

apply the multi-source category classifier to back-propagate

pseudo target classification errors. Concretely, given a tar-

get instance xt with pseudo-labeled class ŷ, we find those

sources ŝ include this class (ŷ ∈ Cŝ), then update our net-

work via the sum of the multi-source classification losses,

namely,
∑

ŷ∈Cŝ
L(Cŝ(F (xt)), ŷ) in the second term.

The alternative adaptation pipline of DCTN has been

summarized in Algorithm.2.

5. Experiments

In the context of MDA for visual classification, we evalu-

ate the accuracy of the predictions from the target classifica-

tion operator in all experiments, and both of the vanilla set-

ting and the category shift have been validated. Our DCTN

are all implemented in the PyTorch3 platform. We report

the major results in the paper, and more implementation in-

formation and results have been detailed in the Appendix.

5.1. Benchmarks

Three widely used UDA benchmarks Office-31 [41],

ImageCLEF-DA4 and Digits-five have been introduced for

the MDA experimental evaluation. Office-31 is a object

recognition benchmark with 31 categories and 4652 images

unevenly spread in three visual domains A (Amazon), D

(DSLR), W (Webcam). ImageCLEF-DA derives from Im-

ageCLEF 2014 domain adaptation challenge, and is orga-

nized by selecting 12 object categories (aeroplane, bike,

3http://pytorch.org/
4http://imageclef.org/2014/adaptation

Algorithm 2 Learning algorithm for DCTN

Input: N source labeled datasets {Xsj , Ysj}
N
j=1; target unla-

beled dataset Xt; initiated feature extractor F ; category classifier

C and domain discriminator D; confidence threshold γ; adversar-

ial iteration threshold β.

Output: well-trained feature extractor F ∗, domain discriminator

D∗ and category classifier C∗.

1: Pre-train C and F

2: while not converged do

3: Multi-way Adversarial Adaptation:

4: for 1:β do

5: Sample mini-batch from {Xsj}
N
j=1 and Xt;

6: Update D by Eq.4;

7: Update F by Algorithm.1;sequentially

8: end for

9: Target Discriminative Adaptation:

10: Estimate confidence for Xt by Eq.2 with perplexity scores

offered by Eq.1. Samples XP
t ⊂ Xt with confidence larger

than γ get annotations Y P
T ;

11: Update F and C by Eq.8.

12: end while

13: return F ∗ = F ;C∗ = C;D∗ = D.

bird, boat, bottle, bus, car, dog, horse, monitor, motor-

bike, and people) shared in the three famous real-world

datasets, I (ImageNet ILSVRC 2012), P (Pascal VOC 2012),

C (Caltech-256). It includes 50 images in each category and

totally 600 images for each domain. Digits-five includes

five digit image sets respectively sampled from following

public datasets, mt (MNIST) [26], mm (MNIST-M) [11],

sv(SVHN) [36], up (USPS) and sy (Synthetic Digits) [11].

Towards the images in MNIST, MNIST-M, SVHN and Syn-

thetic Digits, we draw 25000 for training and 9000 for test-

ing in each dataset. There are only 9298 images in USPS,

so we choose the entire dataset as our domain.

5.2. Evaluations in the vanilla setting

Baselines. The existing works of MDA lack compre-

hensive evaluations on real-world visual recognition bench-

marks. In our experiment, we introduce two shallow meth-

ods, sparse FRAME (sFRAME) [46] and SGF [16] as the

multi-source baselines in the Office-31 experiment. Be-

sides, we evaluate DCTN with single-source visual UDA

methods including the conventional, e.g., Transfer Com-

ponent Analysis (TCA) [37] and Geodesic Flow Kernel

(GFK) [15], as well as state-of-the-art deep methods: Deep

Domain Confusion (DDC) [20], Deep Reconstruction-

classification Networks (DRCN) [14], Reversed Gradient

(RevGrad) [10], Domain Adaptation Network (DAN) [29],

and Residual Transfer Network (RTN) [30]. Since those

methods perform in single-source setting, we introduce two

MDA standards for different purposes: 1). Source com-

bine: all source domains are combined into a traditional
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Table 1. Classification accuracy (%) on Office-31 dataset for

MDA in the vanilla setting.

Standards Models A,W→D A,D→W D,W→A Avg

Single

best

TCA 95.2 93.2 51.6 68.8

GFK 95.0 95.6 52.4 68.7

DDC 98.5 95.0 52.2 70.7

DRCN 99.0 96.4 56.0 73.6

RevGrad 99.2 96.4 53.4 74.3

DAN 99.0 96.0 54.0 72.9

RTN 99.6 96.8 51.0 73.7

Source

combine

Source only 98.1 93.2 50.2 80.5

RevGrad 98.8 96.2 54.6 83.2

DAN 98.8 95.2 53.4 82.5

Multi-

source

Source only 98.2 92.7 51.6 80.8

sFRAME 54.5 52.2 32.1 46.3

SGF 39.0 52.0 28.0 39.7

DCTN (ours) 99.6 96.9 54.9 83.8

Table 2. Classification accuracy (%) on ImageCLEF-DA dataset

for MDA in the vanilla setting.

Standards Models I,C→P I,P→C P,C→I Avg

Single

best

RevGrad 66.5 89.0 81.8 78.2

DAN 67.3 88.4 80.5 76.9

RTN 67.4 89.5 81.3 78.4

Source

combine

Source only 68.3 88.0 81.2 79.2

RevGrad 67.0 90.7 81.8 79.8

DAN 68.8 88.8 81.3 79.6

Multi-

source

Source only 68.5 89.3 81.3 79.7

DCTN (ours) 68.8 90.0 83.5 80.8

Table 3. Classification accuracy (%) on Digits-five dataset for

MDA in the vanilla setting.

Standards Models
mm, mt, sy,

up → sv

mt, sy, up, sv

→ mm

Avg

Source

combine

Source only 72.2 64.1 68.2

RevGrad 68.9 71.6 70.3

DAN 71.0 66.6 68.8

Multi-

source

Source only 64.6 60.7 62.7

RevGrad 61.4 71.1 66.3

DAN 62.9 62.6 62.8

DCTN (ours) 77.5 70.9 74.2

single-source v.s. target setting. 2). Single best: in the

muli-source domains, we report the single source transfer

result best-performing in the test set. The first standard

testify whether the multi-source is valuable to exploit; the

second evaluates whether we can further improve the best

single source UDA via introducing another source transfer.

Additionaly, as baselines in the Source combine and multi-

source standards, we use all images from sources to train

backbone-based multi-source classifiers and directly apply

them to classify target images. They are termed Source only

and used to confirm whether our multi-source transfers are

available. For a fair comparison, all deep model baselines

in Office-31 and ImageCLEF-DA use the Alexnet architec-

tures, and share the same backbone model in Digits-five.

In the object recognition, we report all combinations

of domain shifts and compare DCTN with the baselines.

Tables.1-2 show that DCTN yields the best results in the

Office-31 transfer tasks A,W→D and A,D→W, performs

compelling in D,W→ A and outperforms conventional

Table 4. Evaluations on Office-31 (A,D→ W) for MDA in the

category shift setting.

Category

Shift
Models Accuracy

Degraded

Accuracy

Transfer

Gain

Overlap

Source only 84.4 -8.3 0

RevGrad 86.3 -7.9 1.9

DAN 87.8 -6.4 3.4

DCTN(ours) 90.2 -6.7 5.8

Disjoint

Source only 78.1 -14.6 0

RevGrad 78.6 -15.6 0.5

DAN 75.5 -18.7 -2.6

DCTN(ours) 82.9 -14.0 4.8

Table 5. Evaluations on ImageCLEF-DA (I,P→ C) for MDA in

the category shift settings.

Category

Shift
Models Accuracy

Degraded

Accuracy

Transfer

Gain

Overlap

Source only 86.3 -3.0 0

RevGrad 85.7 -4.5 -0.6

DAN 85.5 -4.0 -0.8

DCTN(ours) 88.7 -1.3 2.4

Disjoint

Source only 81.5 -7.8 0

RevGrad 71.5 -18.7 -10.0

DAN 71.0 -18.5 -10.5

DCTN(ours) 82.0 -8.0 0.5

MDA baselines by large margins. In the ImageCLEF-

DA, DCTN attains the state of the art in all transfer tasks.

These validate that, no matter domain size is equal or not,

DCTN can learn more transferable and discriminative fea-

tures from multi-source transfer.

In the digit recognition, there are four source domains

and we convey the results in the domain shifts as mm, mt,

sy, up → sv and mt, sv, sy, up → mm. We compare them

with DAN under the source-combine and the multi-source

average accuracy of its four single source transfer combi-

nations. The results have been shown in Table.3. Despite

of involving multiple source domain shifts, DCTN still can

improve the source combine performance by 6.0%.

5.3. Evaluations in the category shift setting

How to evaluate? Since category shift is a brand new

MDA protocol, in order to evaluate the model in this proto-

col, the multiple sources are amended to satisfy categorical

disalignments. We consider the two-source adaptation in

object recognition. In the category order of the benchmarks,

we take the first and the last one third classes as the private

classes of both source domains respectively, and the rest are

the public classes shared in both sources. This organization

in category shift is termed Overlap. In the same order, we

depart all categories into two non-overlapped class sets and

define them as the private classes. Since no classes are com-

mon, we named it as Disjoint. We testify DCTN on both the

source domain organizations, and compare the results with

Source only, RevGrad and DAN. The accuracy degradation

compared to the performance in the vanilla setting and the

transfer gain compared to Source only are also appended.

The evaluations have been shown in Table.4-5. Category
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Figure 3. The t-SNE [32] visulization of A,D→W. Green, black and red represent domains A, D and W respectively. We use different

markers to denote 5 categories, e.g., bookcase, calculator, monitor, printer, ruler. Best viewed in color.
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Figure 4. Analysis:(a) the accuracies of DCTN, adversarial-only and pseudo-only models; (b) the accuracies of testing samples and pseudo-

labeled target samples; (c) the convergence performance on different losses. Best viewed in color.

shift is very challenging, and under the Overlap, the accu-

racies of DAN got slashed by −6.4 in the Office-31 and

−4.0 in the ImageCLEF-DA. The performance deteriorate

to −18.7 and −18.5 under the Disjoint. Moreover, DAN

also suffers negative transfer gains in most situations, which

indicates the transferbility of DAN cripled in the category

shift. In contrast, DCTN reduces the performance drops

compared to the model in the vanilla setting, and obtains

positive transfer gains in all situations. It reveals that DCTN

can resist the negative transfer caused by the category shift.

5.4. Further Analysis

Feature visualization. In the experiment of adaptation

task A,D → W in Office-31, we visualize the DCTN acti-

vations before and after adaptation. For simplicity, both the

source domains have been separated to emphasize the con-

trast of target. As we can see in Fig.3, compared with the

activations given by the source only, both of the activations

from A → W and D → W have shown good adaptation pat-

terns. It means DCTN can successfully learn transferable

features with multiple sources. Besides, the target activa-

tions become more clear to categorize, which suggests that

the features learned by DCTN attains desirable discrimina-

tive property. Finally, even if the multi-source transfer has

been composed of hard transfer task ( A → W ), DCTN is

still able to adapt to target domain without the degradation

in the performance of D → W.

Ablation study. DCTN contains two major parts: the

multi-way adversary and the auto-labeling scheme. To fur-

ther reveal their function, we decompose DCTN into two

variants: The adversarial-only model excludes the pseudo-

labels and updates the category classifier with source sam-

ples. The pseudo-only model forbids the adversary and

categorize target samples with average multi-source results.

As shown in Fig.4(a), the accuracy of adversary behaves

Table 6. Ablation study of Algorithm.1 in Office-31.

A,W→D A,D→W D,W→A Overlap Disjoint

w 99.6 96.9 54.9 90.2 82.9

w/o 99.0 96.1 55.0 89.3 82.6

stable in each iteration, but lack of target class guidance, its

final performance hits a bottleneck. But without the adver-

sary, the accuracy of pseudo labels significantly drops and

pulls down the DCTN accuracy. It indicates that the both

adaptations cooperate with each other to achieve desirable

transfer behaviors. Diving deeper in Fig.4(b), the test ac-

curacy and the pseudo label accuracy show converged in

the alternative learning, which implicitly reveals the consis-

tency between the both adaptations. We also provide the

ablative study result to the domain batch mining technique

(see Table.6), which testify the method’s efficacy.

Convergence analysis. As DCTN involves a complex

learning procedure including adversarial learning and alter-

native adaptation, we testify the convergence performance

of different losses. During the process of hard sub transfer

A→W, Fig.4(c) demonstrates that, despite of the frequent

deviation, the classification loss, adversarial loss and test-

ing error gradually converge.

6. Conclusion

In this paper we have explored the unsupervised do-

main adaptation with multiple source domains. We raise

a new MDA protocol termed category shift, where classes

from different sources are non-consistent. Furthermore, we

proposed deep cocktail network, a novel framework to ob-

tain transferable and discriminative features from multiple

sources. The approach can be applied to the ordinary MDA

setting and category shift, and more, achieves state-of-the-

art results in most of our evaluation protocols.
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