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Abstract

With pervasive applications of medical imaging in

health-care, biomedical image segmentation plays a cen-

tral role in quantitative analysis, clinical diagnosis, and

medical intervention. Since manual annotation suffers lim-

ited reproducibility, arduous efforts, and excessive time,

automatic segmentation is desired to process increasingly

larger scale histopathological data. Recently, deep neural

networks (DNNs), particularly fully convolutional network-

s (FCNs), have been widely applied to biomedical image

segmentation, attaining much improved performance. At

the same time, quantization of DNNs has become an ac-

tive research topic, which aims to represent weights with

less memory (precision) to considerably reduce memory

and computation requirements of DNNs while maintaining

acceptable accuracy. In this paper, we apply quantization

techniques to FCNs for accurate biomedical image segmen-

tation. Unlike existing literatures on quantization which

primarily targets memory and computation complexity re-

duction, we apply quantization as a method to reduce over-

fitting in FCNs for better accuracy. Specifically, we focus

on a state-of-the-art segmentation framework, suggestive

annotation [26], which judiciously extracts representative

annotation samples from the original training dataset, ob-

taining an effective small-sized balanced training dataset.

We develop two new quantization processes for this frame-

work: (1) suggestive annotation with quantization for high-

ly representative training samples, and (2) network training

with quantization for high accuracy. Extensive experiments

on the MICCAI Gland dataset show that both quantization

processes can improve the segmentation performance, and

our proposed method exceeds the current state-of-the-art

performance by up to 1%. In addition, our method has a

reduction of up to 6.4x on memory usage.

1. Introduction

With pervasive applications of medical imaging in

health-care, biomedical image segmentation has always

Corresponding author: bryanhu@hust.edu.cn; yshi4@nd.edu

been one of the most important tasks in biomedical imag-

ing research. Biomedical image segmentation extracts d-

ifferent tissues, organs, pathologies, and biological struc-

tures, to support medical diagnosis, surgical planning and

treatments. In common practice, segmentation is performed

manually by pathologists, which is time-consuming and te-

dious. However, the ever-increasing quantity and variety of

medical images make manual segmentation impracticable

in terms of cost and reproducibility. Therefore, automat-

ic biomedical image segmentation is highly desirable. But,

this task is very challenging, because of high variability in

medical images due to complex variations in biomedical ob-

jects and structures and because of low contrast, noise, and

other imaging artifacts caused by various medical imaging

modalities and techniques.

In the past years, substantial progress has been made on

biomedical image segmentation with pixel based methods

[8, 14, 21, 18] and structure based methods [1, 10, 9, 19].

These methods achieve promising results on nonmalignant

objects using hand-crafted features and prior knowledge of

structures. However, they suffer considerable degradation

when applied to malignant objects with serious deforma-

tion. Recently, deep neural networks (DNNs), particularly

fully convolutional networks (FCNs), have been highly ef-

fective for biomedical image segmentation, which require

little hand-crafted features or prior knowledge. Ronneberg-

er et al. [16] proposed U-Net, a U-shaped deep convolution-

al network that adds a symmetric expanding path to enable

precise localization. With strong use of data augmentation,

this segmentation model achieves significant improvemen-

t over previous methods. The DCAN model by Chen et

al. [2, 3] added a unified multi-task object to the U-Net

learning framework, which won the 2015 MICCAI Gland

Segmentation Challenge [17]. Based on DCAN, Yang et al.

[26] proposed suggestive annotation which extracts repre-

sentative samples as a training dataset, by adopting active

learning into their network design. With the refined training

samples and optimized structure for DNNs, suggestive an-

notation achieves state-of-the-art performance on the MIC-

CAI Gland segmentation dataset [17].
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At the same time, DNN quantization has become an

active research topic [7], which aims to represent DNN

weights with less memory (precision) while maintaining ac-

ceptable accuracy with efficient memory and computation

costs. It has been observed in the literature, however, that

sometimes quantization can improve accuracy which can be

credited to the reduction of overfitting. Dynamic fixed point

are adopted in [11][12], which achieves 4x less memory

operation cost with only 0.4-0.6% Top-5 accuracy loss for

ImageNet classification [6]. Ternary weight network [13]

and binaryConnect [5] have further reduced the bit-width of

weights to 2 bits or even 1 bit with a relatively larger accu-

racy loss. Recently, their enhanced version, trained ternary

training [29] and binary weight network [15] have reduced

the accuracy loss to only 0.6-0.8%. There also exists some

works using non-linear quantization to represent the param-

eter distribution for better accuracy [11][27]. Unlike the

above works, some studies aims to quantize not only the

weights but also the activations. Quantized neural networks

[12], binarized neural networks [4], and XNOR-net [15] re-

duced the weights to only 1 bit and the activations to 1-2 bits

resulting in a large reduction on memory and computation

cost yet with significant accuracy loss. In some of the above

works, we notice that quantization can sometimes improve

the performance [11][23][22][27], which can be credited to

the reduction of overfitting.

In this paper, we adopt quantization as a method to re-

duce overfitting to FCNs for accurate biomedical image

segmentation. Particularly, we focus on a recent effective

biomedical image segmentation framework, suggestive an-

notation [26]. We develop two new quantization processes

to incorporate into this state-of-the-art framework: (1) sug-

gestive annotation with quantization for highly representa-

tive training samples, and (2) network training with quan-

tization for high accuracy. Extensive experiments are pre-

sented on the widely-used MICCIA Gland dataset, and the

results show that our proposed method exceeds the current

state-of-the-art performance by up to 1%. In addition, our

method has a reduction of up to 6.4x on memory usage.

2. Related Work

In this section, we briefly review suggestive annotation

[26], on which our proposed method is based. Several

representative quantization methods are discussed in detail,

which will be adopted in our experiments. The readers are

also referred to [11, 5, 15] for other quantization methods.

2.1. Suggestive Annotation for Biomedical Image
Segmentation

We based our proposed framework on suggestive anno-

tation [26], which achieves state-of-the-art performance on

the Gland dataset. The key idea of the work is that better

performance can be achieved with representative training
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Figure 1. Illustration of the suggestive annotation framework [26].

With suggestive annotation, better samples (suggestive training

set) can be extracted from the original training set for further train-

ing with better performance.

(a) (b) 

(c) (d) 

Figure 2. (a) An original image; (b) the probability map produced

by multiple FCNs in suggestive annotation for (a); (c) uncertainty

estimation of the results by the multiple FCNs; (d) relation be-

tween uncertainty estimation and pixel accuracy on the testing da-

ta. Obviously there is a strong correlation between the test accura-

cy and uncertainty (reprinted from [26]).

samples instead of original training samples. As shown in

Figure 1, the suggestive annotation framework [26] has two

steps: suggestive annotation and network training. The first

step extracts typical samples from the original training set

with multiple suggestive FCNs, and the second step trains

segmentation FCNs with the extracted samples. In the first

step, multiple suggestive FCNs are trained in parallel. Dur-

ing the inference stage, multiple suggestive FCNs produce

multiple predictions for the same input from the original

training set, which can be used to calculate the representa-

tiveness of the samples. Note that each FCN generates two

outputs: contour of the objects and the segmented objec-

t. The suggestive FCNs and segmentation FCNs have the

same network structure which is based on DCAN [3] and

active learning.

Two metrics are involved with representativeness: un-

certainty and similarity. A representative training samples

should be hard to predict as they are located on the ”boarder

line” of the feature space, and have low similarity with each

other as they can well describe the variety of the ”board-
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er line” with limited quantity. In suggestive annotation, the

standard deviation of the multiple predictions from multi-

ple suggestive FCNs are regarded as the uncertainty score.

The averaged outputs of last convolutional layers of multi-

ple suggestive FCNs are regarded as a domain-specific im-

age descriptor, which can be used to evaluate the similarity

of images with cosine similarity.

Selecting representative training samples with uncertain-

ty and similarity is an NP-hard problem [26]. A simple

heuristic method is adopted: extract K samples with the

highest uncertainty scores first, and then select the final k

(k < K) samples based on their similarity with each other.

The reason to put uncertainty in the first step is that uncer-

tainty is more important than similarity [26]. As shown in

Figure 2, the test accuracy is highly correlated with the un-

certainty score.

2.2. Quantization Techniques for DNNs

2.2.1 Incremental Quantization (INQ)

Incremental quantization [27] quantizes weights to powers

of two in an iterative manner. In each iteration, a subset of

weights is selected and quantized, and a fine-tuning process

is then presented while the quantized weights are locked

during both feed-forward and feed-back prorogation. The

above process iterates until all weights are quantized. The

quantization calculation is shown in Eq. (1), where wq and

w are quantized and original weights, respectively, and u

and l are the upper and lower bounds of the quantized set,

respectively. Note that how to choose the weights during

each iteration is dependant on the magnitude of the weight.

With incremental quantization, the weights can be repre-

sented with only 3-5 bits with almost no accuracy loss, and

the multiplication can be simplified to shift operation.

wq =



















sign(w)× 2p if 3× 2p−2 ≤ |w| < 3× 2p−1;

l ≤ p ≤ u;

sign(w)× 2m if |w| ≥ 2u;

0 if |w| < 2−l−1.

(1)

2.2.2 DoReFa-Net

DoReFa-Net [28] trains DNNs with low bitwidth weight-

s and activations represented using low bitwidth parame-

ter gradients, and it enables training acceleration of low

bitwidth neural network on general hardware. In the quan-

tization process, weights and activations can be determinis-

tically quantized, while gradients need to be stochastical-

ly quantized. DoReFa-Net adopts a simple quantization

method to quantize 32 bits values to only 1 bits as shown

in Eq. (2), where wl and w
q
l are the original and quantized

weights of the lth layer, respectively, and E(|wl|) calculates

the mean of the absolute value of weights in the lth layer.

w
q
l = E(|wl|)× sign(wl) (2)

Thus, DoReFa-Net can achieve a 32x compression rate at-

most with comparable accuracy compared with networks

using floating-point representation, and the computation of

multiplication is also simplified to addition and/or substrac-

tion. In the feed-back propagation, weights and gradients

are maintained in floating point, and quantized weights are

only used in the feed-forward propagation.

2.2.3 Ternary Weight Networks

TWN [13] trains DNNs with weights constrained to only

three values ±αl and 0. Compared with DoReFa-Net, TWN

has an extra zero, which requires 2 bits to represent weights

while also improving the performance. Note that TWN is

also applied in a layer-wise manner, which is the same with

DoReFa-Net. For each layer, the quantization of TWN is

shown in Eq. (3).

w
q
l =











αl if |wl| > δl;

0 if − δl ≤ |w| ≤ δl;

−αl if |wl| < −δl; .

(3)

As there is no deterministic solution for δl and αl, an ap-

proximated optimal solution is presented as shown in Eq.

(4) and Eq. (5). Note that the feed-back propagation is the

same as that for DoReFa-Net.

δl = 0.7× E(|wl|) (4)

αl = E
i∈{i|wl(i))|}>δl

(|wl(i))|) (5)

3. Motivation

Usually quantization of DNNs are used to reduce the bit

length of weights in DNNs. In fact, quantization can not

only reduce memory consumption, but also can improve the

performance sometimes [11][23][27]. For example, Han et

al. [11] has improved the Top-1 error by 0.01% for Ima-

geNet classification. Zhou et al. [27] has quantized DNNs

to only 4 and 5 bits for ImageNet classification, and the

Top-1 and Top-5 error for the two configurations are all im-

proved with a reduction of 0.2%-1.47%. One interesting

phenomenon is that the Top-5 error with quantization of 3

bits is lower than that with quantization of 4 bits. A pos-

sible explanation is that lower bits representation is a more

strict constraint to reduce overfitting. We would like to ap-

ply the above idea to suggestive annotation [26] to reduce

overfitting and improve performance.

Two quantization processes for the two steps in the sug-

gestive annotation framework have different purposes. For

suggestive annotation, the purpose is to obtain represen-

tative samples, and therefore, uncertainty is more critical
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Figure 3. Illustration of quantization framework based on the suggestive annotation framework. In suggestive annotation with quantization,

better training samples (suggestive training set) can be extracted from the original training set. In network training with quantization, better

performance can be achieved by reduce overfitting.

than accuracy. For network training, the purpose is to in-

crease accuracy, and several characteristics of FCNs need

to be considered. First, unlike general DNNs with multiple

fully connected layers, all layers in FCNs are convolution-

al or deconvolutional layers, which is an extreme case of

weight sharing. Second, unlike general classification tasks

with only several outputs, FCNs generate the same number

of outputs as that of the inputs. This makes quantization of

FCNs much harder, which has less space for quantization

compared with general DNNs. We would like to explore

suitable quantization method for FCNs in network training.

4. Method

In this section, we focus on suggestive annotation with

quantization as network training with quantization is rela-

tively simple. Additionally, uncertainty and similarity of

the enhanced suggestive annotation are also analysed in de-

tails.

4.1. Suggestive Annotation with Quantization

As shown in Figure 3, the proposed quantization frame-

work has two steps: suggestive annotation with quantization

and network training with quantization. In the first step, we

add a quantization module to suggestive FCNs for high un-

certainty. In the second step, quantization of segmentation

FCNs are performed with the suggestive training samples

for higher accuracy. In order to obtain high representative-

ness, each FCN in suggestive FCNs should be diverse for

high uncertainty with acceptable accuracy. However, usu-

ally DNNs including FCNs are over-parameterized, and a

large portion of the parameters is redundant. Thus, multi-

ple suggestive FCNs will have very small variance of the

final prediction though with different weight initialization.

The adopted regularization techniques including weight de-

cay and dropout scheme [20] will further make the multiple

suggestive FCNs to be almost the same. By adding quanti-

zation to suggestive annotation, the above requirement can

be satisfied. Though it may be a little offensive since most

of the time it will degrade the accuracy, it is particularly

appreciated by suggestive FCNs that focus on uncertainty.

Particularly quantization transforms the originally continu-

ous weight space, where the weights of several networks

can be arbitrarily close, into a sparse and discrete one, and

thus increasing the distances between the trained network-

s and accordingly the diversity of the outputs. Note that

accuracy should be also considered and too offensive quan-

tization methods should be avoided.

4.2. Impact on Uncertainty and Similarity

In suggestive annotation with quantization, high uncer-

tainty can be obtained without sacrificing much accuracy.

As shown in Figure 4, accuracy including contour and seg-

mented object and uncertainty are compared. Note that the

suggestive FCNs output both contour and segmented ob-

ject for high segmentation performance. Comparing Figure

4(b) and Figure 4(c), we can notice that the contour for both

approaches are almost the same, and they can both obtain

clear contours. However, for segmented object in Figure

4(d) and Figure 4(e), suggestive annotation identifies a very

clear segmented object, while the quantized version is rela-

tively vague. This is mainly due to the fact that suggestive

annotation with quantization has a larger uncertainty of the

background data, and this is verified in Figure 4(f) and Fig-

ure 4(g). The uncertainty scores of suggestive annotation

with quantization are much higher than that of suggestive

annotation. Therefore, suggestive training set with higher

uncertainty can be obtained with quantization at the same

time with little accuracy loss. Note that as shown in Figure

4(b,c,d,e), the magnitudes of the artefacts (all in blue) are

much smaller compared with those of contours and objects

and thus having little impacts on the results.
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(b) Contour output of suggestive annotation (c) Contour output of FCNs with suggestive annotation with 

quantization

(d) Segmented-object output  of suggestive annotation
(e)  Segmented-object output  of suggestive annotation with 

quantization

(f) Uncertainty output  of suggestive annotation (g)  Uncertainty output  of suggestive annotation with quantization

(a) Part of training samples in Gland dataset

Figure 4. Uncertainty comparison between suggestive annotation and suggestive annotation with quantization. The accuracy of contour

and segmented object and uncertainty are compared, respectively. There is almost no accuracy loss. However, suggestive annotation with

quantization has higher uncertainty scores.

(a) Suggestive annotation (b) Suggestive annotation with quantization

Figure 5. Similarity (the outputs of the final convolutional layer of FCNs, which can be regarded as an image descriptor) comparison

between suggestive annotation and suggestive annotation with quantization.
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As shown in Figure 5, the similarity (the output of the

last convolutional layer) comparison between suggestive

annotation and suggestive annotation with quantization is

discussed. As the dimension of the output image matrix is

relatively large (64×80), its details are not clear. However,

we can still notice that the distributions of the image of the

two approaches have some differences. For each approach,

there also exists variance among the outputs.

5. Experiment and Results

5.1. Experiment Setup

We adopt the 2015 MICCAI Gland Challenge dataset

[17] which have 85 training images ( Part A: 37 normal g-

lands, and Part B: 48 abnormal glands) and 80 testing im-

ages (Part A: 60 normal glands, and Part B: 20 abnormal

glands). In suggestive annotation, 16 images with the high-

est uncertainty scores are extracted first, and then 8 images

are collected based on their representativeness using simi-

larity, which are added to the suggested training set in each

iteration. Note that the training samples in the first itera-

tion are selected randomly. Totally there are 120 iterations

in suggestive annotation, and totally 960 suggested train-

ing samples are produced. 5 FCNs are used in suggestive

annotation, and the waiting time between two annotation

suggestion stages is about 10 minutes on a workstation with

4 NVIDIA Tesla P100 GPUs. We adopt a simple learning

rate scaling strategy: set learning rate to 0.0005 in the ini-

tial stage, and to 0.00005 when the iteration times reaches

a threshold. As the training time is long, all the configura-

tions are repeated 4 times and the best ones are selected for

comparison.

We will discuss three aspects in the experiment regard-

ing quantization of suggestive annotation (SA), number of

parallel FCNs in suggestive annotation, and quantization of

network training (NT). Note that without explicit specifica-

tions, one FCN is used in training for segmentation. All

the experiments are evaluated considering detection (F1 s-

core), segmentation (dice score) and shape similarity (ob-

ject Hausdorff distance) [17]. Several widely-used quan-

tization methods are discussed: incremental quantization,

DoReFa-Net, and TWN. We first perform a simple FCN

training with the above quantization methods. For incre-

mental quantization, we first analyzed the distribution of

the weights as shown in Figure 7, and select three config-

urations: 7 bits, 5 bits, and 3 bits. As shown in Figure 6,

it can be noticed that only incremental quantizations with 7

bits and 5 bits have low training loss and achieve compara-

ble performance on the validation dataset with unquantized

networks. Incremental quantization with 3 bits, DoReFa-

Net, and TWN obtain a large training loss, and their vali-

dation accuracy is almost zero. Though this is common in

network quantization, the accuracy degradation of FCNs is

much larger compared with general DNNs, which is possi-

bly due to the following two reasons. First, unlike general

DNNs, FCNs has no fully connected layers resulting in less

redundance. Second, the performance of segmentation is

determined in the object level, which means successful seg-

mentation requires correct classification of a doze of pixels

in an object. This is much harder than general classifica-

tions using DNNs. Considering the above discussions, we

adopt incremental quantization with 7 bits and 5 bits in the

rest of the experiments.

5.2. Impact of Number of Parallel FCNs

We first discuss the impact of number of parallel FCNs

in suggestive annotation. As shown in Figure 8, six config-

urations are discussed. We find that the same trend exists

in all configurations: a moderate accuracy is obtained with

number of two, and then the accuracy decreases, and a local

minimum occurs with the number of around four; then the

accuracy will increase to a local maximum and decrease af-

terwards. It seems that there exists much redundance in FC-

Ns for suggestive annotation, and proper number of parallel

FCNs will contribute to the performance. We will adopts

5 parallel FCNs in suggestive annotation in the experiments

afterwards. In Figure 8(e), we can find that network training

can achieve higher accuracy in most of the configurations
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performance of the work [26] with the same configuration.
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Table 1. Performance comparison with existing works using five FCNs on the MICCAI Gland dataset. The work [26] achieves state-of-

the-art performance on the dataset.

Configuration
F1 Score Object Dice Object Hausdorff

Part A Part B Part A Part B Part A Part B

SA (5 FCNs + INQ-7bits) + NT (5 FCNs + INQ-7bits) 0.930 0.862 0.914 0.859 41.783 97.390

Suggestive annotation [26] 0.921 0.855 0.904 0.858 44.736 96.976

Multichannel [25] 0.893 0.843 0.908 0.833 44.129 116.821

Multichannel [24] 0.858 0.771 0.888 0.815 54.202 129.930

CUMedVision [3] 0.912 0.716 0.897 0.781 45.418 160.347

compared with network training with quantization. That is

to say quantization of network training will hurt the accura-

cy for some configurations.

5.3. Discussion on Suggestive Annotation Quanti­
zation

As shown in Figure 9, suggestive annotation with IN-

Q with 7 bits can always obtain higher accuracy compared

with that with the other two. This reversed U-shape trend

indicates that suggestive annotation with INQ with 7 bits

may be close to the best fitting point, and loose quantiza-

tion (no quantization or floating-point representation) and

tight quantization (INQ with 5 bits) both degrade the fit-

ting and accuracy loss arises. By comparing network train-

ing and network training with quantization, we can find that

network training with quantization will not always improve

the accuracy.

5.4. Discussion on Network Training

As shown in Figure 10, unlike suggestive annotation

with quantization, the highest accuracy of network training

with quantization is achieved with floating-point represen-

tation in most of the configurations. This means network

training with quantization will degrade the performance.

By comparing network training and network training with

quantization, we can notice that suggestive annotation with

quantization has a great contribution to performance im-

provement, and the average improvement is 0.9%.

5.5. Comparison with Existing Works

In order to make fair comparison with existing works, we

adopts ensemble methods and set the number of FCNs in

network training to five, which is the same as [26]. Several

configurations are evaluated as shown in Figure 11. Sug-

gestive annotation with quantization shows the same trend

as network training with quantization. In Figure 9 and Fig-

ure 10, suggestive annotation with quantization has a great

impact on the performance with one FCN, while network

training with quantization has a significant influence on the

performance with five FCNs. This is due to the fact that

the network behaviour of multiple networks with ensemble

methods differs from that of only one network.

Comparison with existing works are shown in Table 1.

With proper quantization techniques, our proposed method

can achieve the best performance on all aspects except ob-

ject Hausdorff distance on part B. For part A with nonmalig-

nant subjects, out methods can achieve a 0.9%-1% improve-

ment with the current state-of-the-art method. For part B

with malignant subjects, it is much harder to segment, and

our method gets a 0.1%-0.7% improvement. We achieve

comparable performance on object Hausdorff distance on

part B, which is only 0.4% worse than suggestion annota-

tion. In addition, our method can also obtain 4.6x and 6.4x

reduction on memory usage for INQ with 7 bits and 5 bits,

respectively. As activations are in floating point representa-

tion, the runtime are not affected.

6. Conclusion

Usually quantization is used to reduce the bit length of

parameters with some accuracy loss. In this paper, we apply

quantization to FCNs for accurate biomedical image seg-

mentation, and quantization is used to reduce overfitting in

FCNs. Particularly we base our work on the current state-

of-the-art work [26], and it has two steps: suggestive an-

notation and network training. We add two quantization

processes to the two steps, respectively: one to suggestive

annotation for high-representative training samples, and the

other to general training for high accuracy. Extensive ex-

periments are presented on the widely-used MICCIA Gland

dataset. Results show that both quantization processes can

improve the segmentation performance by around 1% for

some configurations. However, for specific networks, usu-

ally there is only one process dominates in the performance.

For network training with only one FCN, suggestive anno-

tation with quantization dominates, while network training

with quantization dominates for network training with five

FCNs. The number of parallel FCNs in suggestive annota-

tion will also affect the performance. Our proposed method

exceeds the current state-of-the-art performance by up to

1%. In addition, our method has a up to 6.4x reduction on

memory usage. Our future work will focus on a general

quantization principle that should also work for other DNN

frameworks.
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