
Trapping Light for Time of Flight

Ruilin Xu

Columbia University

rxu@cs.columbia.edu

Mohit Gupta

University of Wisconsin-Madison

mohitg@cs.wisc.edu

Shree K. Nayar

Columbia University

nayar@cs.columbia.edu

Abstract

We propose a novel imaging method for near-complete,

surround, 3D reconstruction of geometrically complex ob-

jects, in a single scan. The key idea is to augment a time-

of-flight (ToF) based 3D sensor with a multi-mirror system,

called a light-trap. The shape of the trap is chosen so that

light rays entering it bounce multiple times inside the trap,

thereby visiting every position inside the trap multiple times

from various directions. We show via simulations that this

enables light rays to reach more than 99.9% of the surface

of objects placed inside the trap, even those with strong oc-

clusions, for example, lattice-shaped objects. The ToF sen-

sor provides the path length for each light ray, which, along

with the known shape of the trap, is used to reconstruct the

complete paths of all the rays. This enables performing

dense, surround 3D reconstructions of objects with highly

complex 3D shapes, in a single scan. We have developed a

proof-of-concept hardware prototype consisting of a pulsed

ToF sensor, and a light trap built with planar mirrors. We

demonstrate the effectiveness of the light trap based 3D re-

construction method on a variety of objects with a broad

range of geometry and reflectance properties.

1. Introduction

The ability to measure complete surround 3D shape of

objects has a wide range of applications, from digital mod-

eling of rare specimen and artifacts in museums, to mo-

tion capture for digital entertainment and bio-mechanics re-

search, and to medical applications such as 3D scanning of

anatomical features for surgical planning, customized or-

thopedic casts, and customized prosthetics. Single view-

point 3D imaging systems can image only a part of an ob-

ject’s surface at a time. Furthermore, single viewpoint sys-

tems have limited capability in dealing with occlusions in-

herent in geometrically complex objects. These limitations

can be addressed by capturing images from multiple per-

spectives, either by multiple cameras placed at different lo-

cations [27], or by rotating the object mechanically [26, 1].

These systems, while capable of measuring surround 3D

shapes, require synchronization of multiple cameras, so-

phisticated stitching algorithms, and/or a slow capture pro-

cess which prohibits scanning of dynamic scenes.

We propose light trap 3D imaging, a novel imaging

technique that enables single-scan, surround and dense 3D

imaging of geometrically complex objects. The proposed

technique uses a time-of-flight (ToF) 3D sensor, and a light

trap built by planar mirrors. The object to be scanned is

placed inside the trap. Light rays emitted by the ToF sen-

sor are trapped within the mirror system, i.e., they bounce

several times within the trap. This creates a diverse set of

light paths that sweep through the entire inside space of the

trap. Furthermore, light rays visit every location inside the

trap from several different directions, thus providing a con-

tinuous set of virtual view-points. This ensures that for a

trap with the appropriate shape, light rays can reach more

than 99.9% of the surface of geometrically complex ob-

jects with strong occlusions (e.g., a closely spaced lattice

of spheres) and cavities, even after a relatively small num-

ber of bounces.

The use of mirrors for 3D reconstruction has been

explored in the past, in conjunction with multi-view

stereo [25] and structured light [12, 20]. The main challenge

with mirror based multi-view methods is the need to solve

the correspondence problem. Reflection of a ray at every

mirror surface creates a new virtual sensor view. Solving

the correspondence problem requires assigning every pixel

to a specific virtual view, i.e., determining the number of

bounces that light entering the pixel has gone through. Un-

fortunately, this labeling problem is intractable for general

shapes, especially those with self-occlusions, given the ex-

ponentially large number of virtual views. In contrast, our

approach does not need to solve the labeling problem. This

is because a ToF sensor is used, which can estimate the path

length of each ray. Since the shape of the light trap is known

a priori, the entire path of each ray can be computed, in-

cluding the number of bounces. This enables measuring the

3D shape of objects with complex 3D geometry including

strong self-occlusions, from a single scan of a ToF sensor.

Since rays bounce multiple times inside the trap, a ray

emitted from the sensor may visit a scene point multiple
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times. This creates multiple light paths from the sensor to

the same scene point, each with a different length. For a

continuous wave ToF sensor [19, 24], the estimated path

length is the linear combination of these lengths, which is

different from the true length (length of the shortest path).

This results in an incorrectly estimated 3D shape. This

problem is similar to that of multi-path interference in ToF

imaging [7, 9, 15, 13]. Fortunately, we can mitigate the

effect of multi-path interference by using pulsed ToF sen-

sors [8, 18, 16], which consider only the first return for

every ray, corresponding to the first intersection of the ray

with the scene (shortest path). We demonstrate the proposed

method via a hardware prototype consisting of a pulsed ToF

system, and a light trap made with planar mirrors. We de-

veloped a calibration procedure for measuring the shape of

the trap in order to trace the path of every ray, and designed

algorithms for recovering the 3D shape of objects inside the

light trap. We show near-complete 3D reconstructions of

several objects with complex geometries and reflectance.

2. Related Work

Catadioptric imaging systems: Catadioptric imaging sys-

tems are used to augment cameras with additional mirrors in

order to increase the number of effective view-points. Han

and Perlin [10] proposed a kaleidoscopic system with mul-

tiple mirrors for reflectance (BRDF) measurements. The

mirrors were used to generate a large number of views of

the target object, covering the entire hemisphere of direc-

tions surrounding it. Gluckman and Nayar [5, 6] developed

a catadioptric stereo system with multiple mirrors and a sin-

gle camera. Mirrors have also been used to generate multi-

ple view-points in the context of multi-view 3D reconstruc-

tion [2, 22, 23, 28, 4, 25, 11, 21]. As mentioned earlier, the

main limitation of mirror-based multi-view 3D reconstruc-

tion approaches is the need to solve the correspondence and

labeling problems, which is computationally expensive, and

impossible for shapes with occlusions and cavities.

3D reconstruction with multiple or moving cameras:

One popular method for surround 3D scene reconstruction,

especially for large scenes, is to use multiple color or depth

cameras [17, 14]. Another approach is to mount the object

of interest on a rotating platform [26, 1], or move the camera

around the object [3]. These systems require multi-camera

synchronization, calibrating for radiometric responses of

different cameras, or capturing several images while mov-

ing the object/sensor. In contrast, our goal is to perform

surround 3D scanning of objects in a single scan.

3. Trapping Light via Mirrors

Consider the imaging scenario shown in Figure 1. For

ease of exposition, the illustration is shown in 2D. A collec-

tion of planar mirrors is arranged as the sides of a polygon,

(a) 5 bounces (b) 50 bounces (c) 500 bounces

Figure 1: A collimated light source emits a light ray into a light

trap made of mirrors. (a-c) Paths traced by the ray after 5 bounces,

50 bounces and 500 bounces, respectively. After a sufficient num-

ber of reflections, nearly all locations in the trap are visited multi-

ple times from different directions.

with the mirror sides facing inwards. The polygon is closed,

except for a small opening as an entrance for light rays. A

small opening ensures that the probability of the light ray

escaping the closed polygon is small. A collimated light

source emits light into the opening, and is incident on one

of the mirror facets. We assume that each mirror is perfect,

without any absorption. In that case, light will continue to

be reflected from the mirror facets. Figure 1 demonstrates

the paths traced by the ray after 5 bounces, 50 bounces, and

500 bounces, respectively.

What are good light trap designs? For light traps with

appropriate shapes, a light ray entering the trap visits ev-

ery location in the trap after a sufficient number of reflec-

tions1, as shown in Figure 1c. However, in order to re-

cover surround 3D shape of complex shapes, not only must

light rays be able to reach all (or most) of the locations in

the trap, they must be able to reach every location multiple

times, from different directions. This ensures dense cover-

age within a trap, but also dense coverage of each point from

multiple directions. The latter property is critical for recon-

structing highly complex shapes with severe self-occlusions

and strong cavities, for which certain scene points can be

reached only along a narrow set of directions. For instance,

consider an extreme case, where the scene is a lattice of

small, closely spaced spheres. A natural question to ask

is: What is the shape of the light trap that will enable light

rays to reach all (or as many as possible) scene points in

such scenes with strong occlusions?

While a detailed theoretical analysis of the shapes of

mirror traps that lead to complete coverage for all possible

shapes is beyond the scope of this paper, we perform an em-

pirical analysis based on 3D simulations (implemented in

Unity3D). Specifically, we consider several potential light

1An exception is a regular polygon-shaped light trap, with light incident

at an angle of θ/2 with respect to the normal of a facet, where θ is the angle

between two faces of the polygon. For example, for a square (4-gon), if

light is incident at an angle of 45◦, then it will continue to go around the

light trap along the same path.
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Figure 2: Simulation for testing surface coverage of different trap shapes. (a) Simulation setup. A 4× 4× 4 lattice of spheres is placed

in a cubic light trap. (b) Initial state of the simulation. (c) As the simulation runs, a color code is assigned to points on the surface of

spheres, depending on the number of bounces the light ray undergoes before hitting the points. (d) End result of the simulation. (e) 99.9%

of the lattice’s surface area is visited after 5 bounces.
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Figure 3: Surface coverage comparison. We compared the cov-

erage of 6 different trap shapes (cube, sphere, ellipsoid, cylin-

der, tetrahedron, and pyramid), for 6 objects (lattice, bear, bunny,

dwarf, lamp and teapot). The pyramid-shaped light trap performs

the best on all the test objects, reaching > 99% coverage on all

shapes, with 3 bounces per ray.

trap shapes; for each candidate trap shape, we compute the

percentage of the reachable surface locations for a set of

objects with different shapes of varying complexity. The

simulation consists of a point light source, a light trap built

from ideal planar mirrors with 100% reflectance, and the

target object placed inside the trap. The light source emits

1500 × 1500 light rays in a field-of-view (FOV) chosen so

that all light rays are able to enter the light trap. The con-

figuration of the simulation setup is shown in Figure 2a. An

object consisting of a 4×4×4 lattice of spheres is placed in

a cubic light trap. The spheres have a radius of 5mm each

and are 10mm apart from each other. Figure 2b shows the

initial state of the simulation – no sphere has been visited

by any light rays, hence the black surface color. As the sim-

ulation runs, light visits the surface of the spheres. A color

code is assigned depending on the number of bounces the

light ray undergoes before hitting the sphere’s surface. Fig-

ure 2c shows a snapshot during the duration of a simulation.

The end of the simulation is shown in Figure 2d. As shown

in Figure 2e, 99.9% of the lattice’s surface area (combined

surface area of 64 spheres) has been visited, after 5 bounces.

We compared six different light trap shapes, namely,

cube, sphere, cylinder, ellipsoid, tetrahedron, and pyramid,

for six different objects, namely, lattice, bear, bunny, dwarf,

lamp, and teapot. Coverage results for each object and trap

shape are shown in Figure 3. The pyramid-shaped light trap

performs the best on all the test objects among different

trap shapes. With a pyramid-shape trap, light rays emitted

from a single point source can visit > 99% of the points on

the surface of the tested objects, even those with complex

shapes, with ≤ 3 bounces of each ray. Recovering shape of

such complicated objects (e.g., lattice) may be challenging

with conventional 3D shape reconstruction methods.

4. Recovering 3D Shape with a Light Trap

In this section, we discuss the proposed 3D reconstruc-

tion method using a light trap. As discussed earlier in Sec-

tion 1, mirror-based multi-view 3D imaging systems need to

determine the number of reflections that each light ray un-

dergoes before reaching the object of interest. Effectively,

these systems need to “unroll” every light path, from the

sensor to the object. This is only possible if the shape of the

object is known, but to estimate the shape, we need to first

label every light path with its number of bounces. This is

a chicken-and-egg problem. While the labeling can be per-

formed for relatively simple, convex shapes, it is not always

possible for objects with occlusions or cavities.

One way to solve the labeling problem is to measure

the length of each light path (from the sensor to the scene
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point). Fortunately, ToF sensors can estimate the path

lengths by measuring the time taken for the emitted light

to travel to the scene point and back to the sensor. The path

length is computed by the product of the travel time, and the

known speed of light.
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Figure 4: 3D imaging using light trap ToF sensor: A diffuse

object is placed inside a light trap. A light ray emitted by a ToF

sensor at p0 reaches scene point p after multiple bounces. The

ToF sensor measures the total length of the light path from p0 to

p, which, along with known shape of the trap, can be used to de-

termine the 3D coordinates of p.

4.1. Time of Flight Based Light Trap

Consider a light trap with perfect mirrors, as shown in

Figure 4. Suppose a ToF sensor is placed at point p0. The

sensor emits a light ray L along direction r̂0, which hits mir-

ror M1 at point p1. The light reflected from M1 hits mirror

M2 at point p2, and so on. Suppose light hits mirror MK at

point pK , before finally reaching point p on the surface of a

diffuse object placed inside the trap. Let dk be the distance

between points pk and pk+1. Then, dtotal, the total length

of the light path from the sensor location p0 to p is given as:

dtotal =

K−1∑

k=0

dk + d̃ , (1)

where d̃ is the distance between p (point on the surface)

and pK (the last mirror point on the light path). If dtotal
is measured, the 3D location of point p can be estimated

by tracing the light path starting from the sensor. The end

point of the path, at length dtotal, is the 3D location of p.

However, the ToF sensor cannot directly calculate dtotal. In

fact, it cannot perform depth calculation unless the light ray

reaches the scene point p and then trace back to point p0.

What path will the light ray follow, back from point p to the

sensor location p0?

Lemma: Suppose a light ray emitted from p0 along direc-

tion r̂0 arrives at a diffuse object point p, either directly, or

indirectly (after one or more specular reflections). Then,

the shortest path a ray reflected at p can return to p0 along

direction −r̂0 is by retracing the incident path.

Proof: Suppose there were a shorter return path from point

p to p0 along the final direction −r̂0. In that case, light

would have taken this path to reach point p because of the

reciprocity of light propagation. This leads to a contradic-

tion, thus proving the lemma.

4.2. Path Length and Depth Computation

The above lemma states that a light ray retraces its path

from the sensor to a scene point. Let the total path length

measured by the sensor be dmeas. Then the path length

dtotal from the sensor to the scene point (Eq. 1) is given as:

dtotal =
dmeas

2
=

K−1∑

k=0

dk + d̃ . (2)

The length of each ray segment dk can be calculated as dk =
pk+1 − pk, where the location pk+1 is given as pk+1 =
dkr̂k + pk, and r̂k is the unit vector along the direction of

ray reflected from the kth mirror at point pk. r̂k can be

computed by using Snell’s law of specular reflection:

r̂k = r̂k−1 − 2 (n̂k · r̂k−1) n̂k . (3)

Thus, given the initial sensor location p0 and initial ray di-

rection r̂0, we can recursively compute the locations pk and

directions r̂k, for all k ∈ [1 . . .K], by using the above equa-

tions. We can use the computed pk and r̂k to trace the light

path, starting from the sensor, up to length dtotal, as com-

puted in Eq. 2. This is shown in Figure 4. As discussed

earlier, the end point of the light path, pend is the location

of the surface point p. See Alg. 1 for the detailed algorithm.

Note that for the operation on line 8 of Alg. 1, we can find

the intersections of the rays with the mirror surfaces of the

light trap because we know (a) the shape of the trap, and (b)

the relative pose of the trap with respect to the camera by

calibration, as discussed in Section 5.3.

5. Hardware Prototype

We have developed a hardware prototype system for

light trap based 3D imaging. In the following section, we

discuss the hardware design choices, as well as details re-

garding the calibration procedure.

5.1. Mirror Light Trap

The simulation results shown in Section 3 suggested that

a pyramid-shaped light trap can achieve maximal coverage

for a wide range of shapes. Therefore, we developed our

prototype using a pyramid-shaped light trap built by four

planar mirrors. We leave the pyramid base open, which al-

lows light to enter the trap with full intensity. The absence
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Figure 5: Hardware prototype of light trap based 3D imaging system. (a-b) Design of the light trap and the supporting frame. (c)

Complete setup with the ToF sensor (left), light trap and an object of interest placed on the object holder through the cutout of the trap

(middle), and the additional 45◦ planar mirror (right).

Algorithm 1 Depth Computation

Require: p0, initial sensor location

r̂0, initial ray direction

1: procedure COMPUTEDEPTH

2: for each dmeas do

3: pend ← TracePath(p0, r̂0,
dmeas

2
)

4: end for

5: end procedure

6: function TRACEPATH(pk, r̂k, dremain)

7: ray ← (pk, r̂k)
8: pk+1 ← intersection of ray and light trap

9: dk = pk+1 − pk
10: if dremain > dk then

11: dremain ← dremain − dk
12: r̂k+1 = r̂k − 2 (n̂k+1 · r̂k) n̂k+1

13: TRACEPATH(pk+1, r̂k+1, dremain)

14: end if

15: pend ← dremainr̂k + pk
16: return pend
17: end function

of a base limits the total number of reflections for most

rays to 3. Fortunately, as the simulation results showed,

only three reflections per light ray are sufficient to achieve

> 99% coverage for a wide range of objects.

We used planar mirrors with protected aluminum metal

coating with thickness of 3.0mm to construct the trap. The

mirrors have a reflectance of > 90% for wavelengths from

400−2000nm. Each mirror is cut to the shape of an equilat-

eral triangle with a side length of 400mm. A steel frame is

also constructed to hold all four mirrors to form a four-sided

pyramid with a height of 282.84mm (see Figure 5a and Fig-

ure 5b). The object to be scanned is placed inside the trap

supported on a thin rod which is inserted via a small cutout

hole at the tip of the pyramid (Figure 5b).

5.2. ToF Sensor

We used a ScanStation P40 3D ToF Laser Scanner from

Leica. This is a pulsed ToF sensor, which uses infra-red

light of wavelength 1550nm. The 3D measurement accu-

racy is 3mm at a range of 50m. In addition to capturing

a high quality depth map, the scanner also captures corre-

sponding color (RGB) data.

Since the light trap is constructed to face vertically up-

ward, and the ToF sensor must ideally be mounted hori-

zontally, with its optical axis parallel to the ground, an ad-

ditional planar mirror (with identical characteristics as the

mirrors used to make the trap) is placed at a 45◦ angle fac-

ing the ToF sensor above the light trap. See Figure 5c for

the complete hardware setup.

5.3. Light Trap Calibration Procedure

The light trap must be calibrated to estimate the position

and orientation (surface normal) of each of the four pla-

nar mirrors, as shown in Figure 6. To this end, we place

small dot-shaped markers near every corner of each mirror,

as shown in Figure 6a. Next, we obtain a 3D reconstruction

(point cloud) of the empty trap with the markers. The point

cloud is manually processed and each point cloud patch that

corresponds to a marker is labeled, as shown in Figure 6b.

Using the reconstructed locations of the markers, we per-

form an initial calculation of each mirror’s position and sur-

face normal (16 parameters in total) (see Figure 6c).

The initial estimate of the mirror shapes is refined by

using a cube as a reference calibration object. Specifi-

cally, using the known shape of the cube, we perform a

16-parameter Levenberg-Marquardt (LM) optimization re-

cursively, from which the mirror parameters as well as a

calibrated cube reconstruction is obtained (Figure 6d).

6223



Markers

(a) (b)

(c) (d)

Figure 6: Calibration of the light trap based imaging system.

(a) Small dot-shaped markers are placed near each corner of each

mirror. (b) Point cloud patches that correspond to each of the

markers on the mirrors. (c) A cube reconstruction with initial mir-

ror parameters. (d) Cube reconstruction using LM optimization.
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Figure 7: (a) Point p is illuminated by the direct ray from p0 to p

(denoted as solid red arrows). It is also illuminated by several in-

direct rays (denoted as dashed red double arrows) that travel from

p to all mirrors from which p can be seen and back to p. These

indirect rays result in longer path lengths back to the sensor. In

case of continuous-wave ToF sensors, longer path lengths result

in erroneous phase-shift and hence incorrect depth measured. (b)

Pulsed ToF sensors consider only the first impulse (shortest path

back to the sensor), thus mitigate the effect of interreflections.

5.4. Dealing with Multi­path Interference

Since rays bounce multiple times inside the trap, a scene

point may be reached multiple times by a single emitted

light ray from direct and indirect paths, as shown in Figure

Continuous-wave ToF Pulsed ToF

Figure 8: Comparison between continuous-wave ToF and

pulsed ToF for a cube. (Top row) complete reconstructions of

a cube. (Bottom row) The top and bottom surfaces of the cube. In

the continuous-wave reconstruction result, the bottom surface of

the cube is pushed in and curved upward due to multipath inter-

ference. Pulsed ToF sensor mitigates the errors due to multipath

interference, and produces accurate reconstructions.

7. This is similar to multi-path interference problem in ToF

imaging, where an object is illuminated not only directly by

the light source, but also indirectly by other scene points.

This results in multiple light paths from the sensor to

the same scene point, each with a different length. For

continuous-wave ToF sensors, the estimated path length

(computed from the phase-shift between the received wave-

form and the emitted waveform) is the linear combination of

all the path lengths, which is different from the true length.

This results in erroneous phase-shift, and hence, incorrect

depths [9]. Pulsed ToF sensors, on the other hand, mitigate

this problem by considering only the first impulse of the

returning signal. Since the direct light path has the short-

est distance back to the sensor, it always corresponds to the

first returning pulse; other paths are longer, and thus, corre-

spond to larger travel times, as shown in Figure 7b. In or-

der to demonstrate the robustness of a pulsed ToF sensor to

multi-path interference, we compared its performance with

a continuous-wave ToF scanner (Faro x330). Comparison

results between the continuous-wave and pulsed ToF sensor

are shown and discussed in Section 6.
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Scene ToF Sensor View Raw Depth Map Surround Light Trap 3D Reconstructions

Figure 9: Dense, surround 3D reconstructions using the light trap based imaging system. In each row, we show, from the left to right,

(1) a photo of the scanned object, (2) ToF camera view, (3) “raw” depth map recovered by the ToF camera, (4-5) two different perspective

views of the reconstructed object.
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Continuous

-wave ToF

(FARO x330)

Top

Thickness (mm)

Bottom

Thickness (mm)

Max. 3.01775 Max. 8.26323

Avg. 0.421061 Avg. 1.89455

Sigma 0.397341 Sigma 1.47339

Pulsed

ToF

(Leica P40)

Top

Thickness (mm)

Bottom

Thickness (mm)

Max. 1.33144 Max. 3.80526

Avg. 0.225517 Avg. 0.861381

Sigma 0.316642 Sigma 0.669976

Table 1: Comparison between continuous-wave ToF and

pulsed ToF sensors.

6. Experimental Results

Continuous-wave vs Pulsed ToF: In Section 5.4, we

discussed how the multi-path problem influences the

continuous-wave ToF and pulsed ToF differently. To inves-

tigate this, we performed a comparison for a cube, using

our pulsed ToF scanner, and a continuous-wave ToF scan-

ner. The comparison result is shown in Figure 8.

In the continuous-wave reconstruction result, the bottom

surface of the cube is pushed in and curved upward, as com-

pared with the result from the pulsed ToF. For quantitative

comparisons, we extracted the top and bottom surfaces from

the reconstructed results for both scanners and measured, as

shown in Table 1. The quantitative results confirm the con-

clusion discussed in Section 5.4 that if a scene point can be

seen by multiple reflections of itself, its depth is estimated

incorrectly with a continuous-wave scanner. On the other

hand, pulsed ToF scanner significantly mitigates the multi-

path problem, and recovers accurate reconstructions.

3D Reconstruction of geometrically complex objects:

Figure 9 shows examples of several objects scanned us-

ing our hardware prototype. Consider the lion and wooden

truck results in Figure 9. Both are highly complex objects

with severe self occlusions (i.e., the joint between the truck

arm and truck body) and strong cavities (i.e., the abdomen

region of the lion), which are difficult to reconstruct via

conventional methods. However, since the proposed imag-

ing system results in dense coverage of each scene point

from multiple directions, the quality of 3D shape recovery

of highly complex objects is ensured.

7. Trade-offs and Limitations

Scan time: One practical limitation of the proposed ap-

proach is the scan time. While it is possible to build a large

light trap to accommodate large-scale objects such as hu-

man bodies, the minute-long scan time makes it difficult to

capture dynamic human body motions. This limitation may

be resolved by using a full-frame flash ToF camera.

Achievable Spatial Resolution: Theoretically, the resolu-

tion (total number of 3D points) achieved by the light-trap is

equal to the number of rays emitted by the 3D sensor. How-

ever, in practice, only a fraction of the rays reach the surface

of the scanned object and return to the sensor, thus lower-

ing the effective resolution. The fraction depends on several

factors, including the shape of the object and the trap, as

well as their relative sizes. For example, only 16.6935% of

the rays return back to the sensor in the 4× 4× 4 lattice of

spheres (Figure 2), and 19.8339% for the bunny (Figure 3).

Therefore, in contrast to the conventional methods in which

100% of the emitted rays return to the camera, the resolu-

tion of the proposed approach is object- and trap-dependent.

One of the advantages of the proposed approach is that

multiple light rays can reach the same position from dif-

ferent directions, thus increasing the probability of reach-

ing difficult-to-reach areas, such as cavities. However, for

simple objects, this feature can lower the overall resolution

since multiple rays may reach the same scene point, result-

ing in repeated and redundant measurements.

Effect of BRDF on Reconstruction: The proposed ap-

proach requires a relatively strong retro-reflective compo-

nent in the object BRDF. This requirement is similar as

other active 3D imaging methods (e.g., structured light,

ToF), where the sensor and source are located in close prox-

imity. However, due to the extra interreflections of the mir-

ror trap, this problem may be amplified in the proposed ap-

proach because of the possibility of ‘indirect’ returns that

are stronger than the first (direct) return, especially for spec-

ular objects.

8. Conclusion and Future Works

Scanning vs. full-frame flash sensors: Our current setup

uses a scanning based pulsed ToF sensor which emits one

light ray at a time. A next step is to apply the proposed

concept to full-frame flash ToF cameras that can capture

3D depth maps of scenes at high speeds, without requiring

mechanical scanning. With full-frame flash ToF sensors,

multiple light rays can simultaneously enter the light trap,

potentially leading to depth ambiguities due to multi-path

interference. Resolving these ambiguities will aid surround

3D reconstructions of dynamic objects, and forms a promis-

ing avenue of future work.

Optimality of the trap shape: Although we demonstrated

via simulations that the pyramidal trap achieves near 100%

coverage for several objects, it is not provably optimal in

terms of coverage. Developing a better theoretical under-

standing and deriving formal proofs towards the optimality

of a particular trap shape, and designing traps which yield

better coverage, is a promising future research direction.
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mann, H.-P. Seidel, and I. Ihrke. A reconfigurable camera

add-on for high dynamic range, multi-spectral, polarization,

and light-field imaging. ACM Transactions on Graphics,

32(4):47:1–47:14, July 2013. 2

[22] H. Mitsumoto, S. Tamura, K. Okazaki, N. Kajimi, and

Y. Fukui. 3-d reconstruction using mirror images based on a

plane symmetry recovering method. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 14(9):941–946,

1992. 2

[23] D. W. Murray and P. A. Beardsley. Range recovery using

virtual multi-camera stereo. Computer Vision and Image Un-

derstanding, 61(2):285–291, 1995. 2

[24] J. M. Payne. An optical distance measuring instrument. Re-

view of Scientific Instruments, 44:304–306, 03 1973. 2

[25] I. Reshetouski, A. Manakov, H.-P. Seidel, and I. Ihrke.

Three-dimensional kaleidoscopic imaging. In Proceedings

of 2011 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 353–360, 2011. 1, 2

[26] D. Shark and T. Townsend. Matter and Form. https://

matterandform.net/scanner. [Online; accessed 11-

November-2017]. 1, 2

[27] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez,

A. Barth, A. Adams, M. Horowitz, and M. Levoy. High per-

formance imaging using large camera arrays. ACM Transac-

tions on Graphics, 24(3):765–776, 2005. 1

[28] X. Ying, K. Peng, R. Ren, and H. Zha. Geometric properties

of multiple reflections in catadioptric camera with two pla-

nar mirrors. In Proceedings of 2010 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition,

pages 1–8, 2010. 2

6227

http://www.nextengine.com
https://matterandform.net/scanner
https://matterandform.net/scanner

