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Abstract

A prominent property of natural images is that groups of

similar patches within them tend to lie on low-dimensional

subspaces. This property has been previously used for

image denoising, with particularly notable success via

weighted nuclear norm minimization (WNNM). In this pa-

per, we extend the WNNM method into a general image re-

storation algorithm, capable of handling arbitrary degrada-

tions (e.g. blur, missing pixels, etc.). Our approach is based

on a novel regularization term which simultaneously pena-

lizes for high weighted nuclear norm values of all the patch

groups in the image. Our regularizer is isolated from the

data-term, thus enabling convenient treatment of arbitrary

degradations. Furthermore, it exploits the fractal property

of natural images, by accounting for patch similarities also

across different scales of the image. We propose a variable

splitting method for solving the resulting optimization pro-

blem. This leads to an algorithm that is quite different from

“plug-and-play” techniques, which solve image-restoration

problems using a sequence of denoising steps. As we ve-

rify through extensive experiments, our algorithm achieves

state of the art results in deblurring and inpainting, outper-

forming even the recent deep net based methods.

1. Introduction

Removing undesired degradations from images (e.g.

blur, noise, missing parts) is important in a wide range of

applications, and also serves as an ideal test bed for natural

image statistics models. In recent years, this field is seeing

a paradigm shift, as discriminative methods based on con-

volutional neural nets (CNNs) [7, 48, 49, 15, 44, 27, 14, 13,

30, 37, 29] push aside generative and regularization-based

algorithms [12, 18, 19, 52, 39, 16, 31, 40, 36, 35]. However,

while direct end-to-end training of a CNN is particularly

suitable for image denoising, it is not equally practical for

all image restoration tasks. For example, in deblurring or

inpaining one would need to train a different net for every

possible blur kernel or missing pixels mask. Recent works

suggested to overcome this limitation by using iterative al-

Input EPLL  25.63 [dB] GSR  27.60 [dB]

Ground-Truth FoE  23.04 [dB] Our  27.87 [dB]

Figure 1. Inpainting with 75% missing pixels. Our algorithm

handles arbitrary degradations within a single simple framework.

It relies on a novel regularization term which encourages simi-

lar patches within and across scales of the image to lie on low-

dimensional subspaces. This leads to state-of-the-art results in

tasks like inpainting and deblurring. Note how our algorithm pro-

duces a naturally looking reconstruction with sharp edges and no

distracting artifacts. This is also supported by the high PSNR va-

lues it attains w.r.t. competing approaches.

gorithms, which involve a denoising operation in each step

[42, 38], thus requiring training only a denoising net [49].

Yet, this “plug-and-play” approach does not directly target

the minimization of the mean-square error (MSE) through

end-to-end training, and thus does not exploit the full power

of discriminative methods.

In this work, we demonstrate that a simple regulariza-

tion based algorithm can achieve state-of-the-art results in

image restoration, improving over all existing methods by a

significant margin (including those based on CNNs). Fi-

gure 1 shows an example result of our algorithm in the

task of inpainting. We join together under a single frame-

work several features, which have been previously shown

to be very effective. First, we rely on the tendency of

small patches to recur abundantly within natural images

[6, 17, 12, 50, 45]. More specifically, we use the fact groups

of similar patches typically span low-dimensional subspa-
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ces [19, 31, 41, 8, 10, 9, 20, 28]. We do this by adopting the

weighted nuclear norm minimization (WNNM) framework

of [24], which has been shown to lead to excellent results

in image denoising. Second, we use the fact that small pa-

tches tend to recur not only within the same scale but also

across different scales in natural images [22, 50]. This phe-

nomenon has been successfully used for super-resolution

[22, 21, 25] and for blur kernel estimation [33, 32]. Las-

tly, rather than formulating an independent reconstruction

problem for each patch group, as in [24], we propose a re-

gularization term that takes into account all the patch groups

simultaneously, by using the expected patch log-likelihood

(EPLL) approach of [52]. This allows us to isolate the re-

gularizer from the data term, thus enabling convenient tre-

atment of arbitrary degradations (e.g. noise, blur, down-

sampling) by a single algorithm.

To solve our optimization problem, we propose a unique

variable splitting approach. The resulting algorithm turns

out to be quite different from plug-and-play techniques, as it

does not involve explicit steps of denoising. The differences

are also confirmed in experiments, where we show that our

method achieves state-of-the-art results in deblurring and

inpainting. An important conclusion from our work, is that

regularization-based approaches are still relevant for image

restoration, even in the era of deep-nets.

2. Related work

Internal patch-based methods Many image restoration

algorithms exploit the tendency of small patches to repeat

within natural images. Since its first successful use in image

denoising [6], many methods relied on refined versions of

this property, taking into account also small variations be-

tween recurring patches [12, 19, 18, 47, 31, 17, 45, 46].

In the context of image denoising, a particularly effective

approach is the WNNM algorithm [24, 23, 43], which en-

courages groups of similar patches to form low-rank ma-

trices. However, similarly to many other patch-based met-

hods, the WNNM algorithm processes each group of pat-

ches independently while averaging the denoised overlap-

ping patches. Therefore, it cannot be trivially extended to

treat spatial degradations, like blur, where each patch is also

affected by its surrounding environment.

From patches to whole images To extend the WNNM

technique to arbitrary degradations, we formulate an opti-

mization problem with a data-term and a prior-term, which

both apply to the whole image rather than to independent

patches. For our prior term, we follow the successful EPLL

method [52] for combining single-patch models into whole

image priors. The formalism underlying this method has

been given various interpretations [26]. The original EPLL

approach was used with parametric (Gaussian mixture) mo-

dels. Later, it has also been applied with nonparametric pa-

tch recurrence models [33]. Here, we apply the approach

with patch groups rather than with single patches. This le-

ads to a complex model which captures long-range depen-

dencies, as each patch can participate in several different

groups.

Cross-scale patch recurrence Small patterns recur not

only within the same scale, but also across different sca-

les of the image [22, 50]. This property has been shown

very effective for image compression [3], super-resolution

[22, 21, 25], deblurring [2], blind super-resolution [32],

blind deblurring [33], and denoising [51]. Here, we exploit

this phenomenon in our regularizer, allowing us to boost the

performance in any image restoration task within a single

framework.

Image restoration by denoising Recently, it has been

shown that image restoration problems can be solved using

a sequence of denoising operations [42, 38, 5, 49]. The key

idea is that objectives comprising a data term and a prior (re-

gularization) term, can be solved iteratively using variable

splitting techniques like half quadratic splitting (HQS) and

alternating direction method of multipliers (ADMM). Each

iteration then involves a sub-problem that can be interpre-

ted as a (regularization-based) denoising step. This obser-

vation has motivated researchers to plug-in state-of-the-art

denoisers, e.g. based on CNNs [49], in order to obtain high

quality image restoration results. It should be noted, howe-

ver, that this formulation does not guarantee that the bet-

ter the denoiser’s performance, the better the performance

of the entire plug-and-play prior (PPP) scheme. Indeed, as

we demonstrate experimentally, our algorithm outperforms

PPP with a CNN denoiser [49] as well as the regularization-

by-denoising (RED) approach of [38] with the TNRD [11]

denoiser. This is despite the fact that those denoisers out-

perform the WNNM denoiser, upon which we rely. Furt-

hermore, we also outperform RED with a WNNM denoiser,

indicating that plug-and-play formulations do not necessa-

rily make best use of the prior underlying their denoiser.

3. Problem formulation

Our goal is to recover an image x from its degraded ver-

sion

y = Hx+ n, (1)

where n is noise and H is some known matrix. This formu-

lation can account for many types of degradations, inclu-

ding blur (uniform or nonuniform), missing pixels, down-

sampling, etc. In most cases of interest, this inverse pro-

blem is severely ill-posed. Thus, any attempt to provide an

accurate estimate of x must rely on some prior knowledge

regarding the typical behavior of natural images.

3166



In this work, we rely on the property that groups of si-

milar patches tend to span low-dimensional subspaces [24].

Specifically, let xi be some
√
m×√

m patch in the image x,

and let Xi be the m×k matrix whose columns contain the k
nearest neighbor patches of xi (stacked as column vectors)

within some search window around xi. Then, as shown

in [24], any such constructed Xi is usually very close to

be a low-rank matrix. Namely, only a few of its singular

values {σℓ(Xi)} are large, while the rest are close to zero.

This property has been exploited in [24] for image denoi-

sing, i.e. where H is the identity matrix. The WNNM met-

hod operates on each patch-group independently and then

averages the results obtained for overlapping patches. The

denoised version of the patch-group Yi, is obtained as the

solution to

min
Xi

1

2σ2
n

‖Yi −Xi‖2F + ‖Xi‖w,∗, (2)

where σ2
n is the variance of the noise (assumed white and

Gaussian), and ‖Xi‖w,∗ is the weighted nuclear norm of

Xi, defined as
∑

ℓ wℓσℓ(Xi) for some set of non-negative

weights {wℓ}. This term promotes solutions with few non-

zero singular values. As shown in [24], assuming the singu-

lar values are ordered from large to small and the weights

are non-descending, the solution of (2) is given by

X̂i = USw(Σ)V
T , (3)

where Yi = UΣV T is the SVD of Yi, and Sw(Σ) is a gene-

ralized soft-thresholding operator that shrinks the values on

the diagonal of Σ as

[Sw(Σ)]ℓℓ = max(Σℓℓ − 2σ2

nwℓ, 0). (4)

It was specifically proposed in [24] to penalize the small

singular values more than the large ones. This can be done

in an iterative fashion, where in each iteration the weights

are taken to be inversely proportional to the singular values

of the solution from the previous iteration. In [23], it was

shown that this iterative procedure possesses a closed form

solution, which we adopt in our algorithm as well.

Extending the WNNM method to handle the general

image restoration problem (1) involves several challenges.

First, when the degradation H is spatial (e.g. blur), each pa-

tch in y is also affected by pixels outside the corresponding

patch in x. Therefore, it is sub-optimal to work on each

patch-group independently. Second, the low-rank pheno-

menon is a property of x. However in WNNM, the nearest

neighbors are determined based on the noisy image y (as

there is no access to x). While this may be a good approxi-

mation in the case of denoising, it may be highly inaccurate

when y is a blurry version of x, especially when the blur is

not isotropic.

To overcome those limitations, we propose to construct

a single cost function for the entire image x. Specifically,

we would like to find an image x such that: (i) all its patch

groups satisfy the low-rank assumption, and (ii) it conforms

to the measured degraded image y. To this end, we suggest

the objective

min
x

1

2σ2
n

‖Hx− y‖2 + λ
∑

i∈Ω

‖Xms
i ‖w,∗, (5)

where Ω is the set of all patch indices in the image, and Xms
i

is a matrix whose columns contain the k nearest neighbor

patches of the patch xi from both the input image and its

coarser scaled-down versions (‘ms’ stands for multi-scale).

The parameter λ weighs the contribution of the prior term

w.r.t. the data term (and is not a function of σ).

Note that since both the data term and the prior term

are functions of the whole image x, we can treat arbitrary

spatial degradations. Furthermore, our prior term expli-

citly takes into account all overlapping patches in the image

through an EPLL-like formulation [52] (note that each pa-

tch can be a member of several groups). This is in contrast

to the WNNM denoiser which simply averages inconsistent

estimates of overlapping patches. Our prior also exploits

recurrence of patches across scales, which as we show, pro-

vides a significant boost of performance.

4. Algorithm

To simplify the exposition, we first discuss the single-

scale case, i.e. when scaled-down versions of x are not used.

Let Ni denote the set of indices of the k nearest neighbor

patches of xi (the indices of the patches comprising Xms
i ).

Note that both the patch groups {Xms
i } and the index sets

{Ni} are functions of the unknown image x. We therefore

alternate between updating the index sets {Ni} based on the

current x (using a nearest-neighbor search for each patch),

and updating the image x with the current nearest-neighbor

groups.

To update the image x, we use HQS, but with two types

of auxiliary variables instead of one. Specifically, we as-

sociate an auxiliary image z with the image x, and also an

auxiliary matrix Zi with each of the patch groups Xms
i . We

then aim at solving the optimization problem

min
x,z,{Zi}

1

2σ2
n

‖Hx− y‖2 + λ
∑

i∈Ω

‖Zi‖ω,∗

+
µ1

2
‖z − x‖2 + µ2

2

∑

i∈Ω

‖Zi −Ri{z}‖2F, (6)

where Ri is the operator which extracts the patch group as-

sociated with patch xi. Note that as µ1 and µ2 become lar-

ger, z approaches x, and each Zi approaches Ri{z}, which

approaches Ri{x}. Therefore, the solution of (6) appro-

aches that of (5). The idea in HQS is to start with small

values for µ1 and µ2, and gradually increase them while
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updating x, z and {Zi}. Specifically, as summarized in Al-

gorithm 1, we repeatedly apply the steps:

1. solve for {Zi}, while keeping x and z fixed,

2. solve for z, while keeping x and {Zi} fixed,

3. solve for x, while keeping z and {Zi} fixed,

4. increase µ1 and µ2,

until µ1 and µ2 reach certain predetermined high values.

Updating {Zi} Retaining only the terms that depend on

the patch group Zi in (6), we obtain the optimization pro-

blem

min
Zi

µ2

2λ
‖Zi −Ri{z}‖2F + ‖Zi‖w,∗, (7)

where we divided all terms by λ. This problem is the same

as (2), so that its solution is as in (3) and (4), with Zi instead

of Xi, Ri{z} instead of Yi, and λ/µ2 instead of σ2
n. This

step is in fact a denoising of the patch groups in z. However,

in contrast to PPP techniques, here each group is processed

independently, without constructing a whole image.

Updating z Retaining only the terms that depend on z
in (6), we obtain the objective

min
z

µ1

2
‖z − x‖2 + µ2

2

∑

i∈Ω

‖Zi −Ri{z}‖2F. (8)

This is a quadratic program in z (note that Ri is a linear ope-

rator). Let Zj
i denote the jth column in the matrix Zi (i.e.

the jth patch in the ith group), let N j
i denote the index of

where this patch belongs in the image, and let R
N

j

i

denote

the matrix which extracts this patch from the image. Then,

as we show in the Supplementary Material, the solution to

(8) is given by

z =(µ1I + µ2W )
−1

(µ1x+ µ2z̃) , (9)

where I is the identity matrix, W is the diagonal matrix

W =
∑

i∈Ω

k
∑

j=1

RT

N
j

i

R
N

j

i

, (10)

and z̃ is the image

z̃ =
∑

i∈Ω

k
∑

j=1

RT

N
j

i

Zj
i . (11)

This expression has a simple interpretation. The matrix RT
ℓ

takes a patch and places it in the ℓth location in the image.

Therefore, the image z̃ is constructed by taking each patch

from each of the groups {Zi} and putting it in its place in the

Algorithm 1 Image Restoration

1: Set x = y
2: while stopping criterion not satisfied do

3: Update nearest neighbor index groups {Ni}
4: Set z = x, initialize µ1, µ2 to small values

5: while stopping criterion not satisfied do

6: Update {Zi} according to (7) using (3),(4)

7: Update z using (9)-(11)

8: Update x using (13)

9: Increase µ1 and µ2

10: end while

11: end while

12: return x ⊲ The restored image is x

image, while accumulating the contributions from overlap-

ping patches. Similarly, the matrix W corresponds to a map

storing the accumulated number of overlaps in each pixel.

Note that this step does not construct a denoised version of

z by averaging the denoised patch groups {Zi} (that option

would correspond to W−1z̃). Rather, it directly merges the

denoised patch groups with x.

Updating x Retaining only the terms that depend on x
in (6), we get the problem

min
x

1

2σ2
n

‖Hx− y‖2 + µ1

2
‖z − x‖2. (12)

This is a simple quadratic program whose solution is

x =

(

1

σ2
n

HTH + µ1I

)−1 (

1

σ2
HT y + µ1z

)

. (13)

When H is a diagonal matrix, as in inpaining, this step cor-

responds to a per-pixel weighted average between y and z.

When H is a convolution operator, as in deblurring, this ex-

pression can be efficiently calculated in the Fourier domain.

4.1. Extension to multi­scale

The algorithm described above can be easily extended to

the multi-scale case. In this setting, each patch in x sear-

ches for nearest neighbors both within the image and within

its scaled-down version. Therefore, in each patch group, ty-

pically some of the patches are from the original scale and

some from the coarser scales. This has an effect when up-

dating the patch groups {Zi} according to Eq. (7). In parti-

cular, the presence of patches from the coarser scale (which

are less blurry and less noisy), typically improves the de-

noising of the patches from the original scale.

In principle, the update of z should also be affected by

the multi-scale formulation. Specifically, if ℓ is the index

of a patch from a coarse scale of the image, then the asso-

ciated matrix Rℓ appearing in (10) and (11) performs both
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Input EPLL  39.21 [dB] IDD-BM3D  39.27 [dB] NCSR  39.06 [dB]

RED-TNRD  38.88 [dB] IRCNN  39.33 [dB] Our  40.46 [dB] Ground-Truth

Figure 2. Visual comparison of deblurring algorithms. A crop from a degraded input image from the BSD dataset is shown on the top

left. It suffers from Gaussian blur with standard deviation 1.6 and additive noise with σn = 2. As can be seen, while all state-of-the-art

deblurring methods produce artifacts in the reconstruction, our algorithm produces sharp results without annoying distortions. Its precision

is also confirmed by the very high PSNR it attaines w.r.t. the other methods.

down-sampling and patch extraction. Similarly, the matrix

RT
ℓ takes a patch, performs up-sampling, and places it in its

location in the image (which now has a larger support). Ho-

wever, we found that ignoring the coarse-scale patches du-

ring the z-update step still leads to excellent performance,

while reducing computations. Therefore, in our implemen-

tation we use the coarse scale patches only in (7).

5. Experimental results

We study the effectiveness of our method in non-blind

deblurring and in inpainting, which are two cases where dis-

criminative methods cannot be trained end-to-end. In both

applications we use 6×6 patches at a stride of 2 pixels, and

k = 70 nearest neighbors for each patch. By default, we use

scales 1 and 0.75, with a search window of 30× 30 around

each patch in both scales (see analysis of the effect of multi-

scale in Sec. 5.3). We perform 5 HQS iterations, where we

initialize µ1 = 1.5× 10−3, µ2 = 10−3 and increment them

by factors of 2 and 1.5, respectively.

To conform to the comparisons in previous works, we

report results on gray-scale images. However, our algorithm

can restore color images as well (see e.g. Fig. 1). This is

done by converting the image to the YCbCr color-space and

applying the restoration algorithm only on the luminance

channel. In deblurring, we do not process the chrominance

channels. In inpaining, we use simple interpolation to fill

in the missing pixels in the chrominance channels. We then

convert the result back to the RGB domain.

5.1. Deblurring

We compare to two state-of-the-art “restoration by de-

noising” approaches (see Sec. 2): IRCNN [49] which uses

a CNN denoiser, and RED [38] with TNRD [11] as the de-

noising engine. We also compare to the more classic IDD-

BM3D [12], NCSR [18] and EPLL [52] methods. To be

consistent with previous works, we follow the non-blind de-

blurring experiments conducted in [18] and [38] (as well as

in other papers). Namely, we study two blur kernels and two

Gaussian noise levels. For the blur, we use a uniform 9× 9
kernel and a Gaussian 25×25 kernel with standard deviation

1.6. For the noise, we use σn =
√
2 and σn = 2. We always

run our algorithm for 300 iterations and use λ = 0.01.

Figure 2 shows an example result of our algorithm in the

setting of Gaussian blur and noise level σn = 2. As can be

seen, our approach produces reconstructions that are sub-

stantially better than the competing methods, both visually

and in terms of PSNR.

For our quantitative analysis, we begin with two popular

small-scale datasets: Set5 from [4], and the 10 test images

from the NCSR paper [18] (see Fig. 3). Table 1 summarizes

the PSNR results for each of the images in Set5. As can be

seen, our algorithm significantly outperforms the competi-

tors on the vast majority of the images with all four combi-

nations of blur and noise settings. A similar behavior can be

seen in Table 2, which shows the average PSNR results on

the NCSR dataset (the results for the individual images can

be found in the Supplementary). In both datasets, the PSNR

of our algorithm is higher by 0.18dB on average than the se-

cond best method, which is IRCNN.

Next, we perform a comparison on the larger-scale
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Figure 3. The Set5 dataset from [4] (left) and the NCSR dataset from [18] (right) used in our evaluations.

Gaussian blur,

σn =
√
2

Image Input EPLL IDD-BM3D NCSR RED+TNRD IRCNN Our

Baby 30.10 35.06 35.01 34.47 34.73 34.83 35.21

Bird 28.81 36.20 36.75 35.44 35.88 36.64 36.56

Butterfly 21.48 28.46 29.28 28.77 29.63 29.96 30.20

Head 28.93 32.88 32.94 32.64 32.76 32.68 33.01

Woman 25.88 31.85 32.40 31.94 32.13 32.36 32.71

Average 27.03 32.89 33.27 32.65 33.031 33.30 33.54

Gaussian blur,
σn = 2

Baby 29.96 34.56 34.57 34.60 34.29 34.43 34.74

Bird 28.71 35.39 36.04 35.79 35.34 36.01 35.70

Butterfly 21.46 27.86 28.77 28.70 29.06 29.49 29.73

Head 28.83 32.58 32.62 32.62 32.46 32.45 32.70

Woman 25.83 31.29 31.92 31.82 31.62 31.89 32.23

Average 26.95 32.33 32.78 32.70 32.56 32.85 33.02

Uniform blur,

σn =
√
2

Baby 26.31 32.76 32.98 32.81 32.91 32.85 33.14

Bird 24.64 32.49 33.56 33.32 33.70 33.90 34.14

Butterfly 17.74 26.03 27.77 27.90 28.60 28.93 28.83

Head 26.16 31.37 31.65 31.55 31.74 31.74 31.81

Woman 22.14 29.05 30.49 30.68 30.49 31.08 31.23

Average 23.39 30.34 31.29 31.25 31.49 31.70 31.83

Uniform blur,
σn = 2

Baby 26.25 32.10 32.36 32.43 32.32 32.22 32.54

Bird 24.60 31.60 32.64 32.86 32.75 32.95 33.24

Butterfly 17.74 24.91 26.83 27.31 27.41 28.05 27.98

Head 26.10 30.93 31.24 31.28 31.38 31.39 31.41

Woman 22.11 28.06 29.51 30.07 29.57 30.24 30.47

Average 23.36 29.53 30.52 30.79 30.69 30.97 31.13

Table 1. Deblurring comparison on Set5. Our method is compared to the state-of-the-art deblurring methods on Set5 [4] with four

different degradations. The best results are shown in bold.

BSD100 dataset [1]. In this case, to accelerate our method’s

convergence, we initialize it with the fast IRCNN method

and then run it for only 5 iterations (see Sec. 5.4 for an ana-

lysis of the effect of this approach). As can be seen in Ta-

ble 3, again our method outperforms the second best met-

hod by 0.18dB on average. Furthermore, it attains the best

PSNR among all methods on 97% of the images.

5.2. Inpainting

In the task of inpainting, we compare our method to the

state-of-the-art algorithms GSR [47], LINC [34], FoE [39]

and EPLL [52]. We use Set5 and Set NCSR with 25%, 50%
and 75% missing pixels. The LINC method failed to ope-

rate with 75% missing pixels, and so was not evaluated for

this setting. Here, we set λ = 0.015, and use 200, 300 and

400 iterations for the settings of 25%, 50% and 75% blank

pixels, respectively. In general, the stronger the degradation

the more iterations our algorithm requires to converge.

Figure 4 shows a visual comparison of the inpainging re-

sults produced by EPLL, FoE, GSR and our algorithm for

75% missing pixels. As can be seen, our reconstruction is

sharp and does not suffer from artifacts. The GSR recon-

struction is the only one which is visually similar to ours,

albeit suffering from a few mild distortions. This method is

also based on the low-rank property of patch groups, which

provides further support to the effectiveness of this model

for image restoration.

The results on Set5 and Set NCSR are summarized in

Tables 4 and 5, respectively. As can be seen, our method

outperforms all other methods. The only method that so-

metimes comes within 0.1[dB] to ours, is the GSR algo-

rithm. This confirms again that the internal low-rank prior

(exploited by both GSR and our algorithm) can provide a

strong cue for image reconstruction. More comparisons and

details are available in the Supplementary Material.
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Input EPLL IDD-BM3D NCSR RED+TNRD IRCNN Our

Gaussian blur, σn =
√
2 24.65 29.83 30.45 30.37 30.53 30.76 31.06

Gaussian blur, σn = 2 24.61 29.26 29.88 30.07 29.92 30.22 30.38

Uniform blur, σn =
√
2 21.47 28.34 29.63 29.73 29.76 30.10 30.22

Uniform blur, σn = 2 21.45 27.43 28.74 29.04 28.84 29.21 29.34

Table 2. Deblurring comparison on Set NCSR. Our method is compared to the state-of-the-art deblurring methods on Set NCSR [18].

The average PSNR [dB] is reported for four different degradations. The best results are shown in bold. Results on the individual images in

this set can be found in the Supplementary Material.

Input EPLL IDD-BM3D NCSR RED+TNRD IRCNN Our

Gaussian blur σn =
√
2 25.13 28.56 28.81 28.71 28.90 28.98 29.18

Gaussian blur σn = 2 25.07 28.12 28.39 28.48 28.50 28.58 28.75

Uniform blur σn =
√
2 22.66 27.42 27.93 28.05 28.10 28.25 28.43

Uniform blur σn = 2 22.62 26.74 27.25 27.48 27.44 27.57 27.74

Table 3. Deblurring comparison on BSD100. Our method is compared to the state-of-the-art deblurring methods on Set BSD100 [1]. The

average PSNR [dB] is reported for four different corruptions. The best average results are shown in bold. In this experiment we initialized

our algorithm with IRCNN and ran it for only 5 iterations (see Sec. 5.4).

5.3. The contribution of multiple scales

There are two key features, which contribute to the

success of our algorithm. The first is the use of a cohe-

rent formulation that takes into account all patches in the

image. The second is the use of patches from multiple sca-

les of the image. To study the contribution of each of these

two properties, we report in Table 6 the deblurring results of

the RED algorithm with WNNM as its denoising engine, as

well as the results attained by our algorithm with and wit-

hout using multiple scales. All comparisons are carried out

on Set5.

It can be seen that using multiple scales significantly im-

proves the results over the single-scale setting. This sup-

ports the observation reported in many previous works, that

the fractal property of natural images can provide a strong

cue for image restoration. We can also learn from the table

that even without using multiple scales, our method com-

monly outperforms RED-WNNM. Specifically, while for

Gaussian blur it is inferior by roughly 0.1dB, for uniform

blur it is superior by more than 0.3dB. This suggests that

our formulation makes better use of the low-rank prior in

natural images.

5.4. Accelerated convergence and run­time

A key limitation of our algorithm is that it takes hund-

reds of iterations to converge. Furthermore, each iteration

can take on the order of tens of seconds with brute-force ne-

arest neighbor search (depending on the image size, search

window, number of nearest neighbors, etc.). However, our

method can be accelerated if initialized with a reasonable

reconstruction. For example, in the context of deblurring,

combining our approach with the fast IRCNN [49] method,

leads to a significantly accelerated convergence. Figure 5

25%
blank
pixels

Image EPLL FoE GSR LINC Our

Baby 41.33 42.19 43.23 42.90 43.52

Bird 44.11 43.58 48.02 47.08 48.09

Butterfly 35.03 30.26 36.08 35.60 37.35

Head 38.27 37.09 38.59 38.69 38.56

Woman 40.09 37.27 41.62 40.74 41.71

Average 39.77 38.08 41.51 41.00 41.85

50%
blank
pixels

Baby 37.11 37.72 38.45 38.30 38.60

Bird 39.03 38.50 42.10 42.24 41.68

Butterfly 29.63 26.85 31.60 30.87 32.00

Head 34.88 34.23 35.12 35.16 34.94

Woman 34.46 33.10 36.49 35.86 36.60

Average 35.02 34.08 36.75 36.49 36.77

75%
blank
pixels

Baby 32.99 33.12 33.95 - 34.15

Bird 33.14 33.02 36.30 - 36.01

Butterfly 24.34 20.86 26.32 - 26.67

Head 31.85 31.39 32.13 - 32.09

Woman 28.61 27.81 30.90 - 31.05

Average 30.19 29.24 31.92 - 32.00

Table 4. Inpainting comparison on Set5. Our method is compa-

red to the state-of-the-art inpaining methods on Set5 [4] with three

different missing pixel ratios. The best results are shown in bold.

shows the progression of the PSNR along the iterations,

when using the default initialization x = y, and when using

IRCNN for initialization. As can be seen, IRCNN provides

a solution which is already quite close to to our final opti-

mum. Therefore, this allows running our algorithm for only

a small number of iterations to get to the same final PSNR.

Running our algorithm on 256×256 images using an In-

tel Xeon CPU with un-optimized Matlab code (no paralle-

lism or GPU used), each iterations takes about 1.1 minutes,

whereas the IRCNN method takes about 0.5 minute (again,
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Input EPLL  26.79 [dB] FoE  26.36 [dB] GSR  27.80 [dB] Our  28.15 [dB] Ground-Truth

Figure 4. Visual comparison of inpaining algorithms. An input image with 75% missing pixels (left) was inpainted using several state-

of-the-art methods. As can be seen, our algorithm and GSR, which both rely on the internal low-rank property of patch groups, produce

the best visual results. However, our reconstruction suffers from less artifacts than GSR.

EPLL FoE GSR LINC Our

25% blank 38.59 34.75 40.55 39.90 41.29

50% blank 33.19 31.28 35.44 34.94 35.77

75% blank 27.84 26.18 30.01 - 30.06

Table 5. Inpainting comparison on Set NCSR. Our method is

compared to the state-of-the-art inpainting methods on Set NCSR

[18]. The average PSNR [dB] is reported for three different mis-

sing pixel ratios. The best results are shown in bold. Results on the

individual images in this set can be found in the Supplementary.

Zoom

Figure 5. Progression of PSNR along the iterations in deblur-

ring. When using the initialization x = y (blue), our algorithm

requires hundreds of iterations to converge. However, initializing

x using the fast IRCNN method (green), allows running only a

small number of iterations to get to the same final PSNR.

no GPU). Table 7 shows a run-time comparison for the de-

blurring experiment of Table 2 (first row). Note that when

using IRCNN for initialization, our method attains a large

PSNR improvement over the state of the art already from

iteration 1 (96 seconds including the initialization).

6. Conclusion

We presented a method for image restoration, which ge-

neralizes the WNNM denoiser [24, 23] to treat arbitrary de-

gradations. Our method is based on a regularization term,

which is separate from the data term, thus allowing conve-

nient treatment of different degradations with a single algo-

rithm. This term simultaneously encourages all the groups

Input
RED

WNNM
Our

w/o MS
Our

w/ MS
Gaussian blur

σn =
√
2 27.04 33.27 33.17 33.54

Gaussian blur
σn = 2 26.96 32.78 32.65 33.02

Uniform blur

σn =
√
2 23.40 31.25 31.57 31.83

Uniform blur
σn = 2 23.36 30.38 30.79 31.13

Table 6. The effect of multiple scales. We compare deblurring

performance on Set5 for RED with WNNM as its denoising en-

gine, our method without multiple scales, and our method with

multiple scales (1 and 0.75).

Run-Time
[minutes]

PSNR
[dB]

EPLL 1 29.83

NCSR 2.5 30.37

IDD-BM3D 0.6 30.45

RED+TNRD 7 30.53

IRCNN 0.5 30.76

Our w/ IRCNN init. - 1 iteration 1.6 30.99

Our w/ IRCNN init. - 2 iterations 2.7 31.03

Our w/ naive init. - 300 iterations 330 31.06

Table 7. Run-Time and PSNR Comparison. Run-time and

PSNR comparison for the deblurring experiment of Table 2 (first

row). When initialized with IRCNN, our method significantly im-

proves over the state-of-the-art already from iteration 1.

of similar patches in the image to lie on low dimensional

subspaces. Moreover, it also takes into account repetitions

of patches across scales of the image, which substantially

improves the performance of our algorithm. We proposed

a unique variable splitting method for solving our optimi-

zation problem, and showed that the resulting algorithm is

quite different from existing plug-and-play approaches. We

demonstrated through extensive experiments, that our algo-

rithm leads to state-of-the-art deblurring and inpainting re-

sults, outperforming even methods based on CNNs.
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