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Abstract

Semantic image segmentation is a basic street scene un-

derstanding task in autonomous driving, where each pixel in

a high resolution image is categorized into a set of seman-

tic labels. Unlike other scenarios, objects in autonomous

driving scene exhibit very large scale changes, which poses

great challenges for high-level feature representation in a

sense that multi-scale information must be correctly en-

coded. To remedy this problem, atrous convolution[14] was

introduced to generate features with larger receptive fields

without sacrificing spatial resolution. Built upon atrous

convolution, Atrous Spatial Pyramid Pooling (ASPP)[2]

was proposed to concatenate multiple atrous-convolved fea-

tures using different dilation rates into a final feature rep-

resentation. Although ASPP is able to generate multi-scale

features, we argue the feature resolution in the scale-axis

is not dense enough for the autonomous driving scenario.

To this end, we propose Densely connected Atrous Spa-

tial Pyramid Pooling (DenseASPP), which connects a set

of atrous convolutional layers in a dense way, such that it

generates multi-scale features that not only cover a larger

scale range, but also cover that scale range densely, with-

out significantly increasing the model size. We evaluate

DenseASPP on the street scene benchmark Cityscapes[4]

and achieve state-of-the-art performance.

1. Introduction

With Fully Convolutional Network (FCN)[16], seman-

tic image segmentation has achieved promising results with

significantly improved feature representation. High level

semantic information plays a crucial role in achieving high

performance for a segmentation network. To extract high

level information, FCN uses multiple pooling layers to in-

crease the receptive field size of an output neuron. However,

increased number of pooling layers leads to reduced feature

map size, which poses serious challenges to up-sample the

segmentation output back to full resolution. On the other

hand, if we output the segmentation from an early layer with

larger resolution, we were not able to make use of higher

Figure 1. Illustration of challenging scale variations of street

scenes from Cityscapes [4]. In the first exemplar image, the same

category such as person varies largely in scale caused by distance

to the camera. The second exemplar image illustrates an even chal-

lenging case where a large bus is close while several small traffic

lights are far away.

level semantics for better reasoning.

Atrous convolution[14] is proposed to resolve the contra-

dictory requirements between larger feature map resolution

and larger receptive fields. An atrous kernel can be dilated

in varied rates by inserting zeros into appropriate positions

in the kernel mask. Compared to the traditional convolution

operator, atrous convolution is able to achieve a larger re-

ceptive field size without increasing the numbers of kernel

parameters. A feature map produced by an atrous convo-

lution can be as the same size as the input, but with each

output neuron possessing a larger receptive field, and there-

fore encoding higher level semantics.

Although atrous convolution solves the contradiction

between feature map resolution and receptive field size,

a method that simply generates a semantic mask from

atrous-convolved feature map still suffers from a limita-

tion. Specifically, all neurons in the atrous-convolved fea-

ture map share the same receptive field size, which means

the process of semantic mask generation only made use

of features from a single scale. However, experiences

[24, 2, 3] show that multi-scale information would help re-

solve ambiguous cases and results in more robust classifi-
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cation. To this end, ASPP[2, 3] proposed to concatenate

feature maps generated by atrous convolution with different

dilation rates, so that the neurons in the output feature map

contain multiple receptive field sizes, which encode multi-

scale info and eventually boost performance.

However, ASPP still suffers from another limitation.

Specifically, input images under the autonomous driving

scenarios are of high resolution, which requires neurons to

have even larger receptive field. To achieve a large enough

receptive field in ASPP, a large enough dilation ratio has to

be employed. However, as the dilation rate increases (e.g.

d > 24), the atrous convolution becomes more and more in-

effective and gradually loses it modeling power[3]. There-

fore, it is important to design a network structure that is

able to encode multi-scale information, and simultaneously

achieves a large enough receptive field size.

This motivates us to propose Dense Atrous Spatial Pyra-

mid Pooling (DenseASPP) to solve challenging scale vari-

ations in street scenes as illustrated in Fig. 1. DenseA-

SPP consists of a base network followed by a cascade of

atrous convolution layers. It uses dense connections to feed

the output of each atrous convolution layer to all unvisited

atrous convolution layers ahead, see Fig. 2. In DenseASPP,

each atrous convolution layer only makes use of atrous fil-

ters with reasonable dilation rate (d ≤ 24). By the series

of atrous convolutions, neurons at later layers obtain larger

and larger receptive field without suffering from the ker-

nel degradation issue in ASPP. And by the series of fea-

ture concatenations, neurons at each intermediate feature

map encode semantic information from multiple scales, and

different intermediate feature maps encode multi-scale in-

formation from different scale ranges. Therefore, the final

output feature map in DenseASPP not only covers seman-

tic information in a large scale range, but also covers that

range in a very dense manner, see Fig. 3. We evaluates

DenseASPP on Cityscapes datasets and achieves state-of-

the-art performance with an mean Intersection-over-Union

score of 80.6%.

To summarize, this paper makes two following contribu-

tions:

1. DenseASPP is able to generate features that covers

a very large scale range (in terms of receptive field

sizes).

2. The generated features of DenseASPP are able to cover

the above scale range in a very dense manner.

It is worth to note that the above two properties cannot be

simultaneously achieved by simply stacking atrous convo-

lutional layers in cascade or in parallel.

2. Related Work

Semantic image segmentation requires high-level fea-

tures to represent each pixel for semantic prediction, and

ConvNets become the backbone for high-level feature ex-

traction [10, 24, 14, 2, 3].

Since ConvNets are designed to do prediction at the

whole image level, multiple modifications are made for

pixel-level prediction. Fully convolutional network trans-

forms fully connected layers into convolution layers to en-

able a classification net to output a heat-map [16]. With

several down-sampling layers, resolution of high-level fea-

ture maps is with quite low resolution (typically 1/32 of the

input image), and bilinear up-sampling or deconvolution is

used to recover the resolution.

To compensate the low resolution of high-level features,

feature maps from middle or early layers are also used

by skip-connections [6, 1, 20]. Due the low-resolution is

caused by down-sampling layers, DeepLab [14] proposed to

remove last few max-pooling layers and reconfigure the net-

work use atrous convolution to reuse pre-trained weights.

Instead of adding atrous convolution layers to remove pool-

ing layers, more atrous convolution layers are stacked in

cascade to further increase the receptive field size [3] to

cover large objects and bring broad contexts.

In addition, multi-scale features is another important fac-

tor to segment objects are with various scales and ambigu-

ous pixels requiring diverse range of contextual informa-

tion. Following spatial pyramid matching [13], PSPNet [24]

and ASPP [2] are proposed to concatenate features of multi-

ple receptive field sizes together for final prediction, where

PSPNet employs four spatial pyramid pooling (downsam-

pling) layers in parallel to aggregate information from mul-

tiple receptive field sizes and assign to each pixel via up-

sampling. ASPP concatenates features from multiple atrous

convolution layers with different dilation rates arranged in

parallel. The proposed DenseASPP combines the advan-

tages of using atrous convolution layers in parallel and in

cascade, and generates features of more scales in a larger

range.

DenseASPP is named after DenseNet [8] which can be

viewed as a special case of DenseASPP by setting dilation

rate as 1. Thus, DenseASPP also shares the advantages of

DenseNet including alleviating gradient-vanishing problem

and substantially fewer parameters. In dilated DenseNet,

a concurrent work by Yee [23], the same idea is used for

cardiac MRI segmentation.

3. Dense Atrous Spatial Pyramid Pooling

In this section, we start with preliminary knowledges of

atrous convolution and atrous spatial pyramid pooling, then

introduce the proposed approach.

3.1. Atrous convolution and pyramid pooling

Atrous convolution is first introduced in [14] to increas-

ing receptive field while keeping the feature map resolution

unchanged. In one dimensional case, let y[i] denote output
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Figure 2. The structure of DenseASPP, (a) illustrate DenseASPP in detail, the output of each dilated convolutional layer is concatenated

with input feature map, and then feed into the next dilated layer. Each path of DenseASPP compose a feature representation of correspond

scale. (b) illustrate this structure in a more concrete version

signal and x[i] denote input signal, atrous convolution can

be formulated as follows:

y [i] =

K
∑

k=1

x [i+ d · k] · w [k] (1)

where d is the dilation rate, w[k] denotes the k-th parameter

of filter, and K is the filter size. This equation reduces to

a standard convolution when d = 1. Atrous convolution is

equivalent to convolving the input x with up-sampled filters

produced by inserting d − 1 zeros between two consecu-

tive filter values. Thus, a large dilation rate means a large

receptive field.

In street scene segmentation, objects usually have very

different sizes. To handle this case, the feature maps must

be able to cover different scales of receptive fields. For this

goal, DeepLabV3 [3] proposed two strategies, i.e. cascad-

ing and parallel of several atrous convolutional layers with

different dilation rates. In cascading mode, since a upper

atrous layer accepts output of a lower atrous layer, it can

efficiently produce large receptive fields. In parallel mode,

since multiple atrous layers accept the same input and their

outputs are concatenated together, the obtained output is in-

deed a sampling of the input with different scales of recep-

tive fields. The parallel mode is formally termed as ASPP,

which is an abbreviation of Atrous Spatial Pyramid Pooling

in [2].

To simplify notations, we use HK,d(x) to term an atrous

convolution, and consequently write ASPP as

y = H3,6 (x) +H3,12 (x) +H3,18 (x) +H3,24 (x) (2)

In this work, motivated by DenseNets [8], we further

push the boundaries of cascading and parallel strategies to

a novel architecture which is able to generate much more

densely scaled receptive fields than [3]. Experimental re-

sults on the Cityscapes[4] dataset demonstrated its effec-

tiveness.

3.2. Denser feature pyramid and larger receptive
field

The structure of DenseASPP is illustrated in Fig. 2(a).

The atrous convolutional layers are organized in a cascade

fashion, where the dilation rate of each layer increases layer

by layer. Layers with small dilation rates are put in the

lower part, while layers with large dilation rates are put in
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the upper part. The output of each atrous layer is concate-

nated with the input feature map and all the outputs from

lower layers, and the concatenated feature map is fed into

the following layer. The final output of DenseASPP is a

feature map generated by multi-rate, multi-scale atrous con-

volutions. The proposed structure can simultaneously com-

pose a much denser and larger feature pyramid using only

a few atrous convolutional layers. Following equation (2),

each atrous layer in DenseASPP can be formulated as fol-

lows:

yl = HK,dl
([yl−1, yl−2, · · · , y0]) (3)

where dl represents the dilation rate of layer l, and [· · · ]
denotes the concatenation operation. [yl−1, · · · , y0] means

the feature map formed by concatenating the outputs from

all previous layers. Compared with the original ASPP [3],

DenseASPP stacks all dilated layers together, and connects

them with dense connections. This change brings us mainly

two benefits: denser feature pyramid, and larger receptive

field. We explain our network design in detail in terms of

these two benefits in the following two subsections.

3.2.1 Denser feature pyramid

DenseASPP composes a denser feature pyramid than that in

ASPP. The word ’denser’ not only means better scale diver-

sities of the feature pyramid, but also means there are more

pixels involved in convolution than that in ASPP.

Denser scale sampling: DenseASPP is an effective ar-

chitecture to sample inputs at different scales. A key design

of DenseASPP is using dense connections to enable diverse

ensembling of layers with different dilation rates. Each en-

semble is equivalent to a kernel in different scale, i.e. dif-

ferent receptive field. Consequently, we get a feature map

with many more scales than that in ASPP [2].

Dilation is able to increase receptive field of a convolu-

tion kernel. For an atrous convolutional layer with dilation

rate d and kernel size K, the equivalent receptive field size

is:

R = (d− 1)× (K − 1) +K (4)

For example, for a 3×3 convolutional layer with d = 3, the

corresponding receptive field size is 7.

Stacking two convolutional layers together can give us

a larger receptive field. Suppose we have two convolution

layers with the filter size K1 and K2 respectively, the new

receptive field is:

K = K1 +K2 − 1 (5)

For example, a convolutional layer with kernel size 7

stacked with a convolutional layer with kernel size 13 will

result in a receptive field of size 19.

Fig3 illustrates a simplified feature pyramid of DenseA-

SPP to help readers better understand its scale diversity.

This DenseASPP is constructed with dilation rate of 3, 6,

12, 18. The number(s) in each strip represent the combina-

tion of different dilation rate, and the length of each strip

represents the equivalent kernel size of each combination.

It is obvious that dense connections between stacked atrous

layers are able to compose feature pyramid with much

denser scale diversity. The receptive fields that DenseASPP

ensembles are a super set of that in ASPP.

Figure 3. Illustration of DenseASPP’s scale pyramid correspond-

ing to the setting of densely stacking atrous convolutions with di-

lation rates (3, 6, 12, 18). DenseASPP produces feature pyramid

with much larger scale diversity (i.e. high resolution in the scale-

axis) and larger receptive field. k on the right side of each strip

represents the receptive field size of the corresponding combina-

tion.

Denser pixel sampling: Compared to ASPP, DenseA-

SPP gets more pixels involved in the computation of feature

pyramid. ASPP composes feature pyramid using 4 atrous

convolutional layers with dilation rate of 6, 12, 18, 24. The

pixel sampling rate of an atrous convolutional layer with

large dilation rate is quite sparse compared to a traditional

convolution layer of the same receptive field.

Fig. 4(a) illustrates a traditional one-dimensional atrous

convolution layer, which has a dilation rate of 6. This con-

volution have a receptive field size 13. However, in such

a large kernel, only 3 pixels are sampled for calculation.

This phenomenon gets worse in the two-dimensional case.

Although large receptive fields are obtained, a lot of infor-

mation is abandoned in the calculation process.

The situation is quite different in DenseASPP. Dilation

rate increases layer by layer in DenseASPP, thus, convolu-

tions in the upper layer can employ features from the lower

layers, and make pixel sampling denser. Fig. 4(b) illustrates

this process: an atrous layer with dilation rate 3 is put be-

low the layer with dilation rate 6. For the original atrous

layer with dilation rate of 6, information of 7 pixels will

contribute for the final calculation, which is denser than the

original 3 pixels. In the two-dimensional case, 49 pixels

will contribute for the final prediction while in the standard
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one-layer dilated convolution only 9 pixels will contribute.

This phenomenon becomes more obvious when the dilation

rate goes larger. Fig. 4(c) illustrates the phenomenon for

the 2D version. The convolutional layer with larger dilation

rate can draw help from the filter with smaller dilation rate,

and samples pixels in a much denser way.

Figure 4. (a) Standard one-dimensional atrous convolution with di-

lation rate of 6. (b)Stacking an atrous layer with small dilation rate

below an atrous layer with larger dilation rate makes a denser sam-

pling rate. Red color denotes where the information come from.

(c)Two-dimensional version of (b).

3.2.2 Larger receptive field

Another benefit brought by DenseASPP is the larger recep-

tive field. Atrous convolutional layers works in parallel in

traditional ASPP, and four sub-branches do not share any

information in the feed forward process. To the opposite,

atrous convolutional layers in DenseASPP share informa-

tion through skip connections. Layers with small dilation

rate and large dilation rate work interdependently, in which

the feed forward process will not only compose a denser

feature pyramid, but also come up with a larger filter to per-

ceive larger context.

Following equation (5), let Rmax denote the largest re-

ceptive filed of a feature pyramid, and function RK,d means

that of a convolutional layer with kernel size K and dilation

rate d. Thus, the largest receptive field of ASPP(6, 12, 18,

24) is:

Rmax = max [R3,6, R3,12, R3,18, R3,24]

= R3,24

= 51

(6)

while in the case of DenseASPP(6, 12, 18, 24), the largest

receptive field is:

Rmax = R3,6 +R3,12 +R3,18 +R3,24 − 3

= 122
(7)

Such a large receptive field can provide global informa-

tion for large objects in high resolution images. For exam-

ple, the resolution of Cityscapes [4] is 2048×1024, and the

last feature map of our segmentation network is 256× 128.

DenseASPP(6, 12, 18, 24) covers a feature map size of 122,

and DenseASPP(3, 6, 12, 18, 24) covers a larger feature

map size of 128.

3.3. Model size control

To control model size and to prevent the network from

growing too wide, we followed [8] to add a 1 × 1 convo-

lutional layer before every dilated layer in DenseASPP to

reduce feature map’s depth into half of its original size. Be-

sides, thin filters are used to further control the output size.

Suppose every atrous layer outputs n feature maps,

DenseASPP have c0 feature maps as input, and the l-th 1×1
convolutional layer before l-th dilated layer have cl input

feature maps, we have:

cl = c0 + n× (l − 1) (8)

In our setting, every 1× 1 convolutional layer before the

dilated layer reduces the dimension into c0/2 channels. And

we set n = c0/8 for all atrous layers in DenseASPP. Thus,

the number of parameters in DenseASPP can be calculated

as follows:

S =

L
∑

l=1

[

cl × 12 ×
c0
2

+
c0
2

×K2 × n
]

=

L
∑

l=1

[c0
2

(

c0 + (l − 1)×
c0
8

)

+
c0
2

×K2 ×
c0
8

]

=
c2
0

32

(

15 + L+ 2K2
)

L

(9)

where L is the number of atrous layers in DenseASPP, and

K is the kernel size. For example, the feature map of

DenseNet121 have 512 channels, thus n is set to 64 for

DenseNet121-based model. Besides, before every atrous

layer, the number of channels in a feature map is reduced

into 256 by a 1 × 1 convolutional layer. Consequently,

DenseASPP (3, 6, 12, 18, 24) outputs a feature map with

832 channels, totaling 1,556,480 parameters, which is much

smaller than the model size of DenseNet121 (nearly 1×107

parameters).

4. Experiments

DenseASPP is proposed to tackle the scale variations

and contextual information demanding in street scenes, we

empirically verify it on Cityscapes dataset in this section.

Cityscapes [4] is comprised of a large, diverse set of high-

resolution (2048× 1024) images recorded in streets, where

5000 of these images have high quality pixel-level labels of

19 classes and results 9.43×109 labeled pixels in total. Fol-

lowing the standard setting of Cityscapes, the 5000 images

are split into 2975 training and 500 validation images with

publicly available annotation, as well as 1525 test images

with annotations withheld and comparison to other methods

is performed via a dedicated evaluation server. For quantita-

tive evaluation, mean of class-wise Intersection over Union

(mIoU) are used.
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Table 1. Category-wise comparison on the Cityscapes test set.
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FCN-8s [16] 65.3 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65 91.4 69.3 93.9 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8

DeepLabv2-CRF[2] 70.4 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8

FRRN[19] 71.8 98.2 83.3 91.6 45.8 51.1 62.2 69.4 72.4 92.6 70 94.9 81.6 62.7 94.6 49.1 67.1 55.3 53.5 69.5

RefineNet[15] 73.6 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70

PEARL[11] 75.4 98.4 84.5 92.1 54.1 56.6 60.4 69 74 92.9 70.9 95.2 83.5 65.7 95 61.8 72.2 69.6 64.8 72.8

GCN[18] 76.9 - - - - - - - - - - - - - - - - - - -

DUC[21] 77.6 98.5 85.5 92.8 58.6 55.5 65 73.5 77.9 93.3 72 95.2 84.8 68.5 95.4 70.9 78.8 68.7 65.9 73.8

PSPNet[24] 78.4 - - - - - - - - - - - - - - - - - - -

ResNet-38[22] 78.4 98.5 85.7 93.1 55.5 59.1 67.1 74.8 78.7 93.7 72.6 95.5 86.6 69.2 95.7 64.5 78.8 74.1 69 76.7

DenseASPP(Ours) 80.6 98.7 87.1 93.4 60.7 62.7 65.6 74.6 78.5 93.6 72.5 95.4 86.2 71.9 96.0 78.0 90.3 80.7 69.7 76.8

4.1. Implementation Details

We implement our methods on Pytorch [17]. For a Con-

vNet pre-trained on ImageNet [5], we first remove the last

two pooling layers and the last classification layer, and set

the dilation rates of the convolution layers after the two re-

moved pooling layers to be 2 and 4 respectively to make

the pre-trained weights reusable. The modified ConvNets

outputs the basic feature map of 1

8
input image resolution.

ASPP, PSPNet and the proposed DenseASPP are all added

on the basic feature map, and all output feature maps of 1

8

input image resolution. Followed the feature map, a convo-

lution layer with nineteen 1×1 filters are used to predict the
1

8
label map, which is further up-sampled by a factor of 8

to define the cross entropy loss using the ground-truth label

map.

Batch normalization [9] is used before each weight layer

in our implementation to ease the training and make it is

comparable to concatenate feature maps from different lay-

ers. To avoid over-fitting, common data augmentations are

used as preprocessing, including random flipping horizon-

tally, random scaling in the range of [0.5, 2], random bright-

ness jittering within the range of [-10, 10], and random crop

of 512× 512 image patches.

For training, we use the Adam optimizer [12] with an

initial learning rate of 0.0003 and weight decay of 0.00001.

The learning rate is scheduled by multiplying the initial

learning rate with
(

1− epoch

maxEpoches

)0.9

. All models are

trained for 80 epochs with mini-batch size of 8. The statis-

tics of batch normalization is updated on the whole mini-

batch.

4.1.1 DenseASPP

We followed [2] to build our baseline model, the only differ-

ence is that DenseNet121 is used to replace ResNet101[7].

We compare the proposed DenseASPP with the original

ASPP. For both ASPP and DenseASPP, we use four atrous

convolutional layers with dilation rates 6, 12, 18, 24 respec-

tively. All other settings are kept the same. The results

are evaluated on the validation set of Cityscapes, and listed

in Table 2. Results shows that DenseASPP significantly

improve the segmentation performance over the baseline

model by 4.2%, and some examples are shown in Fig. 5.

Deeper pre-trained models are helpful to further improve

performance.

Table 2. DenseASPP improve the performance of segmentation by

a huge level.

Base model Structure mIoU

DenseNet121 ASPP(6, 12, 18, 24) 72.0%

DenseNet121 DenseASPP(6, 12, 18, 24) 76.2%

DenseNet169 DenseASPP(6, 12, 18, 24) 77.7%

DenseNet201 DenseASPP(6, 12, 18, 24) 78.9%

4.1.2 Detailed study on DenseASPP components

DenseASPP is composed of multiple atrous convolutional

layers with different dilation rates. In this part, experiments

are designed to study how different settings of DenseA-

SPP influence the performance quantitatively. The results

are evaluated on Cityscapes’ validation set, and illustrated

in Table 3. From these experiments, we can get two con-

clusions. First, the segmentation performance improves

with increasing of max feature scales(largest receptive of

DenseASPP) of DenseASPP. In fact, both adding more

layers and use large dilation rates can increase max scale

of DenseASPP. After the max scale goes larger than 128,

which is the width of feature map of Cityscapes’ image, the

performance stopped increasing. Second, even with a rela-

tively weak base model, i.e. DenseNet121, DenseASPP can

obtain reasonably high performances.

4.1.3 Comparing with state-of-the-art

We train DenseASPP based on DenseNet161(wider) [8]

with only fine annotated data, and submit the results on

test set to the evaluation system of Cityscapes[4]. With

multi-scale {0.5, 0.8, 1.0, 1.2, 1.5, 2.0} testing, this model

achieves mIoU of 80.6% on the test set. We compare our
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Figure 5. Due to the the ability to capture larger context, DenseASPP can correctly classify confusing categories ’vegetation’ and ’terrain’,

and can distinguish ’fence’ from the background.

Table 3. Performance of DenseASPP with different network set-

tings

Structure Max Scale mIoU

DenseNet121 + DenseASPP(6, 12) 37 74.8%

DenseNet121 + DenseASPP(6, 12, 18) 73 75.6%

DenseNet121 + DenseASPP(3, 6, 12, 18) 79 75.7%

DenseNet121 + DenseASPP(6, 12, 18, 24) 122 76.2%

DenseNet121 + DenseASPP(3, 6, 12, 18, 24) 128 76.6%

DenseNet121 + DenseASPP(3, 6, 12, 18, 24, 30) 179 76.5%

results with state-of-the-art methods on Cityscapes, and the

results is illustrated in Table 1 and Table 4. It is noted that

we use the results reported in the original paper instead of

the Cityscapes leader board.

Table 4. Performance comparison on Cityscapes test set.

Method mIoU cla iIoU cla mIoU cat iIoU cat

FCN-8s[16] 65.3 41.7 85.7 70.1

DeepLabv2-CRF[2] 70.4 42.6 86.4 67.7

FRRN[19] 71.8 45.5 88.9 75.1

RefineNet[15] 73.6 47.2 87.9 70.6

PEARL[11] 75.4 51.6 89.2 75.1

GCN[18] 76.9 - - -

DUC[21] 77.6 53.6 90.1 75.2

PSPNet[24] 78.4 56.7 90.6 78.6

ResNet-38[22] 78.4 59.1 90.9 81.1

DenseASPP(Ours) 80.6 57.9 90.7 78.1

4.2. Ablation Studies

The quality of the last feature map, which is the input of

the decision making layer, i.e. softmax layer, is critical for

an accurate segmentation. In this section, we first evaluate

the feature map quality from both feature level and results

level. Then, we study the two major reasons which affect

feature maps significantly, i.e. size of receptive field and

scale/pixel sampling rates.

4.2.1 Feature similarities

Context information is of great significance for distinguish-

ing confusing categories and classifying large objects. In

the Cityscapes dataset, some categories are easily to be mis-

classified each other due to similar appearances, e.g. ’veg-

etation’ and ’terrain’, ’bus’,’car’, ’truck’ and ’train’. For

these categories, sufficient context information is critical.

Fig. 5 illustrates two examples where some confus-

ing categories exist. Without enough context information,

our baseline model cannot correctly classify ’terrain’ and

’fence’ in the first example, and misclassified the category

of ’bus’ and ’truck’ and ’wall’ in the second example. Our

proposed model can correctly classify these images. These

examples shows the ability of DenseASPP on modeling

large context information.

Figure 6. Illustration of feature similarities of all pixels to a pointed

pixel. Hotter color means more similar in feature level. (a) and (d)

are input image and corresponding ground-truth, (b) and (c) are re-

sults of DenseASPP at point 1 and 2 respectively, which are com-

puted by output of DenseASPP. (e) and (f) are correspond results

after DenseASPP is removed.

Feature level analysis are further performed to see how

our proposed model classifies each pixel. The output of

DenseASPP is a multi-channel feature map, based on which

a softmax classification is employed to classify each pixel

into one class. Thus, each position of the feature map cor-

respond to a pixel, and pixels with the same label are likely

have similar features. In order to study how DenseASPP
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Figure 7. Effects of different spatial and pixel sampling rates. We gradually remove top atrous convolutional layers to visualize the results.

classifies a pixel, feature similarities between pixels are cal-

culated in the whole feature map, and the results are illus-

trated by a heat-map as shown in Fig. 6. Cosine similarity is

used to measure the similarities between features of pixels.

The similarity map of DenseASPP shows that most of

pixels in a continuous region with the same label have sim-

ilar features. This means we get similar features for pixels

in this region. However, the hot regions of results are much

smaller and spotted when the DenseASPP is removed. Con-

sequently, pixels in this region are unlikely to be classified

to the same category. Large context information brought by

DenseASPP is critical for correct segmentation in this case.

4.2.2 Visualization of receptive field

Since the empirical receptive field sizes are often much

smaller than the theoretical ones, we use the method pro-

posed by [25] to visualize the empirical receptive field sizes.

Specifically, for a feature vector representing a image patch

with theoretical receptive field size, we use a 8×8 mean im-

age to cover the image patch in a sliding-window way and

record the changes of the feature vector measured by the

Euclidean distances as a heat-map. The heat-map indicates

which pixels actually affect the feature vector.

The convolution layer with largest dilation rate of

ASPP(6, 12, 18, 24) and DenseASPP(6, 12, 18, 24) are

visualized respectively, and illustrated in Fig. 8. It is ob-

viously to see that dilated layer of DenseASPP sampling

denser, and captures larger receptive field.

4.2.3 Illustration of scale diversity

The more densely connected atrous convolution layers we

use in DenseASPP, the more densely sampled feature map

we can get. Thus, gradually removing top atrous convolu-

tional layers in DenseASPP will reduce the sampling rates

in scale space, and consequent segmentation performances.

Figure 8. Comparing the receptive fields of ASPP and DenseASPP.

Red dot means the reference pixel. Lighter pixels indicate strong

correlations.

In this part, we did experiments to visualize such kinds of

effects. Fig. 7 shows the results.

It is obvious that, with removing of top layers, the sam-

pling rates in scale space decrease quickly. Large objects

such as ’truck’ and ’wall’ is severely impacted. ’Train’ in

the middle scale is less affected. Results of small and easy

objects, like ’person’, are fine. This results further demon-

strate the necessity of using densely connected cascaded

atrous convolution layers in street scene segmentation.

5. Conclusion

In this paper, we propose DenseASPP to tackle the chal-

lenging problem of street scene segmentation where objects

vary largely in scale. DenseASPP connects a set of atrous

convolution layers in a dense way, which effectively gener-

ates densely spatial-sampled and scale-sampled features in

a very large range. Theoretical analysis, visualization and

quantitative experimental results on Cityscapes dataset are

presented to demonstrate the effectiveness of DenseASPP.
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