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Abstract

Recurrent neural networks (RNNs) have emerged as a

powerful model for a broad range of machine learning

problems that involve sequential data. While an abundance

of work exists to understand and improve RNNs in the con-

text of language and audio signals such as language mod-

eling and speech recognition, relatively little attention has

been paid to analyze or modify RNNs for visual sequences,

which by nature have distinct properties. In this paper, we

aim to bridge this gap and present the first large-scale ex-

ploration of RNNs for visual sequence learning. In partic-

ular, with the intention of leveraging the strong generaliza-

tion capacity of pre-trained convolutional neural networks

(CNNs), we propose a novel and effective approach, Pre-

RNN, to make pre-trained CNNs recurrent by transforming

convolutional layers or fully connected layers into recur-

rent layers. We conduct extensive evaluations on three rep-

resentative visual sequence learning tasks: sequential face

alignment, dynamic hand gesture recognition, and action

recognition. Our experiments reveal that PreRNN consis-

tently outperforms the traditional RNNs and achieves state-

of-the-art results on the three applications, suggesting that

PreRNN is more suitable for visual sequence learning.

1. Introduction

Recurrent neural networks (RNNs) have achieved ex-

cellent performance on a variety of sequential learning

problems including language modeling [27], handwriting

recognition [16], machine translation [6], speech recogni-

tion [17], polyphonic music modeling [8], and intelligent

video analytics [10]. A vanilla recurrent neural network

(VRNN) [2] extends the conventional feedforward network

to handle a variable-length sequence by accumulating the

context of previous inputs in its internal state to influence

proceeding outputs. However, the range of context that can

be accessed in VRNN is limited as the gradients tend to

either vanish or explode [2]. Unlike the gradient exploding

problem which is relatively easy to address through gradient

norm clipping [32], the gradient vanishing problem involves

devising more sophisticated gating mechanism. As an ear-

liest attempt in this direction, the long short-term memory

(LSTM) [21] adopts a memory cell to maintain the internal

state over time and employs gating functions to modulate

the information flow into and out of the cell. A simpler al-

ternative to LSTM, the gated recurrent unit (GRU) [6] mod-

ifies the functional gates and has been growing increasingly

popular. Recently, there have been a number of attempts to

understand and further improve these basic recurrent struc-

tures for language and speech modeling as seen with the

memory network [47], the massive evolutionary architec-

ture search [23], the content based soft attention scheme

[1], and the ablation study of removing various gates and

connections [18].

RNNs have also been widely applied for visual sequence

learning tasks to model dynamic evolutions and provide

temporal contexts. However, visual sequences have by na-

ture distinct properties compared to other sequential data.

In contrast to language and speech, the processing unit of

a visual sequence is in a more structured format such as an

image or a short video snippet. Therefore, convolutional

neural networks (CNNs) usually serve as the backbone net-

works to extract semantic features, which RNNs are then

built on top. A key advantage of the feature extraction for

visual sequences is to exploit the extremely expressive CNN

models that are pre-trained on large-scale image or video

datasets such as ImageNet [9] and Sports1M [25]. How-

ever, it remains an open question how to construct RNNs

to better leverage the representational power and general-

ization ability of these pre-trained CNNs. In addition, vi-

sual sequences typically exhibit large redundancy [36] and

have diverse temporal dependencies depending on different

applications [19, 28, 29]. As a result, it is still poorly un-

derstood which recurrent structure and which gating mech-

anism is best suited.

Our main contributions in this paper are as follows. First,

we propose PreRNN, which is an effective approach to

make pre-trained CNNs recurrent by directly transforming

pre-trained convolutional layers or fully connected layers

into recurrent layers. PreRNN is applicable to all three ba-

sic recurrent structures (i.e., VRNN, LSTM and GRU) and
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can fully take advantage of the strong generalization capa-

bility of pre-trained CNNs. Second, a simplified alterna-

tive PreRNN-SIH is proposed to refine the gating functions

and reduce the number of recurrent parameters. Third, we

systematically analyze the internal mechanism of the gat-

ing units and demonstrate this can be used as an insightful

guidance to better understand and design recurrent architec-

tures for visual sequence learning. Fourth, we extensively

evaluate a variety of recurrent convolutional architectures

on the three representative visual sequence learning tasks:

sequential face alignment, dynamic hand gesture recogni-

tion, and action recognition. As summarized in Table 1, our

evaluations represent a large diversity of applications, visual

sequence types, pre-trained backbone CNNs, and objective

functions. To our knowledge, this work provides the first

large-scale exploration of different recurrent convolutional

networks for visual sequence learning.

2. Notation and Related Work

In this section, we introduce the notation used through-

out this paper and summarize the related work. RNNs have

been well studied for decades in sequence learning, which

mainly includes language modeling [27], machine transla-

tion [6] and speech recognition [17]. VRNN [2] contains a

recurrent or self-connected hidden state ht, whose activa-

tion depends on that of the previous time step:

ht = H(W ihyt +W hhht−1), (1)

where H is an activation function, W ih is the input-to-

hidden matrix, W hh is the hidden-to-hidden matrix, yt is

the input to this recurrent layer. We omit the bias vector for

brevity. In order to enhance the capability to use contextual

information, a great amount of efforts have been made to

mitigate the gradient vanishing problem for VRNN. Among

the most successful variants are LSTM and GRU, which

incorporate gating functions into their state dynamics. At

each time, LSTM [21] maintains a memory cell ct and a

hidden state ht that are carefully regulated by the gates:

it = sigm(W iiyt +W hiht−1),

f t = sigm(W ifyt +W hfht−1),

ot = sigm(W ioyt +W hoht−1),

c̃t = tanh(W icyt +W hcht−1),

ct = f t ⊙ ct−1 + it ⊙ c̃t,

ht = ot ⊙ tanh(ct).

(2)

Similarly W i· are the input-to-hidden matrices and W h·

are the hidden-to-hidden matrices. Here it, f t and ot are

respectively the input, forget and output gates, c̃t is the new

memory state, and ⊙ is the element-wise product. GRU [6]

simplifies LSTM primarily by merging the hidden state and

memory cell and combining the forget and input gates into

a single update gate:

rt = sigm(W iryt +W hrht−1),

zt = sigm(W izyt +W hzht−1),

h̃t = tanh(W ihyt +W hh(rt ⊙ ht−1)),

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t,

(3)

where rt and zt are the reset and update gates, and h̃t is the

candidate hidden state. Note that for the above three basic

recurrent structures in Eqs. (1-3) multiple recurrent layers

can be stacked on top of each other to perform deep and

hierarchical recurrent processing.

In recent years, there has been a growing interest in un-

derstanding the properties of RNNs and modifying the func-

tional components to improve upon the three basic recurrent

structures. In [8] Chung et al. empirically evaluate GRU

with comparison to LSTM and find the two gating strategies

to be comparable. Greff et al. in [18] present a large-scale

analysis on the importance of different gates and variations

of LSTM, and show that the forget gate and output activa-

tion function are the most crucial elements. Jozefowicz et

al. [23] perform an extensive search of over ten thousand

RNN structures to determine whether better structures ex-

ist by means of mutating network components. Karpathy et

al. [24] investigate the predictions, representations, and er-

ror types presented in RNNs. Pascanu et al. in [31] provide

a few different ways to build and interpret deep extensions

of RNNs. All these studies are conducted in the context of

language and audio sequence modeling, while in this paper

we focus on visual sequence learning.

RNNs are mostly attached on top of the last layer of

pre-trained CNNs in visual sequence learning tasks, as this

can harness the strong representational ability of these pre-

trained models and capture the long-term temporal con-

texts. In [29] a few LSTM layers are stacked upon the

pre-trained AlexNet [26] and GoogLeNet [41] for action

recognition. Donahue et al. [10] also place LSTM after a

fully connected layer of the pre-trained ZFNet [51] for ac-

tivity recognition. Yang et al. [48] merge VRNN with the

pre-trained VGG16 [38] and C3D [43] for video classifica-

tion. VRNN in [28] is employed with the pre-trained C3D

to enable online detection and classification of dynamic

hand gestures. Peng et al. [30] accompany LSTM with the

pre-trained VGG16 for facial landmark detection in videos.

In [52] LSTM is combined with the pre-trained AlexNet for

video based person re-identification. Tokmakov et al. [42]

append GRU on top of the pre-trained network DeepLab [5]

for video object segmentation. In contrast to the previous

work, we aim to propose a more effective and generalized

approach to directly make the pre-trained CNNs recurrent

and obtain an in-depth understanding of the internal mech-

anism for visual sequence learning.
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Figure 1. A schematic overview of the traditional RNN and the proposed PreRNN. Each colored arrow represents the corresponding

network weights: blue arrows are the weights of pre-trained CNNs and red arrows denote the randomly initialized weights introduced by

the recurrent layers. In accordance with different backbone CNN architectures, the traditional RNN in (a, c) stacks the recurrent layer on

top of the last fc layer or conv layer, while our PreRNN in (b, d) makes the pre-trained CNNs recurrent by directly transforming the

pre-trained fc layer or conv layer into the recurrent layer.

3. Methods

RNNs coupled with pre-trained CNNs are powerful tools

to exploit the important temporal connections in visual se-

quence learning tasks. It is well explored in the literature

[11, 34] that CNN models, pre-trained on large-scale im-

age or video datasets, retain strong semantic and generality

properties. Prior methods typically introduce a single or a

stack of recurrent layers on top of the last layer1 of a pre-

trained CNN and then train the whole network together. It

thus requires the entire recurrent layers to be trained from

scratch, even though a pre-trained CNN is used for fea-

ture extraction. In order to maximize the representational

power and generalizing capacity of pre-trained CNNs, we

propose PreRNN to directly transform pre-trained convo-

lutional (conv) layers or fully connected (fc) layers into

recurrent layers. This can mitigate the difficulty of training

RNNs, as we reuse parts of a pre-trained CNN as a par-

tially pre-trained RNN. It therefore pushes the generaliza-

tion ability of a pre-trained CNN onto the RNN and ulti-

mately improves the overall performance.

PreRNN is a generic approach that can be applied to

various architectures of pre-trained 2D and 3D CNNs. As

illustrated in Figure 1(a, b), it transforms CNNs such as

VGG [38] and C3D [43] with fc layers at the end of the

convolutional networks, meanwhile it also converts CNNs

such as ResNet [20] and DenseNet [22] with conv and

global average pooling layers at the end, as depicted in Fig-

ure 1(c, d). PreRNN is also able to adapt to all three basic

1This denotes the last layer after removing the output layer of a pre-

trained backbone CNN.

recurrent structures including VRNN, LSTM and GRU. Ad-

ditionally, an alternative PreRNN-SIH can be used to sim-

plify gating functions and reduce recurrent parameters.

3.1. Transformations for VRNN

To be comprehensive in term of different backbone CNN

architectures, we assume that the last fc or conv layer of

a pre-trained CNN has the structure:

y = H(W xy ◦ x), (4)

where W xy are the pre-trained feedforward weights, x and

y are the input and output of this layer, and ◦ indicates ma-

trix multiplication for the fc layer or convolution opera-

tion for the conv layer. In order to take advantage of the

pre-trained layer, we reformulate this feedforward layer as

a recurrent layer using PreRNN. It is straightforward to re-

model the fc layer through:

yt = H(W xyxt +W hhyt−1
), (5)

where xt and yt are reformed to be the input and hidden

state of this recurrent layer at time t. As for the conv layer,

PreRNN performs the transformation by:

yt = H(P(B(W xy ∗ xt) + γt) +W hhyt−1
), (6)

where ∗ is the convolution operation, B represents the batch

normalization with the pre-computed mini-batch statistics,

γt indicates an optional shortcut connection in residual net-

works, and P is the global average pooling.

PreRNN essentially transforms the feedforward weights

W xy and output y in Eq. (4) as the input-to-hidden weights
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W xy and hidden state yt in Eqs. (5-6). In comparison

to the traditional VRNN in Eq. (1), which introduces two

randomly initialized weight matrices, PreRNN in Eqs. (5-

6) only brings in a single hidden-to-hidden weight matrix

W hh to be trained from scratch, while the input-to-hidden

weights W xy inherited from Eq. (4) have been pre-trained

and can be just fine-tuned. As a result, PreRNN can fully

make use of the robust generalization of a pre-trained CNN

and preserve its architecture to the greatest extent.

3.2. Transformations for LSTM and GRU

A prominent feature shared by LSTM and GRU is the

additive nature in updating the hidden state from t to t+ 1,

i.e., keep the existing state and add changes on top of it

through their gating functions. This helps each hidden state

unit to remember the existence of a specific feature for a

long series of steps, and more importantly, to create short-

cut paths to allow the error to be back-propagated easily

through multiple steps without vanishing too quickly. Here

we aim to extend PreRNN to accommodate the gating func-

tions of LSTM and GRU. For this purpose, we split each

gating function to two components and fuse the pre-trained

feedforward layer into them.

3.2.1 Gate-Dependent Input-to-Hidden State

We follow the same principle to convert a pre-trained feed-

forward layer into a recurrent layer, as we did for trans-

forming VRNN. In Eqs. (2-3) each gate2 is composed of

two components that are the input-to-hidden state and the

hidden-to-hidden state. We define the gate-dependent input-

to-hidden state for PreRNN as:

ut(g) =

{

W
p
igxt a fc layer,

P(B(W p
ig ∗ xt) + γt) a conv layer,

(7)

where g is a gate index, g = {i, f, o, c} for LSTM and

g = {r, z, h} for GRU, ut(g) is the input-to-hidden state of

gate g at time t, and W
p
ig is the pre-trained input-to-hidden

weights of gate g. Concretely, we convert the pre-trained

feedforward weights W xy in Eq. (4) to the input-to-hidden

weights for one gate and use the pre-trained values to ini-

tialize the input-to-hidden weights for other gates. So we

redefine the gating functions of LSTM in Eq. (2) as:

it = sigm(ut(i) +W hiht−1),

f t = sigm(ut(f) +W hfht−1),

ot = sigm(ut(o) +W hoht−1),

c̃t = tanh(ut(c) +W hcht−1),

(8)

where only the hidden-to-hidden weights W h· are ran-

domly initialized, and we follow the same updating func-

tions in Eq. (2) to renew the memory cell ct and hidden

2For notational simplicity, we also call LSTM’s new memory state c̃t

and GRU’s candidate hidden state h̃t gate here.

state ht. Correspondingly, the gating functions of GRU in

Eq. (3) can be redefined as:

rt = sigm(ut(r) +W hrht−1),

zt = sigm(ut(z) +W hzht−1),

h̃t = tanh(ut(h) +W hh(rt ⊙ ht−1)),

(9)

and the hidden state ht is updated in the same manner as

in Eq. (3). By fusing the pre-trained feedforward layer into

the input-to-hidden state of each gate, PreRNN introduces

fewer input-to-hidden parameters and only needs to train

the hidden-to-hidden weights from scratch.

3.2.2 Single Input-to-Hidden State

In the aforementioned transformation scheme, each gate

learns its own input-to-hidden weights W
p
ig , though they

start from the same initial state W xy . In order to simplify

the gating functions and fully utilize the pre-trained feed-

forward layer, we take our idea further and bind all gates to

the same input-to-hidden state:

vt =

{

W xyxt a fc layer,

P(B(W xy ∗ xt) + γt) a conv layer,
(10)

where vt is the single input-to-hidden (SIH) state that is

adopted by all the gates, and we call this transformation

PreRNN-SIH. Compared to the gate-dependent input-to-

hidden state in Eq. (7), PreRNN-SIH directly converts the

pre-trained feedforward layer to be the unified input-to-

hidden state for all the gates. We thus change the gating

functions of LSTM in Eq. (2) to:

it = sigm(vt +W hiht−1),

f t = sigm(vt +W hfht−1),

ot = sigm(vt +W hoht−1),

c̃t = tanh(vt +W hcht−1),

(11)

where all the gates hinge on the same input-to-hidden state

vt. In the same way, the gating functions of GRU in Eq. (3)

are reformulated as:

rt = sigm(vt +W hrht−1),

zt = sigm(vt +W hzht−1),

h̃t = tanh(vt +W hh(rt ⊙ ht−1)).

(12)

Hence, PreRNN-SIH in Eqs. (11-12) only introduces the

hidden-to-hidden weights W h· that need to be trained from

scratch. In addition, since the pre-trained feedforward layer

is set to be the joint input-to-hidden state for all the gating

functions of LSTM and GRU, PreRNN-SIH can therefore

significantly reduce the number of recurrent parameters and

consequently the computational cost.
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Applications Sequences CNNs Datasets Objectives

Sequential Face Alignment Color VGG16 [38] 300VW [7] ℓ2

Hand Gesture Recognition Color & Depth C3D [43] NVGesture [28] CTC [15]

Action Recognition Color & Flow ResNet50 [20] UCF101 [39] NLL

Table 1. Summary of the diverse experiments conducted in this paper in terms of applications, visual sequence types, pre-trained backbone

CNNs, benchmark datasets, and objective functions.

Traditional PreRNN PreRNN-SIH

1 layer 2 layers fc6 fc7 fc6/7 fc6 fc7 fc6/7

VRNN 0.704 0.716 0.757 0.742 0.763 - - -

LSTM 0.718 0.671 0.769 0.754 0.746 0.743 0.746 0.719

GRU 0.722 0.698 0.772 0.755 0.761 0.768 0.748 0.762

Table 2. AUC of the traditional RNNs and our proposed PreRNN and PreRNN-SIH on the 300VW dataset.

4. Applications

In this section, we exemplify our proposed methods for

visual sequence learning with three applications: sequen-

tial face alignment, dynamic hand gesture recognition, and

action recognition. As summarized in Table 1, our evalu-

ations represent a large diversity of visual sequences, pre-

trained backbone CNNs, benchmark datsets, and objective

functions. To compare the performance of each basic recur-

rent structure in a controlled setting, we carefully choose

the hidden state dimensions of different recurrent models so

that the total number of parameters in each case is as close

as possible (see supplementary material for more details).

We train the models using mini-batch stochastic gradient

descent with momentum, and implement our networks in

Theano and PyTorch on an NVIDIA DGX-1. In the follow-

ing, we use PreVRNN, PreLSTM and PreGRU to indicate

the three basic recurrent structures created by the proposed

PreRNN, and denote the ones constructed by the traditional

RNNs as TraVRNN, TraLSTM and TraGRU.

4.1. Sequential Face Alignment

We start from the video based face alignment, which is

fundamental to many applications such as face recognition,

expression analysis, facial animation capturing, etc. We ex-

periment on the benchmark dataset 300VW [7], which con-

tains 114 videos and 218,595 frames in total, with 68 an-

notated facial landmarks per frame. We follow the same

experimental setting as [19] to split the dataset into 80% for

training and 20% for testing. A Faster R-CNN [35] based

face detector is used as a preprocess to detect the facial re-

gion on each frame.

We employ the pre-trained VGG16 [38] on ImageNet

[9] as the backbone CNN and the ℓ2 loss as our objective

function, and change the output layer to 136 units corre-

sponding to the locations of 68 facial landmarks. We use

the same evaluation metric, i.e., area under the curve (AUC)

for quantitative performance comparison. AUC is the area

under the cumulative error distribution curve (see Figure 3),

which describes the proportion of frames with the normal-

ized point-to-point error less than a given threshold.

Since there are two fc layers in VGG16, we first trans-

form both of them (fc6 and fc7) into recurrent layers with

PreRNN. As a comparison, we follow the traditional RNNs

to build two recurrent layers on top of fc7 in VGG16. As

shown in Table 2, PreRNN with fc6/7 significantly out-

performs the traditional RNNs with 2 layers for the three

basic recurrent structures.

Next we investigate the internal mechanism of traditional

RNNs and PreRNN to better understand the source of their

performances and shortcomings, similar to the analysis for

language modeling in [24]. Specifically, we look into the

distributions of gate activations and define a gate unit to be

left or right saturated if its activation is less than 0.1 or more

than 0.9, or unsaturated otherwise. We then infer the gat-

ing mechanism through the saturation plots or the activation

histograms as shown in Figure 2. Our consistent finding is

that the activations in the first layer of PreLSTM lie in the

more saturated regime (closer to the diagonal) than those

of TraLSTM. This implies that PreLSTM is more capable

to utilize the temporal context, e.g., the multiple frequently

right saturated forget gate units (bottom right of the forget

gate plot) correspond to the memory cells that remember

their values for long durations. Conversely, the activations

of TraLSTM are dispersed in the more unsaturated regime,

indicating that the integrated temporal information decays

rapidly. We make a similar observation for the first layer

of PreGRU where the left saturated (0.0-0.1) and right sat-

urated (0.9-1.0) bins dominate the distribution, whereas the

activations of TraGRU gather in the unsaturated bins.
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Figure 2. Examples of the gate activation distribution for LSTM and GRU. Top: saturation plots of the fraction of times that each gate unit

is left or right saturated for LSTM. Bottom: activation histograms over 10 bins for GRU. This figure is best viewed on screen.

It is also interesting to note that the activations in the sec-

ond layer of both TraLSTM and PreLSTM concentrate near

the origin in the saturation plots, where the gate units are

rarely left or right saturated. This suggests that the second

recurrent layer virtually functions in a feedforward fashion

and the preceding hidden state is barely used. A similar

phenomenon is also shown in the activation histogram for

the second layer of TraGRU and PreGRU. We take this ob-

servation as a guidance to determine the hierarchy of recur-

rent layers: we transform only one fc layer (either fc6 or

fc7) into a recurrent layer and leave the other one as a feed-

forward layer for PreRNN, and correspondingly build only

one recurrent layer for the traditional RNNs. Table 2 clearly

Figure 3. Comparison of our approach with the state-of-the-art

methods on the 300VW dataset.

shows the improvements of PreRNN with fc6 and the tra-

ditional RNNs with 1 layer over their 2-layer counterparts

for both LSTM and GRU.

PreRNN-SIH substantially reduces the recurrent param-

eters as shown in Table 3, yet, it still outperforms traditional

RNNs and compares favorably with PreRNN. As for com-

paring the basic recurrent structures, GRU performs slightly

better than LSTM, which further moderately outperforms

VRNN. We finally show the cumulative error distributions

of our approach and the competing algorithms in Figure 3,

where ours (PreGRU) outperforms the other methods.

4.2. Dynamic Hand Gesture Recognition

Our second application is the online dynamic hand ges-

ture recognition, which is a natural and important form for

human computer interaction. This is a challenging task and

requires to simultaneously detect and classify the inprogress

gestures from unsegmented input streams. We experiment

with the public benchmark dataset NVGesture [28], which

contains 25 hand gesture categories and 1,532 videos cap-

tured with multiple sensors. Our experiments are based on

the color and depth modalities. We comply with the stan-

dard evaluation protocol to split the dataset by subject into

70% for training and 30% for testing.

We leverage on the method developed in [28] to use the

C3D [43] pre-trained on Sports1M [25] as the base CNN

and the connectionist temporal classification (CTC) [15] as

the loss function. CTC is an objective function proposed for
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VGG16 C3D

ResNet50
fc6 fc7 fc6/7 fc6 fc7 fc6/7

LSTM 0.18× 0.57× 0.27× 0.40× 0.57× 0.47× 0.84×

GRU 0.20× 0.60× 0.30× 0.43× 0.60× 0.50× 0.86×

Table 3. Number of recurrent parameters used by PreRNN-SIH compared to those by traditional RNNs or PreRNN based on the different

pre-trained backbone CNNs.

Traditional PreRNN PreRNN-SIH

1 layer 2 layers fc6 fc7 fc6/7 fc6 fc7 fc6/7

VRNN 83.3% 80.8% 81.9% 82.9% 84.4% - - -

LSTM 81.3% 81.3% 81.7% 81.9% 82.7% 80.0% 81.7% 84.2%

GRU 81.9% 82.5% 82.1% 81.0% 83.1% 84.4% 79.8% 83.8%

Table 4. Classification accuracy of the traditional RNNs and our proposed PreRNN and PreRNN-SIH on the NVGesture dataset.

speech recognition to label unsegmented audio sequence. It

is applied in this task to support predicting gestures from

the unsegmented color and depth streams.

We transform the fc layers of C3D (fc6 and or fc7)

into recurrent layers with PreRNN and PreRNN-SIH. As a

comparison, we construct recurrent layers after fc7 for the

traditional RNNs. Table 4 demonstrates that both PreRNN

and PreRNN-SIH outperform the traditional RNNs, espe-

cially for LSTM and GRU. PreRNN-SIH yields superior

performance and also significantly reduces the number of

parameters required by recurrent layers by more than half,

as shown in Table 3.

In addition to improving the classification accuracy, Pre-

RNN is also found to converge faster than the traditional

RNNs during training. Figure 4 demonstrates the training

curves of different networks. As shown in this figure, Pre-

VRNN greatly expedites the training process and reduces

overfitting. PreLSTM also exhibits faster convergence than

TraLSTM (see the slope at the early training stage). We at-

tribute the faster convergence of our approach to fusing the

pre-trained feedforward layers into recurrent layers so that

our RNNs are partially pre-trained and therefore they can

accelerate the convergence.

Figure 4. Comparison of the training processes between the tra-

ditional RNNs and our proposed PreRNN and PreRNN-SIH for

VRNN (left) and LSTM (right).

Comparing the basic recurrent structures, we observe

that VRNN is on a par with LSTM and GRU on this dataset.

We hypothesize this is due to approximately 20% of the ges-

ture categories, e.g., “thumb up” and “index finger”, being

almost still and lacking a strong temporal dependency. We

then compare our approach with the state-of-the-art meth-

ods in Table 6. We achieve superior results on each individ-

ual modality and the combination of them, and significantly

outperform the baseline by 4.0%. Notably, our approach us-

ing the single depth modality already produces an accuracy

that is better than other competitors by a clear margin, and

even consistently outperforms the ones that combine more

modalities, highlighting the advantage of PreRNN to make

use of the temporal connections.

4.3. Action Recognition

We also apply our approach to model the dynamic mo-

tions for action recognition, which plays an important role

in surveillance event detection, content based video search,

health care monitoring, etc. We experiment on the public

benchmark dataset UCF101 [39], which consists of 101 ac-

tion classes and 13,320 videos in total. We use the standard

three training and testing splits as in [39] to perform our

evaluations, and report results on the first split for our inter-

nal comparisons.

We follow the original two-stream method [37] to adopt

two separate CNNs to operate on the spatial (color) and

temporal (optical flow) streams. Our temporal network em-

ploys the pre-computed optical flow [50] stacking with 10

frames. CNNs of each stream in our approach are then

equipped with RNNs to capture the temporal dynamics over

the whole video sequence. We use the ResNet50 model [20]

pre-trained on ImageNet [9] as the backbone CNN and the

negative log likelihood (NLL) as the loss function.
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Traditional PreRNN PreRNN-SIH

Color Flow Comb Color Flow Comb Color Flow Comb

VRNN 82.9% 83.6% 91.6% 83.8% 84.6% 92.7% - - -

LSTM 83.4% 84.0% 92.5% 85.3% 84.8% 93.2% 85.0% 84.6% 93.5%

GRU 83.6% 83.8% 92.2% 84.3% 85.2% 93.7% 84.9% 84.7% 93.3%

Table 5. Classification accuracy of the traditional RNNs and our proposed PreRNN and PreRNN-SIH on the first split of UCF101 dataset.

Method Modality Accuracy

C3D [43] Color 69.3%

R3DCNN [28] Color 74.1%

Ours Color 76.5%

SNV [49] Depth 70.7%

C3D [43] Depth 78.8%

R3DCNN [28] Depth 80.3%

Ours Depth 84.4%

Two-Stream [37] Color + Flow 65.6%

iDT [45] Color + Flow 73.4%

R3DCNN [28] Five Modalities 83.8%

Baseline (w/o RNN) Color + Depth 81.0%

Ours Color + Depth 85.0%

Table 6. Comparison of our approach with the state-of-the-art

methods on the NVGesture dataset, which consists of five modali-

ties including color, depth, optical flow, IR image and IR disparity.

We transform the last conv layer of ResNet50 into a re-

current layer with PreRNN and PreRNN-SIH. As defined

in Eqs. (6, 7, 10), we fuse the pre-trained weights and mini-

batch statistics of res5c-branch2c as well as the short-

cut connection from res5b into the recurrent layer. As a

comparison, traditional RNNs build a recurrent layer on top

of pool5 in ResNet50. Table 5 demonstrates that PreRNN

and PreRNN-SIH both outperform traditional RNNs by up

to 1.9% and 1.4% on the color and optical flow streams, re-

spectively. Combining the two streams through simple av-

eraging softmax scores boosts the classification results for

all methods. Apart from improving the accuracy, PreRNN-

SIH reduces the recurrent parameters by around 15%, as

shown in Table 3. In comparison, among the three basic re-

current structures, LSTM produce similar results to GRU,

which both outperform VRNN.

We finally compare with the most recent competing al-

gorithms in Table 7, where our approach achieves the state-

of-the-art classification accuracy 94.3%, which is 2.6% im-

provement over the baseline. In particular, we note that

[13, 46] also produce the competitive results. However,

[13] employs a more powerful CNN (i.e., ResNet152) to the

temporal stream, and [46] relies on two more input modali-

ties (i.e., warped flow in iDT and difference images). More

importantly, these methods are specifically designed for ac-

Method Accuracy

Dynamic Image Nets [3] 76.9%

Long-Term Recurrent ConvNet [10] 82.9%

Composite LSTM Model [40] 84.3%

C3D [43] 85.2%

iDT [45] 86.4%

Two-Stream ConvNet [37] 88.0%

Multilayer Multimodal Fusion [48] 91.6%

Long-Term ConvNets [44] 91.7%

Two-Stream Fusion [14] 92.5%

Spatiotemporal ResNets [12] 93.4%

Inflated 3D ConvNets [4] 93.4%

Temporal Segment Networks [46] 94.2%

Spatiotemporal Multiplier Nets [13] 94.2%

Baseline (w/o RNN) 91.7%

Ours 94.3%

Table 7. Comparison of our approach with the state-of-the-art

methods on the average of three splits of UCF101 dataset.

tion recognition, while our approach is generic for various

visual sequence learning problems and can be potentially

combined with other methods to obtain further gains.

5. Conclusion

In this paper, we have proposed PreRNN and PreRNN-

SIH to make pre-trained CNNs recurrent for visual se-

quence learning by directly transforming pre-trained feed-

forward layers into recurrent layers. Our approach fits for

all basic recurrent structures and various architectures of

CNNs. Extensive experiments on three applications find

PreRNN and PreRNN-SIH to produce consistently better

results than traditional RNNs, in addition to a significant

reduction of recurrent parameters by PreRNN-SIH. This

clearly shows that our method is not just geared to a par-

ticular dataset but is generally applicable to different visual

sequence learning tasks. We also provide the insight of un-

derstanding the internal gating mechanism and demonstrate

that this can be used to improve the design of recurrent ar-

chitecture. In the future work, we intend to explore and ap-

ply our method to more visual sequence learning problems

such as sequential human pose estimation, semantic video

segmentation, and multi-frame optical flow estimation.
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